Michigan Tech CM3110 Morrison HW 6

Answers to Assigned Problems:

- 1. See assignment. No answer provided (summary of data correlations). See lecture notes for an example.
- 2. Geankoplis 4.5-6: $84 lb_m/h$
- 3. Geankoplis 4.7-1: $h = 5.4 \text{ W/m}^2$, q = 92 W/m (not using the simplified equation); q = 85 W/m (simplified equation)
- 4. Geankoplis 4.7-3: Q = 45W
- 5. Geankoplis 4.5-4: $T_1' = 299.5^{\circ}$ C, $A = 97m^2$ (assume double-pipe heat exchanger; note Geankoplis' use of an improbable number of sig figs)
- 6. Geankoplis 4.5-4, except with 1-2 shell-and-tube heat exchanger: $T_1' = 299.5^{\circ}\text{C}$, $A = 97\text{m}^2$. How does the 1-2 shell-and-tube compare to the double pipe?
- 7. See assignment. Answers: a) 26~kW, b) $\Delta T_{lm}=63^{o}C$; c) $U_{o}=500~W/m^{2}K$
- 8. See assignment. Answer: 180kW.
- 9. Geankoplis 4.10-3: 160W
- 10. See assignment. Answer: 260W. Neither radiation nor natural convection dominates.
- 11. Geankoplis 4.11-1: a) $14,000 \text{ W/m}^2$, b) 4500 W/m^2
- 12. Geankoplis 4.7-8: We need to calculate radiation and natural convection contributions to the total. Answers: radiation 5.5kW; natural convection 1.3 kW; total 6.8 kW.
- 13. See assignment. Answer: Only heat exchanger C will work.
- 14. See assignment. Answers: a) $h_i=6900\frac{W}{m^2K}$, $h_0=2200~W/m^2K$, $U_o=1400~W/m^2K$ b) with water-side fouling $U_o=1100~W/m^2K$, with orange-juice side fouling, $U_o=900~W/m^2K$, with fouling on both sides, $U_o=800~W/m^2K$
- 15. Problem N(stretch). Answer: b; $h_{lm}=5300\frac{W}{m^2K}$, $T=21^{o}C$
- 16. Problem M. Answer: c; yes, radiation is important; $h_{total}=62\frac{W}{m^2K}$; $\frac{q}{A}=6300W/m^2$
- 17. Problem K. Answer: $h = 7.0 \frac{W}{m^2 K}$, q = 130 W (natural convection only)