Bajo Gavilan

Aqueduct Design 2014 iDesign

Team Members:

Megan Farrish Claira Hart Kevin Madson Erika Poli William Tillmans

Outline

- Project Overview
- Community Background
- Field Assessment
- Proposed Design
- Summary

Project Overview

- International Senior Design Project
 - Gravity-fed water distribution system
- Traveled to Panama from 8/10-8/24
- Field Assessment in Bajo Gavilan
 - Determine community needs
 - Survey proposed aqueduct route
 - Worked with local PCV
- Fall 2014: Provide final design recommendations

Bajo Gavilan, Bocas del Toro, Panama

Bajo Gavilan

- Ngäbe community
 - Indigenous to Panama
 - Subsistence farmers
- Population
 - 124 people, 16 households
 - 59% Female, 41% Male
 - 67% of population under the age of 20
- Hot and humid

Bajo Gavilan: Current Situation

Photos from [1]

Objectives

To survey, model, and design a sustainable aqueduct system that will provide fresh water for section 1 of the Bajo Gavilan community

Field Assessment

- 1. Determine flow rate of new mountain spring source
- 2. Survey a proposed aqueduct route that will supply water to section 1
- 3. Test the water quality of the source

Methods: Water Quality

Other Results

Flow Rates

- Spring = 6.9 GPM
- Demand = 2.0 GPM

Water Quality

System Modeling and Analysis

- EPANET
 - Pipe diameter
 - Location of storage tank
 - Quantity and location of break pressure tanks
- Neatwork
 - Downstream of storage tank only
 - Pipe diameter optimization
- Air block analysis
 - Location of air release valves

Aqueduct Line

- Different pipe diameters
- Buried 1.5' underground
- Components
 - Air release valve
 - Stream crossings
 - Break pressure tanks

Aqueduct Line: Air Release Valves

- Prevents air blocks in system
- Used in subsurface irrigation
- Floating ball mechanism

Aqueduct Line: Stream Crossings

- Galvanized iron pipe
- Buried 2' below deepest portion of stream bed
- Anchored at both sides

1.6

1.8

1.2

Horizontal Distance from Source (miles)

Aqueduct Line: Break Pressure Tanks • Prevents pipe failure from water pressure • Inlet, outlet, overflow, clean-out pipes

0.2

0.6

200 100

Waypoint 80 Three components: In-line chlorinator Storage tank Break pressure tank Placed on top of a concrete pad Indicate the components: In-line chlorinator I

Household Access

- Branching lines from main line to tapstands at homes
- 0.5" SDR 13.5 PVC
- Tapstands
 - Tees
 - Shut-off valve
 - Faucet

Photos from [1]

Construction

Date	Phase
February 2015	Material purchaseSite planningPreliminary construction
March 2015	 Construction of components
April 2015	Pipeline construction and burial

Projected Cost

- Waterlines Grant
- Labor
 - Community contribution
 - 5,200 man-hours
 - Approximately \$2,000
- Contingencies
 - Additional \$1,500

Item(s)	Cost
Main Aqueduct Line	\$3,300
Air Release Valves	\$70
Low Profile Spring Box	\$150
Break Pressure Tanks	\$1,800
Waypoint 80 Concrete Pad	\$1,200
In-Line Chlorinator	\$100
Stream Crossings	\$550
Tapstands	\$200
Material Transportation	\$600
Overall Cost	\$7,800

Summary

- Traveled to Bajo Gavilan, Panama in August 2014
 - Determined community needs:
 - Clean water for section 1 of the community
 - Surveyed proposed aqueduct route
- Evaluated the feasibility of the system in Fall 2014
 - Modeled and designed a sustainable system
 - Provided general recommendations for construction and maintenance
 - Provided a cost estimate and construction schedule
- Next steps: Submit data and documents to Christina

Acknowledgements

- Community of Bajo Gavilan
- Christina Duell
 - Peace Corps Volunteer
- Dr. David Watkins
 - iDesign advisor and group mentor
- Mr. Michael Drewyor
 - iDesign advisor
- Thank you!

References

[1] Duell, C. 2014. "Community Analysis and Development Plan." Received via Email communication.

[2] Jones, E.K. 2014. Improvements in Sustainability of Gravity-Fed Water Systems in the Comarca Ngäbe-Buglé, Panama: Spring Captures and Circuit Rider Model, a thesis report. Michigan Technological University, Houghton, MI.

[3] Xtremehorticulture of the Desert. 2014. Air Vent Valves. Link: http://xtremehorticulture.blogspot.com/2014/09/fertilizer-injectors-are-timesavers-but.html. Accessed on 12/10/2014.

