

Complex Heat Transfer – Dimension	nal Analysis			
Experience with Dimensional Analysis thus far:				
•Flow in pipes at all flow	w rates (laminar and turbulent) Solution: Navier-Stokes, Re, Fr, L/D , dimensionless wall force = f ; $f = f(\text{Re}, L/D)$			
•Rough pipes	Solution: add additional length scale; then nondimensionalize			
•Non-circular conduits	Solution: Use hydraulic diameter as the length scale of the flow to nondimensionalize			
•Flow around obstacles	s (spheres, other complex shapes Solution: Navier-Stokes, Re, dimensionless drag = C_D ; $C_D = C_D(\text{Re})$			
•Boundary layers	Solution: Two components of velocity need independent lengthscales			
	6			
	© Faith A. Morrison, Michigan Tech U.			

Complex Heat Transfer – Dimensional Analy	/sis			
Now, move to heat transfer:				
 Forced convection heat transfer from fluid to wall Solution: ? 				
 Natural convection heat transfer from fluid to wall Solution: ? 				
•Radiation heat transfer from solid to fluid Solution: ?				
bulk fluid	solid wall			
	I			
		9		
© Faith A. Morrison, Michigan Tech U.				

Complex Heat Transfer – Dimensional Analysis					
Complex Heat transfer Problems to Solve:					
 Forced convection heat transfer from fluid to wall Solution: ? 					
 Natural convection heat transfer from fluid to wall Solution: ? Radiation heat transfer from solid to fluid Solution: ? 					
 The <u>functional form of h will be</u> different for these three situations (different physics) 	Let's look at forced convection in a pipe. There are three pieces to the physics :				
Investigate simple problems in each	Pipe flow				
category, model them, take data,	Energy				
correlate	Boundary	conditions			
© F	aith A. Morrison	16 Michigan Tech U			

Forced Convection
Heat Transfer
Linear driving force model

$$\left|\frac{q_x}{A}\right| = h|T_1 - T_0|$$

Apply at the surface (in fluid):
 $(2\pi RL)(h)(T_1 - T_0) = Q = \iint_S \left[\hat{e}_r \cdot \tilde{q}\right]_{surface} dS$
 $(2\pi RL)(h)(T_1 - T_0) = Q = \int_S^{2\pi} \int_S^L -k \frac{\partial T}{\partial r}\Big|_{r=R} Rdzd\theta$
Now, non-dimensionalize
this expression as well.
³⁰
© Faith A. Morrison, Michigan Tech U.

