$$\begin{array}{ll} \mbox{Mechanical}\\ \mbox{Energy Balance} & \frac{\Delta p}{\rho} + \frac{\Delta \langle v \rangle^2}{2\alpha} + g\Delta z + F_{friction} = -\frac{W_{s,by fluid}}{m} & \begin{cases} \alpha_{laminar} = 0.5\\ \alpha_{turbulent} \approx 1 \end{cases} \\ F_{friction} = \left[4f \frac{L}{D} + \sum_{fittings_i} n_i K_{f,i} \right] \frac{\langle v \rangle^2}{2} \\ F_{anning} & f = \frac{F_{drag}}{\frac{1}{2}\rho \langle v \rangle^2 (2\pi RL)} = \frac{\Delta pD}{2L\rho \langle v \rangle^2} \\ F_{anning} & f = \frac{F_{drag}}{\frac{1}{2}\rho \langle v \rangle^2 (2\pi RL)} = \frac{4gD(\rho_{body} - \rho)}{3\rho v_{\infty}^2} \\ Drag Coefficient & C_D = \frac{F_{drag}}{\frac{1}{2}\rho v_{\infty}^2 (\pi R^2)} = \frac{4gD(\rho_{body} - \rho)}{3\rho v_{\infty}^2} \\ Momentum balance on a CV \\ (Reynolds transport theorem) & \frac{dP}{dt} + \iint_{CS} (\hat{n} \cdot \underline{v})\rho \underline{v} \, dS = \sum_{on \ CV} f \\ Hydrostatic Pressure & p_{bottom} = p_{top} + \rho gh \\ Hagen-Poiseuille Equation \\ (steady, laminar tube flow, incompressible) & \frac{1}{\sqrt{f}} = -4.0 \log\left(\frac{4.67}{Re\sqrt{f}}\right) + 2.28 \end{array}$$

Stokes-Einstein-Sutherland Equation (steady, slow flow around a sphere)

 $F_{drag} = 6\pi R \mu v_{\infty}$

Macroscopic Momentum Balance on a CV

$$\frac{d\mathbf{P}}{dt} + \sum_{i=1}^{\#streams} \left[\frac{\rho A \cos(\theta) \langle v \rangle^2}{\beta} \hat{v} \right] \Big|_{A_i} = \sum_{i=1}^{\#streams} [-pA\hat{n}]_{A_i} + \underline{R} + M_{CV}\underline{g} \qquad \begin{cases} \beta_{laminar} = 0.75\\ \beta_{turbulent} \approx 1 \end{cases}$$

Navier-Stokes equation (microscopic momentum balance, incompressible, Newtonian fluids)

> Continuity equation (microscopic mass balance, incompressible fluids)

$$\rho\left(\frac{\partial \underline{v}}{\partial t} + \underline{v} \cdot \nabla \underline{v}\right) = -\nabla p + \mu \nabla^2 \underline{v} + \rho \underline{g}$$

$$\nabla \cdot \underline{v} = 0$$

Total stress tensor
$$\underline{\tilde{\Pi}} = -p\underline{I} + \underline{\tilde{\tau}}$$
$$\begin{pmatrix} \tilde{\Pi}_{11} & \tilde{\Pi}_{12} & \tilde{\Pi}_{13} \\ \tilde{\Pi}_{21} & \tilde{\Pi}_{22} & \tilde{\Pi}_{23} \\ \tilde{\Pi}_{31} & \tilde{\Pi}_{32} & \tilde{\Pi}_{33} \end{pmatrix}_{123} = \begin{pmatrix} \tilde{\tau}_{11} - p & \tilde{\tau}_{12} & \tilde{\tau}_{13} \\ \tilde{\tau}_{21} & \tilde{\tau}_{22} - p & \tilde{\tau}_{23} \\ \tilde{\tau}_{31} & \tilde{\tau}_{32} & \tilde{\tau}_{33} - p \end{pmatrix}_{123}$$
Dynamic pressure $\mathcal{P} \equiv p + \rho g h$

Newtonian
constitutive equation
$$\tilde{\underline{\tau}} = \mu \left(\nabla \underline{v} + (\nabla \underline{v})^T \right)$$
$$= \mu \left(\begin{array}{ccc} 2\frac{\partial v_1}{\partial x_1} & \frac{\partial v_2}{\partial x_1} + \frac{\partial v_1}{\partial x_2} & \frac{\partial v_3}{\partial x_1} + \frac{\partial v_1}{\partial x_3} \\ \frac{\partial v_2}{\partial x_1} + \frac{\partial v_1}{\partial x_2} & 2\frac{\partial v_2}{\partial x_2} & \frac{\partial v_2}{\partial x_3} + \frac{\partial v_3}{\partial x_2} \\ \frac{\partial v_3}{\partial x_1} + \frac{\partial v_1}{\partial x_3} & \frac{\partial v_2}{\partial x_3} + \frac{\partial v_3}{\partial x_2} & 2\frac{\partial v_3}{\partial x_3} \end{array} \right)_{123}$$

Total molecular fluid force
on a finite surface
$$\mathcal{S} \qquad \underline{\mathcal{F}} = \iint_{\mathcal{S}} \left[\hat{n} \cdot \underline{\tilde{\Pi}} \right]_{\text{at surface}} dS$$

Stationary fluid
$$\begin{bmatrix} \hat{n} \cdot \underline{\tilde{\Pi}} \end{bmatrix} = -p\hat{n}$$

Moving fluid $\begin{bmatrix} \hat{n} \cdot \underline{\tilde{\Pi}} \end{bmatrix} = -p\hat{n} + \hat{n} \cdot \underline{\tilde{\tau}}$

Total fluid torque
on a finite surface
$$\mathcal{S}$$
 $\mathcal{I} = \iint_{\mathcal{S}} \left[\underline{R} \times \left(\hat{n} \cdot \underline{\underline{\Pi}} \right) \right]_{\text{at surface}} dS$

Total flow rate out
through a finite surface
$$\mathcal{S}$$
 $Q = \dot{V} = \iint_{\mathcal{S}} [\hat{n} \cdot \underline{v}]_{\text{at surface}} dS$

Average velocity
across a finite surface
$$S$$
 $\langle v \rangle = \frac{Q}{S}$

	Coordinate syst	em su	rface differential a	dS
	Cartesian (top, \hat{n}	$= \hat{e}_z)$	dS = dxdy	
	Cartesian (side a, \hat{n}	$\hat{e}_y)$	dS = dxdz	
	Cartesian (side b, \hat{n}	\hat{e}_x	dS = dydz	
	cylindrical (top, \hat{n}	$= \hat{e}_z)$	$dS = rdrd\theta$	
	cylindrical (side, \hat{n}	$= \hat{e}_r$)	$dS = Rd\theta dz$	
	spherical, ($\hat{n} =$	(\hat{e}_r) ($dS = R^2 \sin \theta d\theta d\phi$)
	Coordinate system	em volum	e differential dV	
	Cartesian	d	V = dxdydz	
			ũ	
	cylindrical	dV	$V = r dr d\theta dz$	
	spherical	dV =	$= r^2 \sin \theta dr d\theta d\phi$	
Coordinate grater	n coordinated	hagig most	2.11.0	,
Coordinate system			$\frac{1}{100}$	\cdot $(\uparrow \uparrow)$ $(\uparrow \uparrow \uparrow)$
spherical	$x = r \sin \theta \cos \phi$	$e_r = (\sin \theta)$	$(\cos \phi e_x) + (\sin \theta s)$	$\sin \phi e_y) + \cos \theta e_z$
	$y = r\sin\theta\sin\phi$	$\hat{e}_{\theta} = (\cos t)$	$(\cos\phi)\hat{e}_x + (\cos\theta)\hat{e}_x$	$\sin\phi)\hat{e}_y + (-\sin\theta)\hat{e}_z$
	$z = r \cos \theta$	$\hat{e}_{\phi} = (-\sin \theta)$	$(n \phi)\hat{e}_x + \cos \phi \hat{e}_y$	
cylindrical	$x = r\cos\theta$	$\hat{e}_r = \cos\theta \hat{e}$	$\hat{e}_x + \sin \theta \hat{e}_y$	
	$y = r\sin\theta$	$\hat{e}_{\theta} = (-\sin \theta)$	$(n \theta)\hat{e}_x + \cos\theta \hat{e}_y$	
	z = z	$\hat{e}_z = \hat{e}_z$	-	

Divergence Theorem	$\iint_{\mathcal{S}} \hat{n} \cdot \underline{F} dS =$	$\iiint_{\mathcal{V}} \nabla \cdot \underline{F} \ dV$
Stokes Theorem	$\oint_{\mathcal{C}} \hat{t} \cdot \underline{F} dl =$	$\iint_{\mathcal{S}} \hat{n} \cdot (\nabla \times \underline{F}) \ dS$

Vector identities:

$$\begin{aligned} \nabla \cdot \nabla \times \underline{F} &= 0 \quad (\text{Divergence of curl} = 0) \\ \nabla \times \nabla f &= 0 \quad (\text{Curl of gradient} = 0) \\ \nabla (fg) &= f \nabla g + g \nabla f \\ \underline{F} \cdot \nabla \underline{F} &= \frac{1}{2} \nabla \left(\underline{F}^2 \right) - \underline{F} \times (\nabla \times \underline{F}) \\ \nabla \cdot (f\underline{F}) &= f \nabla \cdot \underline{F} + \underline{F} \cdot \nabla f \\ \nabla \times \nabla \times \underline{F} &= \nabla \left(\nabla \cdot \underline{F} \right) - \nabla^2 \underline{F} \\ \nabla \cdot (\underline{F} \times \underline{G}) &= \underline{G} \cdot (\nabla \times \underline{F}) - \underline{F} \cdot (\nabla \times \underline{G}) \end{aligned}$$

The equations in F. A. Morrison, *An Introduction to Fluid Mechanics* (Cambridge, 2013) assume the following definitions of the cylindrical and spherical coordinate systems.

Cylindrical Coordinate System: Note that the θ -coordinate swings around the *z*-axis

Spherical Coordinate System: Note that the θ -coordinate swings down from the *z*-axis; this is different from its definition in the cylindrical system above.

The Equation of Continuity and the Equation of Motion in Cartesian, cylindrical, and spherical coordinates

CM3110 Fall 2011 Faith A. Morrison

Continuity Equation, Cartesian coordinates

$$\frac{\partial \rho}{\partial t} + \left(v_x \frac{\partial \rho}{\partial x} + v_y \frac{\partial \rho}{\partial y} + v_z \frac{\partial \rho}{\partial z} \right) + \rho \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \right) = 0$$

Continuity Equation, cylindrical coordinates

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial (\rho r v_r)}{\partial r} + \frac{1}{r} \frac{\partial (\rho v_\theta)}{\partial \theta} + \frac{\partial (\rho v_z)}{\partial z} = 0$$

Continuity Equation, spherical coordinates

$$\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial (\rho r^2 v_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\rho v_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial (\rho v_\phi)}{\partial \phi} = 0$$

Equation of Motion for an incompressible fluid, 3 components in Cartesian coordinates

$$\rho \left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right) = -\frac{\partial P}{\partial x} + \left(\frac{\partial \tilde{\tau}_{xx}}{\partial x} + \frac{\partial \tilde{\tau}_{yx}}{\partial y} + \frac{\partial \tilde{\tau}_{zx}}{\partial z} \right) + \rho g_x \\
\rho \left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right) = -\frac{\partial P}{\partial y} + \left(\frac{\partial \tilde{\tau}_{xy}}{\partial x} + \frac{\partial \tilde{\tau}_{yy}}{\partial y} + \frac{\partial \tilde{\tau}_{zy}}{\partial z} \right) + \rho g_y \\
\rho \left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial P}{\partial z} + \left(\frac{\partial \tilde{\tau}_{xz}}{\partial x} + \frac{\partial \tilde{\tau}_{yz}}{\partial y} + \frac{\partial \tilde{\tau}_{zz}}{\partial z} \right) + \rho g_z$$

Equation of Motion for an incompressible fluid, 3 components in cylindrical coordinates

$$\rho\left(\frac{\partial v_r}{\partial t} + v_r\frac{\partial v_r}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2}{r} + v_z\frac{\partial v_r}{\partial z}\right) = -\frac{\partial P}{\partial r} + \left(\frac{1}{r}\frac{\partial(r\tilde{\tau}_{rr})}{\partial r} + \frac{1}{r}\frac{\partial\tilde{\tau}_{\theta r}}{\partial \theta} - \frac{\tilde{\tau}_{\theta \theta}}{r} + \frac{\partial\tilde{\tau}_{zr}}{\partial z}\right) + \rho g_r$$

$$\rho\left(\frac{\partial v_\theta}{\partial t} + v_r\frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_\theta}{\partial \theta} + \frac{v_\theta v_r}{r} + v_z\frac{\partial v_\theta}{\partial z}\right) = -\frac{1}{r}\frac{\partial P}{\partial \theta} + \left(\frac{1}{r^2}\frac{\partial(r^2\tilde{\tau}_{r\theta})}{\partial r} + \frac{1}{r}\frac{\partial\tilde{\tau}_{\theta \theta}}{\partial \theta} + \frac{\partial\tilde{\tau}_{z\theta}}{\partial z} + \frac{\tilde{\tau}_{\theta r} - \tilde{\tau}_{r\theta}}{r}\right) + \rho g_e$$

$$\rho\left(\frac{\partial v_z}{\partial t} + v_r\frac{\partial v_z}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_z}{\partial \theta} + v_z\frac{\partial v_z}{\partial z}\right) = -\frac{\partial P}{\partial z} + \left(\frac{1}{r}\frac{\partial(r\tilde{\tau}_{rz})}{\partial r} + \frac{1}{r}\frac{\partial\tilde{\tau}_{\theta z}}{\partial \theta} + \frac{\partial\tilde{\tau}_{zz}}{\partial z}\right) + \rho g_z$$

Equation of Motion for an incompressible fluid, 3 components in spherical coordinates

$$\begin{split} \rho\left(\frac{\partial v_r}{\partial t} + v_r\frac{\partial v_r}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r\sin\theta}\frac{\partial v_r}{\partial \phi} - \frac{v_\theta^2 + v_\phi^2}{r}\right) \\ &= -\frac{\partial P}{\partial r} + \left(\frac{1}{r^2}\frac{\partial (r^2\tilde{\tau}_{rr})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (\tilde{\tau}_{\theta r}\sin\theta)}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial \tilde{\tau}_{\phi r}}{\partial \phi} - \frac{\tilde{\tau}_{\theta \theta} + \tilde{\tau}_{\phi \phi}}{r}\right) + \rho g_r \\ &\qquad \rho\left(\frac{\partial v_\theta}{\partial t} + v_r\frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_\theta}{\partial \theta} + \frac{v_\phi}{r\sin\theta}\frac{\partial v_\theta}{\partial \phi} + \frac{v_rv_\theta}{r} - \frac{v_\phi^2\cot\theta}{r}\right) \\ &= -\frac{1}{r}\frac{\partial P}{\partial \theta} + \left(\frac{1}{r^3}\frac{\partial (r^3\tilde{\tau}_{r\theta})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (\tilde{\tau}_{\theta \theta}\sin\theta)}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial v_\phi}{\partial \phi} + \frac{v_rv_\phi}{r} + \frac{v_\phi v_\theta\cot\theta}{r}\right) \\ &\qquad \rho\left(\frac{\partial v_\phi}{\partial t} + v_r\frac{\partial v_\phi}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_\phi}{\partial \theta} + \frac{v_\phi}{r\sin\theta}\frac{\partial v_\phi}{\partial \phi} + \frac{v_rv_\phi}{r} + \frac{v_\phi v_\theta\cot\theta}{r}\right) \\ &= -\frac{1}{r\sin\theta}\frac{\partial P}{\partial \phi} + \left(\frac{1}{r^3}\frac{\partial (r^3\tilde{\tau}_{r\phi})}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial (\tilde{\tau}_{\theta \phi}\sin\theta)}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial \tilde{\tau}_{\phi \phi}}{\partial \phi} + \frac{\tilde{\tau}_{\phi r} - \tilde{\tau}_{r\phi}}{r} + \frac{\tilde{\tau}_{\phi \theta}\cot\theta}{r}\right) + \rho g_\phi \end{split}$$

Equation of Motion for incompressible, Newtonian fluid (Navier-Stokes equation) 3 components in Cartesian coordinates

$$\rho \left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right) = -\frac{\partial P}{\partial x} + \mu \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right) + \rho g_x$$

$$\rho \left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right) = -\frac{\partial P}{\partial y} + \mu \left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right) + \rho g_y$$

$$\rho \left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial P}{\partial z} + \mu \left(\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right) + \rho g_z$$

Equation of Motion for incompressible, Newtonian fluid (Navier-Stokes equation), 3 components in cylindrical coordinates

$$\rho\left(\frac{\partial v_r}{\partial t} + v_r\frac{\partial v_r}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2}{r} + v_z\frac{\partial v_r}{\partial z}\right) = -\frac{\partial P}{\partial r} + \mu\left(\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial(rv_r)}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 v_r}{\partial \theta^2} - \frac{2}{r^2}\frac{\partial v_\theta}{\partial \theta} + \frac{\partial^2 v_r}{\partial z^2}\right) + \rho g_r$$

$$\rho\left(\frac{\partial v_\theta}{\partial t} + v_r\frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_\theta}{\partial \theta} + \frac{v_rv_\theta}{r} + v_z\frac{\partial v_\theta}{\partial z}\right) = -\frac{1}{r}\frac{\partial P}{\partial \theta} + \mu\left(\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial(rv_\theta)}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{2}{r^2}\frac{\partial v_r}{\partial \theta} + \frac{\partial^2 v_\theta}{\partial z^2}\right) + \rho g_\theta$$

$$\rho\left(\frac{\partial v_z}{\partial t} + v_r\frac{\partial v_z}{\partial r} + \frac{v_\theta}{r}\frac{\partial v_z}{\partial \theta} + v_z\frac{\partial v_z}{\partial z}\right) = -\frac{\partial P}{\partial z} + \mu\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial v_z}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2}\right) + \rho g_z$$

Equation of Motion for incompressible, Newtonian fluid (Navier-Stokes equation), 3 components in spherical coordinates

$$\begin{split} \rho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{v_\theta^2 + v_\phi^2}{r} \right) \\ &= -\frac{\partial P}{\partial r} + \mu \left(\frac{\partial}{\partial r} \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 v_r \right) \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v_r}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 v_r}{\partial \phi^2} \\ &- \frac{2}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(v_\theta \sin \theta \right) - \frac{2}{r^2 \sin \theta} \frac{\partial v_\phi}{\partial \phi} \right) + \rho g_r \\ \rho \left(\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_\theta}{\partial \phi} + \frac{v_r v_\theta}{r} - \frac{v_\phi^2 \cot \theta}{r} \right) \\ &= -\frac{1}{r} \frac{\partial P}{\partial \theta} + \mu \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial v_\theta}{\partial r} \right) + \frac{1}{r^2} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(v_\theta \sin \theta \right) \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 v_\theta}{\partial \phi^2} \\ &+ \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} - \frac{2 \cot \theta}{r^2 \sin \theta} \frac{\partial v_\phi}{\partial \phi} \right) + \rho g_\theta \\ \rho \left(\frac{\partial v_\phi}{\partial t} + v_r \frac{\partial v_\phi}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\phi}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} + \frac{v_r v_\phi}{r} + \frac{v_\phi v_\theta \cot \theta}{r} \right) \\ &= -\frac{1}{r \sin \theta} \frac{\partial P}{\partial \phi} + \mu \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial v_\phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(v_\phi \sin \theta \right) \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 v_\phi}{\partial \phi^2} \\ &+ \frac{2}{r^2 \sin \theta} \frac{\partial v_r}{\partial \phi} + \frac{2 \cot \theta}{r^2 \sin^2 \theta} \frac{\partial^2 v_\phi}{\partial \phi^2} + \frac{2 \cot \theta}{r^2 \sin^2 \theta} \frac{\partial v_\phi}{\partial \phi} \right) + \rho g_\theta \end{split}$$

Note: the *r*-component of the Navier-Stokes equation in spherical coordinates may be simplified by adding $0 = \frac{2}{r} \nabla \cdot \underline{v}$ to the component shown above. This term is zero due to the continuity equation (mass conservation). See Bird et. al.

References:

- 1. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd edition, Wiley: NY, 2002.
- R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Fluids: Volume 1 Fluid Mechanics, Wiley: NY, 1987.

Prof. Faith A. Morrison Department of Chemical Engineering MichiganTech

FACTORS FOR UNIT CONVERSIONS

Quantity	Equivalent Values
Mass	1 kg = 1000 g = 0.001 metric ton = 2.20462 lb _m = 35.27392 oz 1 lb _m = 16 oz = 5 x 10^{-4} ton = 453.593 g = 0.453593 kg
Length	1 m = 100 cm = 1000 mm = 10 ⁶ microns (μm) = 10 ¹⁰ angstroms (Å) = 39.37 in = 3.2808 ft = 1.0936 yd = 0.0006214 mile 1 ft = 12 in. = 1/3 yd = 0.3048 m = 30.48 cm
Volume	$1 m^{3} = 1000 \text{ liters} = 10^{6} \text{ cm}^{3} = 10^{6} \text{ ml}$ = 35.3145 ft ³ = 220.83 imperial gallons = 264.17 gal = 1056.68 qt 1 ft ³ = 1728 in ³ = 7.4805 gal = 0.028317 m ³ = 28.317 liters = 28 317 cm ³
Force	$1 \text{ N} = 1 \text{ kg m/s}^2 = 10^5 \text{ dynes} = 10^5 \text{ g cm/s}^2 = 0.22481 \text{ lb}_f$ $1 \text{ lb}_f = 32.174 \text{ lb}_m \text{ ft/s}^2 = 4.4482 \text{ N} = 4.4482 \text{ x} 10^5 \text{ dynes}$
Pressure	1 atm = $1.01325 \times 10^5 \text{ N/m}^2$ (Pa) = $101.325 \text{ kPa} = 1.01325 \text{ bars}$ = $1.01325 \times 10^6 \text{ dynes/cm}^2$ = $760 \text{ mm} \text{ Hg at 0}^\circ \text{ C}$ (torr) = $10.333 \text{ m} \text{ H}_2\text{O}$ at 4° C = $14.696 \text{ lb}_f/\text{in}^2$ (psi) = $33.9 \text{ ft} \text{ H}_2\text{O}$ at 4°C 100 kPa = 1 bar
Energy	1 J = 1 N m = $10^7 \text{ ergs} = 10^7 \text{ dyne cm}$ = 2.778 x $10^{-7} \text{ kW h} = 0.23901 \text{ cal}$ = 0.7376 ft lb _f = 9.47817 x 10^{-4} Btu
Power	1 W = 1 J/s = 0.23885 cal/s = 0.7376 ft lb_f/s = 9.47817 x 10 ⁻⁴ Btu/s = 3.4121 Btu/h = 1.341 x 10 ⁻³ hp (horsepower)
Viscosity	1 Pa's = 1 N's/m ² = 1 kg/m's = 10 poise = 10 dynes's/cm ² = 10 g/cm's = 10 ³ cp (centipoise) = 0.67197 lb _m /ft's = 2419.088 lb _m /ft'h
Density	$1 \text{ kg/m}^{3} = 10^{-3} \text{ g/cm}^{3}$ = 0.06243 lb _m /ft ³ $10^{3} \text{ kg/m}^{3} = 1 \text{ g/cm}^{3} = 62.428 \text{ lb}_{m}/\text{ft}^{3}$
Volumetric Flow	1 m ³ /s= 35.3145 ft ³ /s=15,850.2 gal/min (gpm) 1 gpm = 6.30907 x 10 ⁻⁵ m ³ /s=2.22802 x 10 ⁻³ ft ³ /s=3.7854 liter/min 1 liter/min=0.26417 gpm

Ver. 21-Sep-2011

Temperature	$T(^{\circ}C) = \frac{5}{9} \Big[T(^{\circ}F) - 32 \Big]$ $T(^{\circ}F) = \frac{9}{5}T(^{\circ}C) + 32 = 1.8T(^{\circ}C) + 32$
Absolute Temperature	T(K) = T(°C) + 273.15 T(°R) = T(°F) + 459.67
Temperature Interval (Δ T)	1 C° = 1 K = 1.8 F° = 1.8 R° 1F° = 1 R° = (5/9) C° = (5/9) K

USEFUL QUANTITIES

SG = $\rho(20^{\circ}C)/\rho_{water}$ (4°C)

$$\rho_{water}(4^{\circ}C) = 1000 \text{ kg/m}^3 = 62.43 \text{ lb}_m/\text{ft}^3 = 1.000 \text{ g/cm}^3$$

 $\rho_{water}(25^{\circ}C) = 997.08 \text{ kg/m}^3 = 62.25 \text{ lb}_m/\text{ft}^3 = 0.99709 \text{ g/cm}^3$

$$g = 9.8066 \text{ m/s}^2 = 980.66 \text{ cm/s}^2 = 32.174 \text{ ft/s}^2$$

$$\mu_{water} (25^{\circ}C) = 8.937 \times 10^{-4} \text{ Pars} = 8.937 \times 10^{-4} \text{ kg/m/s}$$

= 0.8937 cp = 0.8937 x 10⁻² g/cm/s = 6.005 x 10⁻⁴ lb_m/ft/s

 $M_{air} = 29 \text{ g/mol} = 29 \text{ kg/kmol} = 29 \text{ lb}_{m}/\text{lbmole}$

 $\hat{C}_{p,water}$ (25°C) = 4.182 kJ/kg K = 0.9989 cal/g°C = 0.9997 Btu/lb_m°F

- $R = 8.314 \text{ m}^{3}$ Pa/mol K = 0.08314 liter bar/mol K = 0.08206 liter atm/mol K
 - = 62.36 liter mm Hg/mol K = 0.7302 ft³ atm/lbmole [°]R
 - = 10.73 ft³.psia/lbmole^{.°}R
 - = 8.314 J/mol[·]K
 - = 1.987 cal/mol K = 1.987 Btu/lbmole °R

CM3110 Transport Phenomena I Michigan Technological University Professor Faith A. Morrison

I. Flow through Smooth Pipes

A. All Reynolds numbers: Morrison

The correlation from Morrison (2013) fits the smooth pipe data for all Reynolds numbers; beyond Re = 4000 this correlation follows the Prandtl equation (see Figure 1; Morrison, equation 7.158). This correlation is explicit in f; when flow rate is known, Δp may be found directly; when Δp is known, Q or $\langle v \rangle$ must be solved for iteratively.

Morrison (2013)
$$f = \left(\frac{0.0076\left(\frac{3170}{Re}\right)^{0.165}}{1 + \left(\frac{3170}{Re}\right)^{70}}\right) + \frac{16}{Re}$$
(1)

B. $4,000 \le Re \le 1 \times 10^6$; Prandtl

The Prandtl correlation for f(Re) in turbulent flow is not explicit in friction factor and must be solved iteratively except when f is known (Morrison, equation 7.156). This is good only for Re > 4,000/

kuradse
$$rac{1}{\sqrt{f}}=4.0\log(Re\sqrt{f})-0.40$$

(2)

or VonKarman-Nikurads (Denn, 1980)

Prandtl

C. 4, $000 \le Re \le 1 \times 10^6$: A simplified Correlation

For the turbulent regime, an approximate correlation that is much simpler to work with (with a calculator on an exam, for example) is given here and shown in Figure 2 (Morrison, equation 7.157). This is good only for Re > 4,000.

Simplified Turbulent
$$f = \frac{1.02}{4} (\log Re)^{-2.5}$$
(White, 1974)

(3)

CM3110 Morrison Michigan Tech 2013

Figure 2: For turbulent flow, the simplified (equation 3) or Prandtl (equation 2) correlations may be used. For work with a calculator, the simplified correlation is perhaps the easiest to work with. (Morrison, 2013, p531)

CM3110 Morrison Michigan Tech 2013

2

The Newtonian Constitutive Equation in Cartesian, Cylindrical, and Spherical coordinates

Prof. Faith A. Morrison, Michigan Technological University

Cartesian Coordinates

$$\begin{pmatrix} \tilde{\tau}_{xx} & \tilde{\tau}_{xy} & \tilde{\tau}_{xz} \\ \tilde{\tau}_{yx} & \tilde{\tau}_{yy} & \tilde{\tau}_{yz} \\ \tilde{\tau}_{zx} & \tau_{zy} & \tilde{\tau}_{zz} \end{pmatrix}_{xyz} = \mu \begin{pmatrix} 2\frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} & \frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \\ \frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} & 2\frac{\partial v_y}{\partial y} & \frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \\ \frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} & \frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} & 2\frac{\partial v_z}{\partial z} \end{pmatrix}_{xyz}$$

Cylindrical Coordinates

$$\begin{pmatrix} \tilde{\tau}_{rr} & \tilde{\tau}_{r\theta} & \tilde{\tau}_{rz} \\ \tilde{\tau}_{\theta r} & \tilde{\tau}_{\theta \theta} & \tilde{\tau}_{\theta z} \\ \tilde{\tau}_{zr} & \tau_{z\theta} & \tilde{\tau}_{zz} \end{pmatrix}_{r\theta z} = \mu \begin{pmatrix} 2\frac{\partial v_r}{\partial r} & r\frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r}\right) + \frac{1}{r}\frac{\partial v_r}{\partial \theta} & \frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r} \\ r\frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r}\right) + \frac{1}{r}\frac{\partial v_r}{\partial \theta} & 2\left(\frac{1}{r}\frac{\partial v_{\theta}}{\partial \theta} + \frac{v_r}{r}\right) & \frac{1}{r}\frac{\partial v_z}{\partial \theta} + \frac{\partial v_{\theta}}{\partial z} \\ \frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r} & \frac{1}{r}\frac{\partial v_z}{\partial \theta} + \frac{\partial v_{\theta}}{\partial z} & 2\frac{\partial v_z}{\partial z} \end{pmatrix}_{r\theta z}$$

Spherical Coordinates

$$\begin{pmatrix} \tilde{\tau}_{rr} & \tilde{\tau}_{r\theta} & \tilde{\tau}_{r\phi} \\ \tilde{\tau}_{\theta r} & \tilde{\tau}_{\theta \theta} & \tilde{\tau}_{\theta \phi} \\ \tilde{\tau}_{\theta r} & \tau_{\phi \theta} & \tilde{\tau}_{\phi \phi} \end{pmatrix}_{r\theta \phi} \\ = \mu \begin{pmatrix} 2 \frac{\partial v_r}{\partial r} & r \frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial v_r}{\partial \theta} & \frac{1}{r \sin \theta} \frac{\partial v_r}{\partial \phi} + r \frac{\partial}{\partial r} \left(\frac{v_{\phi}}{r} \right) \\ r \frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial v_r}{\partial \theta} & 2 \left(\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_r}{r} \right) & \frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \left(\frac{v_{\phi}}{\sin \theta} \right) + \frac{1}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} \\ \frac{1}{r \sin \theta} \frac{\partial v_r}{\partial \phi} + r \frac{\partial}{\partial r} \left(\frac{v_{\phi}}{r} \right) & \frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \left(\frac{v_{\phi}}{\sin \theta} \right) + \frac{1}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} & 2 \left(\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_r}{r} + \frac{v_{\theta} \cot \theta}{r} \right) \end{pmatrix}_{r\theta \phi}$$

These expressions are general and are applicable to three-dimensional flows. For unidirectional flows they reduce to Newton's law of Viscosity. Reference: Faith A. Morrison, *An Introduction to Fluid Mechanics* (Cambridge University Press: New York, 2013)

< II M A St 5700-28,000 1100-2800 1700-28,000 280-17,000 55-1700 2.8-23 11.3-55 $h, \frac{W}{m^2 K}$ hydraulic diameter for packed bed, $D_{\rm H} = \frac{4\varepsilon}{(1-\varepsilon)a_{\nu}}$ Reynolds number for packed bed $= \frac{\rho(v_0/\varepsilon)D_H}{\mu}$
 Moving air
 2-10
 1:

 Reference:
 C. J. Geankoplis, Magnitude of Some Heat-Transfer
 1
 friction factor for packed bed = $\left(\frac{\Delta p}{L}\right) \left(\frac{D_H \varepsilon^2}{2\rho v_0^2}\right)$ $\frac{32\pi^2}{p}(a^2+b^2)$ hydraulic diameter (general), $D_{\rm H} \equiv \frac{4A_{xs}}{p}$ $\frac{1}{\sqrt{f_{D_H}}} = 4.0\log\left(\frac{\text{Re}_{D_H}\sqrt{f_{D_H}}}{\frac{1}{10}}\right) - 0.40$ void fraction, $\epsilon = \frac{\text{empty bed volume}}{\text{total bed volume}}$ $a_v = rac{ ext{total partical surface area}}{ ext{particle volume}}$ superficial velocity, $v_0 = \frac{Q}{\mathcal{V}/L}$ 16 13.33 24 Ро 1000-5000 200-500 $h, \frac{BTU}{hr \ ft^{2^o F}}$ 300-5000 50-3000 10-300 0.5-4 $Po = Re_{D_H} f_{D_H}$ Equilateral triangle Ellipse (a,b) Geometry Moving water Moving hydrocarbons Condensing steam Condensing organics Coefficients, page 241 Circle Slit **Boiling liquids** Mechanism Still air

A.3-16 Therma	d Condi	ictivities,	Densities, a	and Heat Capaci	ities of Metals	
Material	ري. (در)	$\frac{\rho}{\left(\frac{kg}{m^3}\right)}$	$\binom{c_p}{\binom{kJ}{kg\cdot K}}$		$k(W'm \cdot K)$	
Aluminum	20	2707	0.896	202 (0°C) 230 (300°C)	206 (100°C)	215 (200°C)
Brass (70-30)	20	8522	0.385	97 (0°C)	104 (100°C)	109 (200°C)
Cast iron	20	7593	0.465	55 (0°C)	52 (100°C)	48 (200°C)
Copper	20	8954	0.383	388 (0°C)	377 (100°C)	372 (200°C)
Lead	20	11 370	0.130	35 (0°C)	33 (100°C)	31 (200°C)
Steel 1%C	20	7801	0.473	45.3 (18°C)	45 (100°C)	45 (200°C)
				43 (300°C)		
308 stainless	20	7849	0.461	15.2 (100°C)	21.6 (500°C)	
304 stainless	0	7817	0.461	13.8 (0°C)	16.3 (100°C)	18.9 (300°C)
Tin	20	7304	0.227	62 (0°C)	59 (100°C)	57 (200°C)
Source: L. S. Marks, Mec. S.M. Drake, Heat and Mec. R.M. Drake, Handbook, 5tl Engineers' Handbook, 5tl New York: McGraw-Hill N	hanical Eng fass Transfe h ed. New Y Book Com	ineers' Handb r, 2nd ed. New ork: McGraw	ook, 5th ed. New York: McGraw- Hill Book Comp	r York: McGraw-Hill Boo Hill Book Company, 195 any, 1973; National Rese	ok Company, 1951; E. R. 1 9; R. H. Perry and C. H. 1 arch Council, <i>Internation</i>	 Bckert and Chilton, Chemical al Critical Tables.

The Equation of Energy in Cartesian, cylindrical, and spherical coordinates for

Newtonian fluids of constant density, with source term S_e . Source could be electrical energy due to current flow, chemical energy, etc. Two cases are presented: the general case where thermal conductivity may be a function of temperature (vector flux $\tilde{q} = q/area$ appears in the equations); and the more usual case, where thermal conductivity is constant (on the reverse).

Spring 2020 Faith A. Morrison, Michigan Technological University

Microscopic energy balance, in terms of flux; Gibbs notation

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T \right) = -\nabla \cdot \underline{\tilde{q}} + S_e$$

Microscopic energy balance, in terms of flux; Cartesian coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} \right) = -\left(\frac{\partial \tilde{q}_x}{\partial x} + \frac{\partial \tilde{q}_y}{\partial y} + \frac{\partial \tilde{q}_z}{\partial z} \right) + S_e$$

Microscopic energy balance, in terms of flux; cylindrical coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} \right) = -\left(\frac{1}{r} \frac{\partial (r\tilde{q}_r)}{\partial r} + \frac{1}{r} \frac{\partial \tilde{q}_\theta}{\partial \theta} + \frac{\partial \tilde{q}_z}{\partial z} \right) + S_e$$

Microscopic energy balance, in terms of flux; spherical coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial T}{\partial \phi} \right) = -\left(\frac{1}{r^2} \frac{\partial (r^2 \tilde{q}_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\tilde{q}_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial \tilde{q}_\phi}{\partial \phi} \right) + S_e$$

Fourier's law of heat conduction, Gibbs notation: $\tilde{q} = q/A = -k\nabla T$

Fourier's law of heat conduction, Cartesian coordinates:
$$\begin{pmatrix} \tilde{q}_x \\ \tilde{q}_y \\ \tilde{q}_z \end{pmatrix}_{xyz} = \begin{pmatrix} q_x/A \\ q_y/A \\ q_z/A \end{pmatrix}_{xyz} = \begin{pmatrix} -k \frac{\partial I}{\partial x} \\ -k \frac{\partial T}{\partial y} \\ -k \frac{\partial T}{\partial z} \end{pmatrix}_{xyz}$$
Fourier's law of heat conduction, cylindrical coordinates:
$$\begin{pmatrix} \tilde{q}_r \\ \tilde{q}_\theta \\ \tilde{q}_z \end{pmatrix}_{r\theta z} = \begin{pmatrix} q_r/A \\ q_\theta/A \\ q_z/A \end{pmatrix}_{r\theta z} = \begin{pmatrix} -k \frac{\partial T}{\partial r} \\ -k \frac{\partial T}{\partial r} \\ -k \frac{\partial T}{\partial z} \end{pmatrix}_{r\theta z}$$
(constant thermal conductivity k)
Fourier's law of heat conduction, spherical coordinates:
$$\begin{pmatrix} \tilde{q}_r \\ \tilde{q}_\theta \\ \tilde{q}_z \end{pmatrix}_{r\theta z} = \begin{pmatrix} q_r/A \\ q_\theta/A \\ q_\theta/A \end{pmatrix}_{r\theta z} = \begin{pmatrix} -k \frac{\partial T}{\partial r} \\ -k \frac{\partial T}{\partial z} \\ -k \frac{\partial T}{\partial z} \end{pmatrix}_{r\theta z}$$
Fourier's law of heat conduction, spherical coordinates:
$$\begin{pmatrix} \tilde{q}_r \\ \tilde{q}_\theta \\ \tilde{q}_\phi \end{pmatrix}_{r\theta \phi} = \begin{pmatrix} q_r/A \\ q_\theta/A \\ q_\phi/A \end{pmatrix}_{r\theta \phi} = \begin{pmatrix} -k \frac{\partial T}{\partial r} \\ -k \frac{\partial T}{\partial r} \\ -\frac{k \partial T}{r \partial \theta} \end{pmatrix}_{r\theta \phi}$$

Microscopic energy balance, constant thermal conductivity; Gibbs notation

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T \right) = k \nabla^2 T + S_e$$

Microscopic energy balance, constant thermal conductivity; Cartesian coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + S_e$$

Microscopic energy balance, constant thermal conductivity; cylindrical coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) + S_e$$

Microscopic energy balance, constant thermal conductivity; spherical coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial T}{\partial \phi} \right) \\ = k \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2} \right) + S_e$$

Reference: F. A. Morrison, "Web Appendix to An Introduction to Fluid Mechanics," Cambridge University Press, New York, 2013 (pages.mtu.edu/~fmorriso/cm310/IFMWebAppendixDMicroEBalanceMorrison.pdf). This worksheet is on the web at pages.mtu.edu/~fmorriso/cm310/energy.pdf.

Т (°С)	Т (К)	р (kg/m³)	$(kJ/kg \cdot K)$	$\mu \times 10^{3}$ (Pa · s, or kg/m · s)	k (₩/m • K)	Npr	$eta imes 10^4$ (1/K)	$(g\beta\rho^{2}/\mu^{2}) \times 10^{-8} \ (1/K \cdot m^{3})$
0	273.2	999.6	4.229	1.786	0.5694	13.3	-0.630	
15.6	288.8	998.0	4.187	1.131	0.5884	8.07	1.44	10.93
26.7	299.9	996.4	4.183	0.860	0.6109	5.89	2.34	30.70
37.8	311.0	994.7	4.183	0.682	0.6283	4.51	3.24	68.0
65.6	338.8	981.9	4.187	0.432	0.6629	2.72	5.04	256.2
93.3	366.5	962.7	4.229	0.3066	0.6802	1.91	6.66	642
121.1	394.3	943.5	4.271	0.2381	0.6836	1.49	8.46	1300
148.9	422.1	917.9	4.312	0.1935	0.6836	1.22	10.08	2231
204.4	477.6	858.6	4.522	0.1384	0.6611	0.950	14.04	5308
260.0	533.2	784.9	4.982	0.1042	0.6040	0.859	19.8	11 030
315.6	588.8	679.2	6.322	0.0862	0.5071	1.07	31.5	19 260

A.2-11 Heat-Transfer Properties of Liquid Water, SI Units

A.2-11 Heat-Transfer Properties of Liquid Water, English Units

Т (°F)	$\frac{\rho}{\left(\frac{lb_m}{ft^3}\right)}$	$\left(\frac{btu}{lb_{\mathfrak{m}}\cdot {}^{\circ}F}\right)$	$\frac{\mu \times 10^3}{\left(\frac{lb_m}{ft \cdot s}\right)}$	$\frac{k}{\left(\frac{btu}{h\cdot ft\cdot {}^\circ F}\right)}$	N _{Pr}	$eta imes 10^4$ (1/°R)	$(g\beta\rho^{2}/\mu^{2}) \times 10^{-6} (1/^{\circ}R \cdot ft^{3})$
32	62.4	1.01	1.20	0.329	13.3	-0.350	
60	62.3	1.00	0.760	0.340	8.07	0.800	17.2
80	62.2	0.999	0.578	0.353	5.89	1.30	48.3
100	62.1	0.999	0.458	0.363	4.51	1.80	107
150	61.3	1.00	0.290	0.383	2.72	2.80	403
200	60.1	1.01	0.206	0.393	1.91	3.70	1010
250	58.9	1.02	0.160	0.395	1.49	4.70	2045
300	57.3	1.03	0.130	0.395	1.22	5.60	3510
400	53.6	1.08	0.0930	0.382	0.950	7.80	8350
500 .	49.0	1.19	0.0700	0.349	0.859	11.0	17 350
600	42.4	1.51	0.0579	0.293	1.07	17.5	30 300

Geankoplis, 4th edition

NOTE: Equate the label to the provided quantity in the supplied units. For example, for water at $0^{\circ}C$:

 $\mu \times 10^3 = 1.786 Pa s$ $\mu = 1.786 \times 10^{-3} Pa s$

T (°C)	Т (К)	ρ (kg/m³)	c _p (kJ/kg⋅K)	µ. × 10 ⁵ (Pa · s, or kg/m · s)	k (W/m · K)	Npr	$\beta \times 10^3$ $(1/K)$	$\frac{g\beta\rho^2/\mu^2}{(1/K\cdot m^3)}$
-17.8	255.4	1.379	1.0048	1.62	0.02250	0.720	3.92	2.79×10^{8}
0	273.2	1.293	1.0048	1.72	0.02423	0.715	3.65	2.04×10^{8}
10.0	283.2	1.246	1.0048	1.78	0.02492	0.713	3.53	1.72×10^{8}
37.8	311.0	1.137	1.0048	1.90	0.02700	0.705	3.22	1.12×10^{8}
65.6	338.8	1.043	1.0090	2.03	0.02925	0.702	2.95	0.775×10^{8}
93.3	366.5	0.964	1.0090	2.15	0.03115	0.694	2.74	0.534×10^{8}
121.1	394.3	0.895	1.0132	2.27	0.03323	0.692	2.54	0.386×10^{8}
148.9	422.1	0.838	1.0174	2.37	0.03531	0.689	2.38	0.289×10^{8}
176.7	449.9	0.785	1.0216	2.50	0.03721	0.687	2.21	0.214×10^{8}
204.4	477.6	0.740	1.0258	2.60	0.03894	0.686	2.09	0.168×10^{8}
232.2	505.4	0.700	1.0300	2.71	0.04084	0.684	1.98	0.130×10^{8}
260.0	533.2	0.662	1.0341	2.80	0.04258	0.680	1.87	0.104×10^{8}

A.3-3 Physical Properties of Air at 101.325 kPa (1 Atm Abs), SI Units

A.3-3 Physical Properties of Air at 101.325 kPa (1 Atm Abs), English Units

	ρ	c_{ρ}		k			
T (°F)	$\left(\frac{lb_m}{ft^3}\right)$	$\left(\frac{btu}{lb_m\cdot {}^{\circ}F}\right)$	μ (centipoise)	$\left(\frac{btu}{h \cdot ft \cdot {}^{\circ}F}\right)$	N _{Pr}	$\beta \times 10^{3}$ $(1/^{\circ}R)$	$g\beta\rho^2/\mu^2$ $(1/^{\circ}R\cdot ft^3)$
0	0.0861	0.240	0.0162	0.0130	0.720	2.18	4.39 × 10 ⁶
32	0.0807	0.240	0.0172	0.0140	0.715	2.03	3.21×10^{6}
50	0.0778	0.240	0.0178	0.0144	0.713	1.96	2.70×10^{6}
100	0.0710	0.240	0.0190	0.0156	0.705	1.79	1.76×10^{6}
150	0.0651	0.241	0.0203	0.0169	0.702	1.64	1.22×10^{6}
200	0.0602	0.241	0.0215	0.0180	0.694	1.52	0.840×10^{6}
250	0.0559	0.242	0.0227	0.0192	0.692	1.41	0.607×10^{6}
300	0.0523	0.243	0.0237	0.0204	0.689	1.32	0.454×10^{6}
350	0.0490	0.244	0.0250	0.0215	0.687	1.23	0.336×10^{6}
400	0.0462	0.245	0.0260	0.0225	0.686	1.16	0.264×10^{6}
450	0.0437	0.246	0.0271	0.0236	0.674	1.10	0.204×10^{6}
500	0.0413	0.247	0.0280	0.0246	0.680	1.04	0.163×10^{6}

Source: National Bureau of Standards. Circular 461C, 1947; 564, 1955: NBS-NACA. Tables of Thermal Properties of Gases. 1949; F. G. Keyes, Trans. A.S.M.E., 73, 590, 597 (1951); 74, 1303 (1952); D. D. Wagman, Selected Values of Chemical Thermodynamic Properties. Washington, D.C.: National Bureau of Standards. 1953.

Geankoplis, 4th edition

NOTE: Equate the label to the provided quantity in the supplied units. For example, for <u>air</u> at $0^{\circ}C$:

 $\mu \times 10^5 = 1.72 Pa s$ $\mu = 1.72 \times 10^{-5} Pa s$

Heat Transfer Data Correl	ations for Examinations		
CM3110 Transport Phenomena I Michigan Technological University Professor Faith A. Morrison 1 December 2020			Log mean driving force
l. Forced Convection Through	Pipes		II. Forced Conve
In forced convection, we determined function of at most Re, Pr, L/D , and v	from dimensional analysis that the Nusselt number is a viscosity ratio.		In heat transfer takin cylinder with wall ten
Prandtl number (fluid properties)	$\Pr \equiv \frac{\hat{c}_p \mu}{k}$	(1)	Film tempera
In pipe flow with heat transfer taking at T_{bo} . T_{w} is the temperature of the n pipes, all fluid material properties exc. The mean bulk temperature is given t	place, the fluid enters at bulk fluid temperature T_{bi} and exiwall. For Nu data correlations in forced convection through cept $\mu_w=\mu(T_w)$ are evaluated at the mean bulk temperatuby	s: -5	The data correlation I Outside Cylinder
Mean bulk temperature	$\bar{T}_b \equiv \frac{T_{bi} + T_{bo}}{2}$	(2)	Wall-bulk driving force
A. Laminar Flow in Pipes			The values of C and π
Sieder and Tate's correlation (Geankc	oplis, p260) for laminar flow is		values are valid for P
Laminar flow $Nu_a =$	$= \frac{h_a D}{k} = 1.86 \left(\text{RePr} \frac{D}{L} \right)^{\frac{3}{2}} \left(\frac{\mu_b}{\mu_w} \right)^{0.14}$	(3)	
	$q = h_a A \Delta T_a$	(4)	
Arithmetic mean Δ^{\prime}	$T_a = \frac{(T_w - T_{bi}) + (T_w - T_{bo})}{2}$	(2)	
B. Turbulent Flow in Pipes			
Sieder and Tate's correlation (Geankc	pplis, p261) for turbulent flow is		
Turbulent flow $Nu_{lm} =$	$=\frac{\hbar_{im}D}{k}=0.027 \mathrm{Re}^{0.8}\mathrm{Pr}_{3}^{\frac{1}{2}} \left(\frac{\mu_{b}}{\mu_{w}}\right)^{0.14}$	(6)	
	$q = h_{tm} A \Delta T_{tm}$	(7)	
		Ļ	

he data correlation for Nusselt number in this case is

utside Cylinder Nu =
$$\frac{\hbar D}{k} = C R e^m P r^{\frac{1}{3}}$$
 (10)

$$q = hA(T_w - T_b) \tag{11}$$

The values of C and m depend on the Reynolds number (Geankoplis, Table 4.6-1, p272). These values are valid for \Pr > 0.6.

U E	0.330 0.989	0.385 0.911	0.466 0.683	0.618 0.193	0.805 0.0266
Re	1 - 4	4 - 40	40 - 4,000	$4,000 - 4 \times 10^4$	$4 \times 10^4 - 2.5 \times 10^5$

2

TABLE 4.7-2. Simplified Equations for Natural Convection from Various Surfaces ,		$\begin{array}{cccc} h = b u / h^2 \cdot F & h = W/m^2 \cdot K \\ L = \beta h \Delta T = {}^\circ F & L = m, \Delta T = K \\ Physical Geometry & N_{Gr} N_{\rm Pr} & D = \beta & D = m \\ \end{array}$	A is at 101 23 1-De (1 atm) also arrange	Vertical planes and $10^{4}-10^{9}$ h = $0.28(\Lambda TL)^{14}$ h = $1.37(\Lambda TL)^{14}$ (P1) cylinders $>10^{9}$ h = $0.18(\Lambda TL)^{13}$ h = $1.24 \Delta T^{13}$ (P1)	Horizontal cylinders $10^{2}-10^{9}$ $h = 0.27(\Delta T/D)^{1/4}$ $h = 1.32(\Delta T/D)^{1/4}$ (M1) $>10^{9}$ $h = 0.18(\Delta T)^{1/3}$ $h = 1.24 \Delta T^{1/3}$ (M1)	Horizontal plates Horizontal plates Heated plate facing $10^5 - 2 \times 10^7$ $h = 0.27 (\Delta T/L)^{14}$ $h = 1.32 (\Delta T/L)^{14}$ (M1) upward or cooled $2 \times 10^7 - 3 \times 10^{10}$ $h = 0.22 (\Delta T)^{13}$ $h = 1.52 \Delta T^{13}$ (M1) nlate facing $0.22 (\Delta T)^{13}$ $h = 1.52 \Delta T^{13}$ (M1)	part atom bound	Heated plate facing $3 \times 10^{5} - 3 \times 10^{10}$ $h = 0.12(\Delta T/L)^{14}$ $h = 0.59(\Delta T/L)^{14}$ (M1)	downward or cooled plate	facing upward Water at 70°F (294 K)	Vertical planes and $10^4 - 10^9$ $h = 26(\Delta T/L)^{1/4}$ $h = 127(\Delta T/L)^{1/4}$ (P1)	cylinders	Organic liquids at 70°F (294 K) \oplus	Vertical planes and $10^{-10^{\circ}}$ $n = 1.2(\Delta I/L)^{\circ}$ $n = 3.9(\Delta I/L)^{\circ}$ (r1) cylinders									Reference : C. I. Geankonlis. Transport Processes and Generation Process Principles. 4 th Edition	reference: c. 3. oceanopris, nansport moccases and separation moccases minicipies, 4 – curron, Prentice Hall, 2003.	
	,	isional	(12)	(13)		ations			Ref.		(B3)	(cr) (IM)	(M1)			(P3)	(P3)	(P3)	(P3)	(M1)	(сл)	(M1) (M1)	(++++)	(F1)	
		en found by dimer.			, elder ni silnodnee	earing of the corre		ion	a m		36 1	.59 5 4	.13 1			.49 0	$.71 \frac{1}{25}$	$\frac{1}{10}$.09 ⁵	.53 4 ⁴	<u>£</u> cr.	.54 14		.58 <u>1</u> 3	
ometries		s from various surfaces have be ollows:	$\frac{hL}{r} = a(\text{Gr Pr})^m$	$\kappa = \frac{L^3 \rho^2 g \beta \Delta T}{2}$	μ^{z}	recty, values may be round in o kt pages) provides simplified ve anic liquids).		q. (4.7-4) for Natural Conveci	$N_{ m Gr} N_{ m Pr}$		104	$\sim 10^{4} - 10^{9}$ 0.	>10 ⁹ 0.			<10 ⁻⁵ 0.	$10^{-5} - 10^{-3}$ 0.	10 ⁻³ -1 1.	1-104 1.	10 ⁴ -10 ⁷ 0.	-01~	$10^{5}-2 \times 10^{7} \qquad 0.$ 2 × 10 ⁷ -3 × 10 ¹⁰ 0		$10^{5}-10^{11}$ 0.	
III. Natural Convection from Various Ge		Natural convection heat transfer coefficients analysis and experimentally to correlate as ft	Natural convection Nu =	(various geometries) Grashof number Gr	The valuet for a and m denend on the server	ine values for us and increption on the geometry of (p278, shown below). Table 4.7-2 (p280, ney specialized to common fluids (air, water, org	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	TABLE 4.7-1. Constants for Use with Eq.	Physical Geometry	Vertical planes and cylinders [vertical height $I < 1 \text{ m} (3 \text{ ft})$]				Horizontal cylinders Idiameter D used for	L and D < 0.20 m (0.66 ft)]	-					Horizontal nlates	Upper surface of heated plates or lower surface of cooled nlates	I ower surface of heated plates or	upper surface of cooled plates	

Aluminum Brass (70–30)	20	$\left(\frac{kg}{m^3}\right)$	$\binom{c_p}{kg \cdot K}$		$k(W/m \cdot K)$	
Brass (70-30)		2707	0.896	202 (0°C) 230 (300°C)	206 (100°C)	215 (200°C)
Cost ince	20	8522	0.385	97 (0°C)	104 (100°C)	109 (200°C)
Cast II UII	20	7593	0.465	55 (0°C)	52 (100°C)	48 (200°C)
Copper	20	8954	0.383	388 (0°C)	377 (100°C)	372 (200°C)
Lead	20	11 370	0.130	35 (0°C)	33 (100°C)	31 (200°C)
Steel 1%C	20	7801	0.473	45.3 (18°C)	45 (100°C)	45 (200°C)
				43 (300°C)		
308 stainless	20	7849	0.461	15.2 (100°C)	21.6 (500°C)	
304 stainless	0	7817	0.461	13.8 (0°C)	16.3 (100°C)	18.9 (300°C
Tin	20	7304	0.227	62 (0°C)	59 (100°C)	57 (200°C)
Source: L. S. Marks, Mechan	nical Eng.	ineers' Handbo	ok, 5th ed. Ner	w York: McGraw-Hill Bo	ook Company, 1951; E. R.	G. Eckert and
R. M. Drake, <i>Heat and Mas</i> : Engineers' Handbook, 5th e. New York: McGraw-Hill Bo	s Transfe. ed. New Y ook Comp	r, 2nd ed. New ork: McGraw- any, 1929.	York: McGraw Hill Book Com	-Hill Book Company. 19 pany. 1973: National Res	59; R. H. Perry and C. H. search Council. Internation	Chilton, Chemical tal Critical Tables.

	RTII	147
Mechanism	$h, \frac{D}{hr ft^{20}F}$	$h, \frac{w}{m^2 K}$
Condensing steam	1000-5000	5700-28,000
Condensing organics	200-500	1100-2800
Boiling liquids	300-5000	1700-28,000
Moving water	50-3000	280-17,000
Moving hydrocarbons	10-300	55-1700
Still air	0.5-4	2.8-23
Moving air	2-10	11.3-55
Reference: C. J. Geankoplis, Magni	tude of Some Heat-	Transfer
Coefficients, page 241		