



### Design Solutions for Seasonal Water Scarcity in the Comarca Ngäbe-Buglé

Mujeres Fuertes Consultados Michigan Technological University iDesign Panama 2010

Jacquie Blom, Alye Hannum, Natalie Helms, Sara Maihofer, Beth Shears



#### Outline



- Introduction
- Background
- Site Assessment
- Design Alternatives and Analysis
- Cost Estimate and Construction Schedule
- Design Recommendations



# TIFE THUSE BY AUST THE CONSULTATION

### iDesign Panama 2010





#### Comarca Ngäbe-Buglé

#### **Erin Kelley**

- University of Kentucky
  - Foreign Language and International Economics
- Peace Corps Volunteer
  - Agro-business
- Salto Dupí in the Comarca Ngäbe-Buglé
- Counterpart: Alvaro Bejerano





### Comarca Ngäbe-Buglé



#### Ngäbe-Buglé People

- Comarca: "reservation"
- Language: Ngäbere and Buglére
- Livelihood: Subsistence farmers, shop owners
- Income: \$10/week
- Religion: Seventh-Day Adventist
- Crafts: Chacaras, Naguas



### Farming on the Comarca



- Seasons
  - Rainy: May November
  - Dry: December April
  - "Famine": May July
- Farming adversities
  - Poor soil
  - Steep slopes







#### Farming on the Comarca



- OPAMO: Organization of Agricultural Producers with Organic Methods
  - mulch
  - compost
  - soil conservation plants
  - plants to slow runoff

- Design Needs
  - Rainwater Collection
  - Rainwater Storage
  - Irrigation

#### Designing for the Developing 80%



#### **Considerations**

- Technical Aspects
  - Construction skills
  - Material availability
  - Maintenance
- Social Aspects
  - Willingness to use the technology and show other farmers the technology
- Economical Aspects
  - Capital and financial management
  - Market opportunities for the produce and pay back time for the technology



#### Site Assessment





#### GPS

- Coordinates of property line
- Surveying
  - Elevations and distances of vegetable plots and property





- Plant Identification
  - Photographs for guidebook
- Soil Investigation
  - Characteristics to estimate soil properties: cohesion and unit weight





# MFC

### Design Alternatives

- Dam river
- River water pumping
  - Electric pump
  - Treadle pump
  - Windmill pump
- Rainwater storage
  - Water bladder
  - 50-gallon polyethylene barrel
  - Ferrocement tank



http://news.cnet.com/2300-1008\_3-6209770-10.html?tag=mncol



### Proposed Design

#### **Developing 80% Considerations**

- Economically feasible
- Materials available in Salto Dupí or San Felix
- Minimal technical training
- Adaptable for other farms
- New technology for the area
  - easily accepted



#### TIFE THE PER PLATTER COTRECTOR

### Proposed Design



- Rainwater Collection and Storage System
  - Zinc-coated roof
  - Bamboo gutters
  - 50-gallon polyethylene barrels
- Drip Irrigation System
  - Garden hose
- Rice Terraces



### Proposed Design





#### **Rainwater Collection System**

- Zinc roofing
- Bamboo gutters







#### Rainwater Storage System

- 50-gallon polyethylene barrels
- PVC connections









#### **Drip Irrigation System**

- Experiment
  - Determined flow through emitters
  - Various elevation changes







#### **Drip Irrigation System**

- EPA Net 2.0 Model
  - Flow: 0.026 GPM
  - Pressure: 2-4 psi







#### Rice Terrace Water Budget

| Month     | Irrigation Need<br>(mm/month) |
|-----------|-------------------------------|
| May       | <b>-</b> 116                  |
| June      | 34.0                          |
| July      | -19.6                         |
| August    | -186                          |
| September | -33.2                         |
| October   | -236                          |





www.images-photography-pictures.net/China\_rice\_terraces\_terracotta\_soldiers.htm



#### Rice Terrace Slope Stability Analysis in SLIDE 5.0







#### Rice Terrace Dimensions

Height: 2 ft

• Width: 3 ft

• Length: 24 ft

Number of terraces: 8

Construction Time:

16 days





#### Cost Estimate



Detailed Cost Estimate for Rainwater Collection, Storage and Distribution System

| - , - B                              | J        |              |               |
|--------------------------------------|----------|--------------|---------------|
|                                      | Quantity | Unit<br>Cost | Total<br>Cost |
| Zinc Roofing (3.5'x10' sheet)        | 2        | \$ 8.00      | \$ 16.00      |
| Nails (box)                          | 2        | \$ 2.30      | \$ 4.60       |
| Rubber Sheeting<br>(12"x36")         | 1        | \$ 17.50     | \$ 17.50      |
| Barrels                              | 7        | \$ 25.00     | \$ 175.00     |
| PVC Pipe (1" diameter)<br>(20 ft)    | 1        | \$ 3.50      | \$ 3.50       |
| PVC Threaded Nipple<br>(1" diameter) | 12       | \$ 0.50      | \$ 6.00       |
| PVC Valve (1"<br>diameter)           | 2        | \$ 3.50      | \$ 7.00       |
| Caulk (1 tube)                       | 1        | \$ 4.00      | \$ 4.00       |
| Garden Hose (75')                    | 3        | \$ 17.50     | \$ 52.50      |
| Hose connections                     | 3        | \$ 1.00      | \$ 3.00       |
| Hose caps                            | 2        | \$ 1.00      | \$ 2.00       |
| Transportation of<br>Materials       | -        | \$ 40.00     | \$ 40.00      |

**Total Cost: \$331.10** 



#### Construction Schedule

| Activity                       | Duration<br>(Days) |
|--------------------------------|--------------------|
| Site Prep                      | 5                  |
| Material Acquisition           | 14                 |
| Roof and Gutter Construction   | 9                  |
| Storage System Construction    | 5                  |
| Irrigation System Construction | 7                  |

| Early Finish | 21 |
|--------------|----|
| Late Finish  | 39 |



#### Recommendations





- Rainwater collection, storage, and irrigation system
  - Screen collected water before storing
  - Test irrigation system water flow at various elevation changes
  - Cover irrigation lines with mulch
  - Maintenance
    - Clean gutters and screen
    - Clean out irrigation lines
    - Clean emitter holes
- Rice terraces
  - Place rocks at water spouts to prevent erosion
  - Plant vetiver to filter waste water



#### Next Steps

- Maintain communication with Peace Corps volunteer
  - Funding opportunities
  - Materials already obtained
  - Design questions and adaptations
- Follow up with Comarca farmers for design feedback





### Acknowledgements

- Dr. David Watkins, Advisor and Professor
- Erin Kelley, Peace Corps Panama Volunteer
- Alvaro Bejerano, OPAMO farmer
- Dr. Barkdoll, Michigan Tech Professor
- Anthony Oxley, Michigan Tech Soils GTA
- Tyler Gage, Michigan Tech Senior Design colleague
- Mr. Mike Drewyor, Advisor in Panama
- Krissy Guzak, Mentor in Panama

#### TIFE THUSE OF FUEL TERS CONSULT BOOK

#### References

Photo Credits: Natalie Helms, Beth Shears, Sara Maihofer, Jacquie Blom, Alye Hannum

Al-Khomairi, A. M. (2005). Use of the steady-state orifice equation in the computation of transient flow through pipe leaks. The Arabian Journal for Science and Engineering, 30(1B). Retrieved from http://ajse.kfupm.edu.sa/articles/301B\_03P.pdf

Aoun, A. (2009). Shuar Health Team, UC Berkeley: Safe water and sanitation project, Pastaza, Ecuador. Retrieved from http://www.apwa.net/publications/reporter/reporteronline/index.asp?DISPLAY=ISSUE&ISSUE\_DATE=042008&ARTICLE NUMBER=1732

Babaie, H. A. (2001). The Brunton Compass and geological objects. *Georgia Geological Society Guidebooks*, 21(1). Retrieved from http://www2.gsu.edu/~geohab/pages/geol4009/bruntonCompass.htm

Brouwer, C., & Heibloem, M. (1986). *Irrigation water management: Irrigation water needs.* Retrieved from http://www.fao.org/docrep/s2022e/s2022e00.htm#Contents

Brouwer, C., Prins, K., & Heibloem, M. (1989). Irrigation water management: Irrigation scheduling. Retrieved from http://www.fao.org/docrep/t7202e/t7202e00.htm#Contents

Brunton. (2010). Brunton Compasses. Retrieved from http://www.brunton.com/catalog.php?cat=4

Endsley, K., DeDene, C., Guzak, K., Marschke, J., &Shomion, A. (2009). Rehabilitation of water systems in QuebradaMiña and Calabazal, Panama. Michigan Technological University.

Etesa. (2009). Hidrometeorología - datoshistóricos. Retrieved from http://www.hidromet.com.pa/clima\_historicos.php

Hla, A. K., & Scherer, T. F. (2003). Introduction to micro-irrigation. *AE-1243*. Retrieved from http://www.ag.ndsu.edu/pubs/ageng/irrigate/ae1243w.htm

Hunter Industries. (2009). *The handbook of technical irrigation information*. Retrieved from http://www.hunterindustries.com/Resources/pdfs/Technical/Domestic/LIT194w.pdf

## References



International Development Enterprises. (2010). Entry into high value produce markets. Retrieved from http://www.ideorg.org/OurTechnologies/DripIrrigation.aspx

International Development Enterprises. (2010). *Technical manual for IDEal micro irrigation systems*. Retrieved from http://www.ideorg.org/OurTechnologies/IDEal\_Drip\_Technical\_Manual.pdf

Johnson, T. (2010). Water wisely with drip irrigation. Fine Gardening, 59, 52-55. Retrieved from http://www.finegardening.com/how-to/articles/water-wisely-with-drip-irrigation.aspx

Kelley, Erin. (2009). Salto Dupí: Diagnasticocomunitario.

Marshford, J., De Silva, D., Marney, D., & Burn, S. (2009). An approach to leak detection in pipe networks using analysis of monitored pressure values by support vector machine. Retrieved from http://www.urbanwateralliance.org.au/publications/IEEE-leak%20detection-pipe-networks.pdf

McVicker, S., S.E. (2010). The right nail for the job. Retrieved from http://www.mcvicker.com/offtech/smnail.htm

RSMeans (2010). Site work and landscape cost data. Kingston, MA: Reed Construction Data.

Salomons, E. (2010). Water simulation. Retrieved from http://www.water-simulation.com/wsp/2010/09/21/epanet-3/

South Carolina Department of Health and Environmental Control. (2010). Smart watering. Retrieved from http://www.scdhec.gov/environment/lwm/recycle/pubs/sg\_part3.pdf

USDA. (2010). Plants profile for Tanacetumvulgare (common tansy). Retrieved from http://plants.usda.gov/java/profile?symbol=TAVU

United States Steel. (1974). Steel sheet piling design manual. Retrieved from http://www.scribd.com/doc/27226946/Steel-Sheet-Piling-Design-Manual#

Yavuz, M. Y., Demirel, K., Erken, O., Bahar, E., &Deveciler, M. (2010). Emitter clogging and effects on drip irrigation systems performances. *African Journal of Agricultural Research*, 5(7), 532-538. Retrieved from http://www.academicjournals.org/ajar/PDF/pdf%202010/4%20Apr/Yavuz%20et%20al.pdf