HEAT XFER

MACRO E-BAL:

\[\Delta E_k + \Delta E_p + \Delta h = Q_{in} + W_{s,m} \]

- Change w/ T
- Phase change
- Rxn

MEB:

\[\frac{\Delta P}{\rho} + \frac{\Delta v^2}{2\rho} + g \Delta z + F = W_{s,m} \]

* MEB = a macro E-bal specialized for circumstances common in mechanical systems.
In Heat Exchanger Equipment:

\[\Delta E_{lc} + \Delta E_p + \Delta h = Q_{in} + W_{em} \]

- Heat Exchanger
- Condenser
- Boil-er
- Reactor

\[\Delta h = Q \]

This is the Macro E-bal specialized for circumstances common in heat xfer equipment.
\[\Delta E_p + \Delta E_k + \Delta H = Q_{\text{in}} + \Delta E_{\text{can}} \]

\[Q_{\text{in}} = \Delta H \]

\[= \sum \text{in.} \hat{m}_i \hat{A}_i - \sum \text{in.} \hat{m}_j \hat{A}_j \]

\[Q_{\text{in}} = m_2 \hat{A}_2 + m_3 \hat{A}_3 - m_1 \hat{A}_1 \]

See Felder + Rousseau
CV Bar in Heat Transfer:

Control Volume:

- Hot
- \(T_1 \)
- \(x \)
- \(B \)
- \(\Delta x \)
- Height \(H \)
- Width \(W \)

Choose control volume:

- Steady State: accumulation = 0
- No current
- No reactions

\[\frac{9x}{A} \bigg|_{x}^{x+\Delta x} \]
\[
\frac{g_x}{A} \left|_{x+\Delta x} \right. = \frac{g_x}{A} \left|_x \right.
\]

\[
\frac{g_x}{A} \left|_{x+\Delta x} \right. - \frac{g_x}{A} \left|_x \right. = 0
\]

\[
\lim_{\Delta x \to 0} \frac{\Delta}{\Delta x} = 0
\]

\[
\frac{d}{dx} \left(\frac{g_x}{A} \right) = 0
\]

The general definition of a derivative
Integrate: \[\sqrt{\frac{q_x}{A}} = c_1 \]

(Flux is constant)

Farin's Law: \[\frac{q_x}{A} = -k \frac{\partial T}{\partial x} \]

\[c_1 = -k \frac{\partial T}{\partial x} \]

\[\frac{\partial T}{\partial x} = -\frac{\beta}{k} \]

Integrate: \[T = \left(-\frac{\beta}{k} \right) x + c_2 \]
Boundary conditions:

\[x = 0 \quad T = T_1, \]
\[x = B \quad T = T_2 \]

Solve for \(c_1, c_2 \) (not shown; do the algebra)

\[T = \left(\frac{T_2 - T_1}{B} \right) x + T_1 \]

What is the flux?
\[\frac{d}{dx} T(x) = -k \frac{dT}{dx} \]

Fouria's Law!

\[T(x) = \left(\frac{T_2 - T_1}{B} \right) x + T_1 \]

\[\frac{dT}{dx} = \left(\frac{T_2 - T_1}{B} \right) \]

\[\frac{d}{dx} T(x) = -k \left(\frac{T_2 - T_1}{B} \right) \]

 Flux depends on \(k \) and \(\frac{T_2 - T_1}{B} \) (flux profile does not)}
If I double the thermal conductivity k, how does the temperature profile change?

T_1

T_2

(trick question: it does not change $T(x)$; it does change flux)