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1. Elements of Process Control 
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3. Dynamic Modeling 

4. PID Controller Tuning 
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6. Other Control Issues 
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Process Control :  

 

“… a statistics and engineering discipline that deals with 

architectures, mechanisms and algorithms for maintaining the 

output of a specific process within a desired range.” 

- definition from wikipedia.org  
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Elements of Process Control 

1. Control objectives  

•  Setpoints (targets), constraints, specifications 
 

2. Input variables 

•  manipulated variable vs. disturbance variable 
 

3. Output variables 

•  controlled variable vs. uncontrolled variable 

•  measured variable vs. unmeasured variable 
 

4. Control strategy 

• Structure : feedback, feedforward … 

• Control algorithms : On/Off, PID … 
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Signal Flow Diagram 
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Remarks: 
 

1. Some control problems can be improved/simplified with 

design retrofits. 

 

2.  “Input” or “Output” refers to information flow -  not 

material flow.   
 

- Two types of diagrams used in control design:  

a.  Signal block diagrams 

b. Piping and instrumentation diagram (P&ID) 
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Example 1: Level Control 

 
 

Objective: Control the liquid level of a surge tank,  

where outlet is under gravity flow.  

(Sensors: FT is flow transmitter, FI is flow indicator, LT is level 

transmitter, TT is temperature transmitter.) 

(see http://www.chem.mtu.edu/~tbco/cm416/pidiag.html) 
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Questions/Discussion: 

1. Identify and classify the different variables. 

 

2. Propose strategies to control the liquid level. 

 

3. How tightly should the level be controlled? 

 

4. Which control valves should be manipulated? 
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Example 2: Heat Exchanger 
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Questions/Discussion: 

1. What is the control objective? 

 

2. Identify and classify the different variables. 

 

 

3. Propose control strategies. 

 

 

4. If the product cannot exceed a maximum temperature, how 

does this affect the control strategy?  
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Feedforward Control 

Use input variables (e.g. disturbance measurements) to 

determine value of manipulated variable.  

 

Feedback Control 

Use output variables (e.g. controlled variable) to determine 

value of manipulated variable.  
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Case 1: 

 
Question: Feedback or feedforward? 
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Case 2: 

 

Questions: Feedback or feedforward? 
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Simple Feedback Control Structure: 

(signal block diagram) 
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General Roles of Feedback Control: 

- Setpoint (target) tracking 

- Disturbance rejection 

Relay (On/Off) Control: (ex.: home furnace, refrigerators) 

� = �� if		� > �
��
 if	� ≤ �
��  

- Easiest (often cheapest) to implement 

- Results in limit cycle response (often complemented with 

hyteresis to reduce erratic behavior due to measurement 

noise). 

- Often: � = �� + ℎ ;  = �� − ℎ ( ℎ, �� can be <= 0 or ≥ 0) 
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Exercise 1a: Manual Control and Relay Control  

(http://www.chem.mtu.edu/~tbco/cm416/newpida.html) 

 

1. Move setpoint to 0.6 then vary input (u) to get output (y) to 

approach setpoint value. 

 

2. Switch to relay control and try with �� = 0 and ℎ = 0.1. 

(This mean � = −0.1 and  = 0.1) 

 

3. Try to improve the process with different values of �� and ℎ. 

 

4. Move the setpoint to -1. 
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OBSERVATIONS: 

1.    

2.   

3.   

4.   

©2013 by Tomas Co Page 18 

 

Proportional Control Law: 

 

� = ��(�
�� − �) 
 

Where, �� is known as the “Proportional Control Gain”. 

 

(Note: often the algorithm includes a �� term, called the “bias”.  

For simplicity, we will assume �� = 0.)



©2013 by Tomas Co Page 19 

 

Exercise 1b: Proportional Control  

(http://www.chem.mtu.edu/~tbco/cm416/newpida.html) 

 

1. Change setpoint to -0.2 then switch to Proportional control 

(PID mode with I and D mode switched off). 

 

2. Try different values of proportional gain. 

 

©2013 by Tomas Co Page 20 

 

OBSERVATIONS: 

1.   

 

2.   

  

3.   

  

4.   
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Proportional-Integral Control  ( to remove offsets ) 

 

� = �� �	(�
�� − �) 	+ 1���(�
�� − �)  !	" 
 

where,  �� = integral time constant, aka “reset time”. 
 

- Simplified interpretation of ��: projected average time 

for removing offset. 

- Larger value of �� reduces effects of integral mode. 

- Smaller value of �� likely to introduce “overshoot”.  
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Exercise 1c:   PI Control 

(http://www.chem.mtu.edu/~tbco/cm416/newpida.html) 

1. Move setpoint to 0.6 then set �� = 0.2 and  

�� = 30. 
 

 
2. Try other values to reduce overshoot. 

3. Try other values to improve response time. 

y

time

setpoint

+- 5%

overshoot

response time
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OBSERVATIONS: 

1.    

   

2.   

  

3.   

  

4.  
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Proportional-Integral-Derivative Control  ( to reduce 

oscillation/overshoot effects of integral mode ) 

� = �� %	(�
�� − �)	+	 1���(�
�� − �)  !
+	�&  (�
�� − �) ! 		' 

where, �&=derivative time (aka rate coefficient) 

 

- Can improve (decrease) response time. 

- Large value of �& amplifies noise effects. 
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Exercise 1d:   PID Control 

(http://www.chem.mtu.edu/~tbco/cm416/newpida.html) 

 

1. Set �� = 0.3, �� = 25 and �& = 8. 

 

2. Try �& = 50. 
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OBSERVATIONS: 

1.   

  

2.   

  

3.   

  

4.   
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Remarks: 

1. P control is the simplest – often used for systems where 

offset is not a problem. 

• Example: Level control of surge tanks 

2. PI control is used where offset is undesirable, yet responses 

to manipulated variables are fast. 

• Example: Flow control 

3. PID control is used where offset is undesirable but responses 

are slow. 

• Example: Temperature control 

4. Controller Tuning Problem: determining appropriate values 

of ��, �� and �&. 
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RECAP #1 

1. Four main elements of control :  

i. Control objective 

ii. Input variables 

iii. Output variables   

iv. Control strategy 

 

2. Two main roles of control: 

i. Setpoint tracking 

ii. Disturbance rejection 

 



©2013 by Tomas Co Page 29 

 

3. Three modes of PID Control: 

 

� = �� %	(�
�� − �) 	+	 1���(�
�� − �)  ! +	�&  (�
�� − �) ! 		' 
 

i. Proportional Control Gain :  �� 

ii. Integral-Time (Reset) :  �� 
iii. Derivative-Time (Rate coefficient):  �& 
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Brief Overview of Process Control 
 

1. Elements of Process Control 

2. Feedback Control 

3. Dynamic Modeling 

4. PID Controller Tuning 

5. Analysis 

6. Other Control Issues 
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Dynamic Process Models 

- Models used to  

i) describe and simulate transient process behavior 

ii) predict responses to different conditions 

iii) explore effects of redesign/retrofits and/or control 

strategies 

- Mathematical models: standard formulation involves 

differential equations based on time derivatives. 

 

Example: heat exchanger  * ! = + ,*, *./, 0, *
��12, 3
��12, 0
��12; 5, 6, 78, 9	:	 
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Prater’s Principle of Optimum Sloppiness 

- There is an optimum level of model detail to yield maximum 

engineering utility based on the proposed objectives of the 

model (balanced among accuracy, cost, flexibility, etc.) 
 

 
(… but the optimum may change depending on availability and 

cost of new technologies.) 

model detail

model
utility
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-Types of models: 

a) Phenomenological (based on first principles) 

b) Empirical 

c) Mixed 
 

Typical empirical models used in process control design: 

a) First order and first order plus time delay (FOPTD) 

b) Second order underdamped models 

c) Inverse-response models 
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First Order Process:  ; ! = 1� (�8� − ;) 
Example: Temperature in Continuous-Stirred Tank 

   ! <9=7>?* − *@�ABC = 907>?*./ − *@�AB − 90DE�7>?* − *@�AB 
Assume 0 = 0DE� and =, 9, 7> constant: 

→	 * ! = 0= (*./ − *) 

F

V,T

Tin

Fout
T
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Solution: (use variation-of-parameters) 

;(!) = ;�	GH�/J +� �8�(K)� 	GLMH�NJ�
�  K 

 

Special Case: � = �new (constant), �8�� = ;� 

;(!) = ;�G−!/� + �R�new� 	G−!/�	� 	GK/�!
0  K 

=	;�G−!/� + �R�new	(1 − G−!/�) = ;� + S�R�new − ;0T (1 − G−!/�)	 = ;0 + �8L�new − ��N<1 − GH�/JC ;(!) − ;��new − �� = �8<1 − GH�/JC 
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REMARKS: 

1. As ! → ∞, ; → ;/�V, a new steady state. 

2. Then �8 = ∆;

/∆�

 , known as the “Process gain”, 

where ∆;

 = ;/�V − ;� and ∆�

 = �/�V − ��. 

3. When ! = �, ;(�) − ;�;/�V − ;� = (1 − GHX) = 0.632 

Thus, � is known as the “time constant” of the process  

( or the “0.632 point”).   

 

Question: How does “half-life” compare to “time-

constant”? 



©2013 by Tomas Co Page 37 

 

Step-response experiment: 

1. Fix manipulated input 

variable to �D and wait until 

output settles to steady 

state �D. 

2. Introduce a step change in 

input to �/�V. (Note the 

time when the step was 

implemented.) 

3. Record the response of 

output � unit it reaches a 

new equilibrium �/�V. 
 

 Process	Gain<�RC = ∆�aa∆�aa 
 

 

Output

Input

Time

Time

ynew

yo

uo

unew

t step

t step

Dy

Duss

ss
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First Order Plus Time-Delay (FOPTD) Model 

 &b&� = XJ L�8�<�HJcdefgC − �N  
 

where, 

 �8  = process gain �  = time constant �&�h1b  = time delay 
 

 

 

Input

Output

Time

Time

ynew

yo

uo

unew

t step

t step

Dy
Dy

Du

t
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Analytical solution of FOPTD model subject to step test: 

�(!) = � �D if		! < !
��8 + �&�h1b
�D + ?1 − GHi(�)B�>∆�

 if		! > !
��8 + �&�h1b 

 

j(!) = ! − !
��8 − �&�h1b� 				 ; 				∆� = �/�V − �D 
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Estimation of k, lm and knopqr 

Method 1: 

�8 = ∆�

∆�

 			(by	setting	! → ∞� 

 

Let !1 be the time such that j�!1� = 1/3, then 

��!1� = �D + �8∆�

<1 − GHX/wC 
= �D + 0.283∆�

 

 

Let !x be the time such that j�!x� = 1, then 

��!x� = �D + �8∆�

�1 − GHX� 
= �D + 0.632∆�
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From the experimental output, determine !
��8, !1, !x. 

!1 − !
��8 − �&�h1b = 13 � !x − !
��8 − �&�h1b = � 

→ 					� = 32 (!x − !1)				; 				�&�h1b = !x − !
��8 − �	 
 

Method 2: use computers (e.g. MS Excel) 
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Exercise 2: Parameter Estimation of FOPTD 

(http://www.chem.mtu.edu/~tbco/cm416/newpida.html) 

 

1. Implement a step test. 

2. Collect a range of data that contains initial steady state and 

final steady state.  Estimate the model parameters using 

method 1. 

3. Use MS Excel to estimate model parameters using the 

analytical solution of FOPTD. 
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Cohen-Coon PID Tuning Rules: 

Based on FOPTD, obtain �8, � and �&�h1b.   

Let y = JcdefgJ , 

  ��  ��  �& 

P  
Xz{@ (1 + @w)   

PI  
Xz{@ ,0.9 + @X}: �&�h1b 30 + 3y9 + 20y  

PID  
Xz{@ ,~w+ @~: �&�h1b 32 + 6y13 + 8y �&�h1b 411 + 2y 

 

©2013 by Tomas Co Page 44 

 

Exercise 3: Cohen-Coon Tuning 

(http://www.chem.mtu.edu/~tbco/cm416/newpida.html) 

 

1. Use FOPTD parameters to find PID parameters. 

2. Implement PID. 
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Closed-loop Modeling for Ziegler-Nichols Tuning 

 

1. Implement P Control. 

 

2. Obtain ultimate gain,	�E 

(the critical value of �� 

where the process is about 

to be unstable.) 

 

3. At �� = �E, measure the 

ultimate period 3E (the 

time from one peak to the 

next). 

 

Output

@ Kc<Ku

Time

Output Pu

@ Kc=Ku

Time

Output

@ Kc>Ku

Time
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Ziegler-Nichols PID Tuning Rules: 

Using �E and 3E,   

  ��  ��  �& 

P  �E/2   

PI  �E/2.2  3E/1.2  

PID  �E/1.7  3E/2  3E/8 
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Tyreus-Luyben PID Tuning Rules: 

Using �E and 3E,   

  ��  ��  �& 

P  �E/2   

PI  �E/3.2  2.23E  

PID  �E/2.2  2.23E  3E/6.3 
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Exercise 4:  Ziegler-Nichols Tuning 

(http://www.chem.mtu.edu/~tbco/cm416/newpida.html) 

 

1. Find �E and 3E. 

2. Evaluate PID parameters based on Ziegler-Nichols rules. 

3. Implement PID. 

4. Repeat with Tyreus-Luyben. 
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Second-order Underdamped Processes: 

 �/} &�b&�� + 2�/� &b&� + � = �8� 

where, �=damping coefficient �/=natural teim constant �8=process gain=∆�

/∆�

 

  

 →	 �∆b�� = exp� H���XH��	 � 

 K = }�J��XH�� 

 

 

Output

Input

Time

Time

ynew

yo

uo

unew

t step

t step

Dy

Du

s

a

©2013 by Tomas Co Page 50 

 

Inverse Response Processes: 

 ��} &�b&�� + ��X &b&� + ���� =�8(−j�X &E&� + �) 
 

-needs numerical methods to 

estimate parameters 
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General 2
nd

 Order Linear Model: 

 }� !} + �X  � ! + ��� = X  � ! + �� 

Is equivalent to 

 �X ! = −�X�X + �} + X�  �} ! = −���X + �� � = �X 
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General n
th

 Order Linear Model: 

 /� !/ +⋯+ �X  � ! + ��� = /HX  /HX� !/HX +⋯+ �� 

Is equivalent to 

 �X ! = −�/HX�X + �} + /HX� 

⋮  �/HX ! = −�X�X + �/ + X�  �/ ! = −���X + �� � = �X 
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Computer Simulation to Estimate Parameters 

Euler Method:   � ! = +(�, �, !) ≈ 	���X − ��∆! = +(��, ��, !�) 
→					 ���X = �� + ∆!	+(�� , �� , !�) 

So for ��� order process, 

 (�X)��X = (�X)� + ∆!L−�/HX(�X)� + (�})� + /HX(�)�N ⋮ (�/)��X = (�/)� + ∆!L−��(�X)� + �(�)�N ���X = (�X)��X	 

©2013 by Tomas Co Page 54 

 

Q: What about initial conditions? 

A: For convenience, it would be helpful if the initial conditions 

were all zero. 

 

This can be accomplished if: 

a) The process is initially at equilibrium�all time derivatives 

are zero 

b) The variables are replaced by “deviation variables” �&�� = � − �D						and						�&�� = � − �D 

 

Note: Using these tricks will also help later when building 

transfer functions. 
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For PID, let G� = �
�� − ��, 

���X = �� �G� + ∆!�� �G.�
.�� + �&∆! LG� − G�HXN� 

�� = �� �G�HX + ∆!�� �G.�HX
.�� + �&∆! LG�HX − G�H}N� 

After subtraction, we get the “discrete PID” form: 

���X = ��+ �� �G� − G�HX + ∆!�� G� + �&∆! LG� − 2G�HX + G�H}N� 
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Exercise 5:  Optimal Tuning from Simulation 

(http://www.chem.mtu.edu/~tbco/cm416/newpidb.html) 

 

1. Obtain step test data. 

2. Use MS Excel to approximate the model. 

3. Use the model to find optimal tuning. 

4. Implement the PID parameters. 
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RECAP # 2 

1. Models (at various levels of details) are used to help 

characterize the dynamics of a process. 

2. If FOPTD applies, then Cohen-Coon tuning rules apply. 

Alternatively, the Ziegler-Nichols tuning is also often used 

for PID tuning. 

3. Computer simulation can also be used to estimate the 

model and this can be used for optimal tuning of PID 

controllers. 
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Brief Overview of Process Control 
 

1. Elements of Process Control 

2. Feedback Control 

3. Dynamic Modeling 

4. PID Controller Tuning 

5. Analysis 

6. Other Control Issues 
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Typical Dynamic Elements 

1. Exponential Decay or Growth: �(!) = 6Gx�  

 
 

2. Sinusoidal Response: �(!) = Gx�L6 sin(�!) +  cos(�!)N 

 

y

A

0
t

b more positive

b more negative

y

|B|

0 t

b negative

ebt

y

0 t

b positive

ebt2p
w
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Q: Which functions will match the graphs below? 

   

   
 

a) 1 − 4GH�/} b) 4 − 8GH�/} +4GH}� c) GH�.w�L3 sin(2!) −2 cos(2!)N d) 2GH�.X�  
e) G�.w� cos(3!) f) 2GH� g) GH�.}�Lsin(20!) +4 cos(20!)N h) 0.01G�.¡� +3GH�.X�  
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Solution of ODE using Laplace Transforms 

 

Definition: Given +(!), then Laplace transform is given by 

¢L+(!)N = £ +(!)GH
�¤�  ! = +¥(a)     ;    ¦G(a) > 0. 

 

 

Example: +(!) = GH1�, where � is a constant. 
 ¢LGH1�N = � (GH1�)GH
�¤

�  ! = � GH(
�1)�¤
�  ! 

= − 1a + �	GH(
�1)�§���
��¤ = 1a + � 

Special case:  � = 0, → 		¢L1N = 1/a. 
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Simple Laplace Transform table: 
 

+(!) +¥(a) = ¢L+N 
GH1� 1a + � 

GH1� cos(!) (a + �)(a + � + ¨)(a + � − ¨) 
GH1� sin(!) (a + � + ¨)(a + � − ¨) 

!/ 
�!a/�X 

(where ¨ = √−1) 
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Laplace transform of derivatives: 

¢ � + !" = � � + !� GH
�¤
�  ! 

Integration by parts:      			 � = GH
� ; 		 � = −aGH
� « = &A&�  !	 	; 				« = +  

 

→ 	¢ � + !" = +GH
�§���
��¤ + a� +GH
� !	¤

�  

= −+(0) + a¢L+N 
 

Generalizing: 

¢ � /+ !/ " = a/¢L+N − ¬a/HX+(0) +� a�/HX
��X 	 �+ !� §���	 
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Linearity Property:              let � and  be constant, then ¢L�+(!) + ®(!)N = �¢L+N + ¢L®N 
 

Inverse Laplace Transform: 

¢HX?+¥(a)B 	= 	¢HXL	¢L+(!)N	N = +(!) 
- Often use table of Laplace transforms, if item is available 

- If necessary, can use the Bromwich formula (quite rarely) 

¢HX?+¥(a)B = 12¯¨ % limM→¤� +¥(a)G
�²�M
²HM  a' 

Example: 

¢HX � 1a + 3" = GHw� 
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Example: Obtain the solution of ODE using Laplace transforms 

 }� !} + 5 � ! + 6� = 3				; 		�(0) = 0;				 � !³��� = 0 

Apply Laplace transforms of both sides, 

a}¢L�N + 5a¢L�N + 6¢L�N = 3a 

¢LaN = 3a(a} + 5a + 6) = 3a(a + 3)(a + 2) = 6a +  a + 3 + ´a + 2 

6 = 1/2,   = 1, ´ = −3/2	 
�(!) = 6¢HX �1a" +  ¢HX � 1a + 3" + ´¢HX � 1a + 2" = 6 +  GHw� + ´GH}� 
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Example: Obtain the solution of ODE using Laplace transforms 

 }� !} + 4 � ! + 5� = 3				; 		�(0) = 0;				 � !³��� = 0 

Apply Laplace transforms of both sides, 

a}¢L�N + 2a¢L�N + 5¢L�N = 3a 

¢L�N = 3a(a} + 2a + 5) = 3a(a + 1 + 2¨)(a + 1 − 2¨) 
= 6a +  (a + 1 + 2¨)(a + 1 − 2¨) + ´(a + 1)(a + 1 + 2¨)(a + 1 − 2¨) 

		�(!) = 6 +  GH� sin(2!) + ´GH� cos(2!)		 
where 6 = 3/5,   = −3/10, ´ = 3/5 
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For the general nth order linear model, assuming zero initial 

conditions: 

�/  /� !/ +⋯+ �X  � ! + �D� = /HX  /HX� !/HX +⋯+ D�	 
Taking the Laplace transforms yields (�/a/ +⋯+ �Xa + ��)�µ = (/HXa/HX +⋯+ �)�µ  

or  

�µ = % /HXa/HX +⋯+ ��/a/ +⋯+ �Xa + ��' �µ = ¶(a)	�µ  
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Remarks: 

1. ¶(a) is the transfer function from �µ  to �µ. 

2. The roots of the denominator are known as the “poles” of the 

transfer function, also known as the “eigenvalues” of the 

process. 

3. The eigenvalues determine the transient behavior of the 

process: 

a) If any of the eigenvalues have a positive real part, then the 

process will be unstable. 

b) The more negative the real part, the faster the dynamics 

die out. 

c) The imaginary parts of the eigenvalues determine the 

frequency of oscillations. 
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Main Principle for Linear Control Design 

Feedback controllers, compensators and control configurations 

are designed to alter the system dynamics by adjusting the 

values (i.e. position in complex plane) of the eigenvalues. 

Re(s)

faster
response

lower
frequency

Im(s)

Desirable Region

0

x

x

x

x

x

unstable eigenvalues
(have to move to the
left side for stability)

x

x

©2013 by Tomas Co Page 70 

 

 

�  By considering each block in a signal flow diagram to have 

a transfer function, the overall equivalent transfer function 

from the setpoint to the output can be found by simple 

algebraic manipulation.   

 

� Likewise, the overall equivalent transfer function from 

disturbance to the output can also be found by algebraic 

manipulations. 
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Example: Simple feedback control 

 �µ = �µ + · �µ = ¶�µ  · = ¸ ¥ �µ = ´G̃ G̃ = �µ
�� − �µ2 �µ2 = º�µ 

�µ = ¶´(�µ
�� −º�µ) + ¸ ¥ (1 + ¶´º)�µ = ¶´�µ
�� +¸ ¥ 
 �µ = � ¶´1 + ¶´º"�µ
�� + � ¸1 + ¶´º" ¥ 

G(s)C(s)
yset

d

y

yym

e

a

b
u

M(s)

D(s)

+

-

++

processcontroller

disturbance
dynamics

sensor+filters

~ ~ ~

~ ~

~

~
~

~
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Challenge: Internal model control 

 

 

�µ = (	? )�µ
�� + (	?	) ¥ 
 

G(s)

H(s)

C(s)
yset

d

y

ym

e

a

b
u

M(s)

D(s)

+
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+

+
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Transfer Functions of P, PI and PID Controllers 

P �� 

PI �� ��a + 1��a  

PID �� ���a + 1��a � � �&a + 1¼�&a + 1�			 ; 	¼ < 0.05 
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Example: Simple Feedback Control (continuation) 

Let ´(a) = ��, º(a) = 1, ¸(a) = }
H} and  ¶(a) = − w
H}. 

Then, after substitution, 

�µ = � �� ,− 3a − 2	:1 + �� ,− 3a − 2	:��µ
�� + � 2a − 21 + �� ,− 3a − 2	:� ¥ = � −3��a − 2 − 3��� �µ
�� + � 2a − 2 − 3���  ¥ 
 

For stabilization, we need:  �� < − }w 
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Q: What about estimation of error offset ? 

A: One can use the final value theorem of Laplace transform. 

Final value theorem: Assuming +(!) is stable, lim�→¤ +(!) = lim
→� a	¢L+N 
 

Proof: from Laplace transform of derivative 

lim
→� a	¢L+N = lim
→��  + !¤
� GH
� ! + +(0) = �  +A(¤)

A(�) + +(0)
= +(∞) 
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Example: (continuation from previous example)  

�µ = � −3��a − 2 − 3����µ
�� + � 2a − 2 − 3��� ¥ 
Assume �
�� = 3 and  = 2. 

G̃(a) = �µ
�� − �µ = �3a� − � −3��a − 2 − 3��� �3a� − � 2a − 2 − 3��� �2a�	 
 

The offset is then given by  

G(∞) = lim
→� a ��3a� − � −3��a − 2 − 3��� �3a� − � 2a − 2 − 3��� �2a�" 
= 3(−2 − 3��) + 9�� − 4−2 − 3�� = 103�� + 2 

� as �� ≪ − }w,  the smaller the offset. 
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Q: Laplace transforms and transfer functions are only valid for 

linear dynamics.  What about nonlinear systems? 

 

A: If process are expected to be operating in a small region 

around a set of nominal values, then linearization can be used, 

i.e. the eigenvalue analysis will be valid (around the small 

region). 

 

Note: one particular feature of nonlinear systems is the possibility 

of multiple steady states 
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Linearization around an operating point (¾¿, r¿, n¿):  � ! = +(�, �,  )≈ �(� − �D) + (� − �D) + 7( −  D) + À 

where,             À = +(�D, �D ,  D)							; 									� = ÁAÁbÂbÃ,EÃ,&Ã  

                   = ÁAÁEÂbÃ,EÃ,&Ã 										 ; 									7 = ÁAÁ&ÂbÃ,EÃ,&Ã  

 

Common simplification: Use deviation variables, �&�� =(� − �D), …	, and assuming (�D, �D,  D) is at equilibrium,  �&�� ! ≈ ��&�� + �&�� + 7 &�� 
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Example:  * ! = *} − 80* + 10�} + 250 = +(*, �,  ) 
At operating point 1: (*D, �,  ) = (30,10,2) Å+Å*³(Æ�w�,E�X�,&�}) = 2*D − 80 = −20 

Å+Å�³(Æ�w�,E�X�,&�}) = 200				; 			Å+Å ³(Æ�w�,E�X�,&�}) = 250 

 *&�� ! = −20*&�� + 200�&�� + 250 &��					(stable) 
At operating point 2: (*D, �,  ) = (50,10,2)  *&�� ! = +20*&�� + 200�&�� + 250 &��						(unstable) 
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RECAP #3 

1. The eigenvalues are key tools for analysis of the dynamics 

with or without controllers. 

� If any of the eigenvalues has positive real parts, the 

system will be unstable 

� The more negative the real parts the faster the 

response 

� The larger the imaginary parts, the higher the 

frequency of oscillation 

2. Using Laplace transforms, we can characterize the effects of 

inputs to the outputs via transfer functions. 
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3. Only algebraic manipulations are needed to obtain the 

transfer functions from either setpoint or disturbance to the 

process output. 

4. Control design, configuration and tuning is focused on how 

to move the eigenvalues to locations in the complex plane 

that would achieve desired dynamic behavior. 

5. If system is nonlinear, linear analysis can be used on 

linearized approximate models. 
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Other Issues in Classical Process Controls 

1. Signal filtering 

- Need to smooth out noise without damping crucial dynamic 

information 

2. Anti-reset windup 

- Integral mode accumulate error information even though 

valves/control-elements have saturated, causing unnecessary 

inertial effects on controller response. 

3. Cascade control 

- Direct feedback control be become sluggish due to 

nonlinearities (e.g. valve stiction).  

4. Split-range control 

- Control elements are often directional, e.g. cooling and 

heating elements have different dynamic effects. 
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5. Robustness and Auto-tuning 

- Require new controller parameters when set-points or process 

dynamics are significantly far from nominal design conditions 

6. Multivariable and plant-wide control 

- Various control configuration are possible: cascade, multiple 

single-input/single-output (SISO) control loops, multi-

input/multi-output (SISO) control loops, etc.   

 

©2013 by Tomas Co Page 84 

 

Other Control Strategies: 

1. Cascade Control 

2. Feedforward-Feedback Control 

3. Internal Model Control (special case: Smith predictor) 

4. Model Predictive Control 
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Model Predictive Control: 

1. Use optimization to evaluate N-steps ahead: 

 minEÈ,…,EÉ Cost(�, �
�� , �) 
Subject to:    �Ë = +(�, �,  ) 

�ÌÍÎ ≤ � ≤ �21Ï 	; �ÌÍÎ ≤ � ≤ �21Ï 

2. Implement only one step (or a few steps) 

3. Repeat from step 1. 

 

t

Past
setpoint

apply only the first move

Future

©2013 by Tomas Co Page 86 

 

OVERALL RECAP 

1. Introduction to control concepts 

- elements and feedback control 

2. PID control and tuning rules 

- Control law: P, PI and PID 

- Ziegler-Nichols and Cohen-Coon 

- Optimal tuning approach 

3. Process modeling 

- FOPTD model 

- General linear model 

- Simulation and parameter estimation 
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4. Analysis 

- Using eigenvalues to predict behavior 

- Laplace transforms to generate transfer functions 

- Analysis and design of feedback system using transfer 

function manipulation 

- Linearization 

5. Other control issues and advanced control configurations. 

 


