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Abstract

Instabilities and vortical structure in the near wake of a sphere and a circular disk are
reviewed, together with those of an elliptic disk and rectangular plate which have two length
scales. The linear global instability analysis (J. Fluid Mech. 254 (1993) 323) yields critical
Reynolds numbers of regular and Hopf bifurcations of the sphere wake, which are in excellent
agreement with direct numerical simulations and experiments. The Strouhal number of
shedding of hairpin-like vortices in the sphere wake is significantly dependent on Reynolds
number, reflecting changes in the wake such as transition from laminar to turbulent wakes.
The vortex structure at high Reynolds numbers still remains to be clarified. Two periodic
components of velocity fluctuations are found in the wake of elliptic disks and rectangular
plates, being likely to be caused by global instability in the near wake. © 2001 Elsevier Science
Ltd. All rights reserved.

Keywords: Wakes; Instabilities; Bluff' body wakes; Low-frequency unsteadiness; Vortex shedding:
Vortex structure

1. Introduction

In wind engineering, flows around an axisymmetric body such as a sphere or a
circular disk are less encountered than those around cylindrical bodies such as a
circular or rectangular cylinder. The wake of a sphere is a prototypical wake of
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axisymmetric bodies but is not as well understood as its two-dimensional
counterpart, the wake of a circular cylinder. Studies to date indicate that vortex
structure in the wake of the sphere is substantially different from that in the wake of
the circular cylinder, and thus little of what has been learned for wakes of two-
dimensional bluff bodies is directly applicable to symmetric wakes. In his review on
bluff-body aerodynamics, Roshko [2] mentioned that nominally axisymmetric flows
deserve more attention from laboratory and numerical experiments in relation to
possible extraneous effects from end conditions in nominally two-dimensional flows.

The wakes of an clliptic plate and a rectangular plate, which are normal to the
main flow, are much less studied than the wake of the sphere, although they arc
associated with flow around side-view mirrors of cars, non-axisymmetric parachutes,
airships during cross winds, and many others. These bodies have two length scales
and two planes of symmetry, thus being expected to have wake structures different
from those of a sphere or a circular disk. The wakes of the plane-symmetric bluff
bodies with low aspect ratio also serve to study transition of vortical structures from
cylindrical bodies to axisymmetric bodies. It should also be noted that the wake of a
square plate normal to the flow is not understood yet.

In this review we are concerned with vortical structure in the wake of the
axisymmetric and plane-symmetric bluff bodies at rest in a steady uniform flow. The
lock-on phenomena and active control of vortex shedding from a sphere are also
reviewed.

2. Instabilities and vortex structure in sphere wake
2.1. Instabilities

Flow around a sphere in a uniform main flow separates from the surface to form a
steady toroidal vortex at Reynolds number R of 20, where R is defined in terms of
the main-flow velocity U and the diameter of the sphere d. The steady flow changes
to an asymmetric steady flow through a normal bifurcation at R = R,; = 210. This
value of R, was obtained by Natarajan and Acrivos [1] who employed a global
linear stability analysis by assuming the velocity perturbations in the form of
o Y, 2y explomt + im0), where m is the mode number, (r,z,0) 1s the cylindrical
coordinate system with the axis aligned with the main flow, 7 is time. o,, is the
complex growth rate, and v”?(r, z) is a function of r and =. The most unstable mode is
m = 1, which is a helical mode. This steady flow changes to a new unstable flow of
mode m =1 through a Hopf bifurcation at R = R, = 277.5; the fundamental
frequency f3 is Sa(= f2d/U) = 0.113 in the form of Strouhal number.

For a circular disk Natarajan and Acrivos [1] obtained the values of R, = 116,
R, =1256 and S =0.126. At both Reynolds numbers R.; and R, the
eigenfunctions for the sphere and the circular disk have striking similarity. indicating
that these two unstable modes have the same physical origin in the two bodies.

The values of the critical Reynolds numbers and the Strouhal number for the
sphere are confirmed by direct numerical simulations (DNS) and experiments. The
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Tomboulides et al.’s [3] DNS yielded R,; = 212, R = 250-285, and S5 = 0.116. The
growth rate of the m = I mode is in cxcellent agreement with the linear stability
analysis in the range of R = 160-300. Ormieres and Provansal [4] experimentally
obtained the amplitude of the longitudinal velocity fluctuation in the wake as a
function of Reynolds number to show, by extrapolation, that the amplitude becomes
zero at Ro = 2804 6. Flow visualization experiments show that R, = 270 [5,6] and
R =280 [7]. Sakamoto and Haniu [8] obtained a higher value of R, = 300 by
hot-wire measurements. This is probably because the growth rate of the unstable
m = 1 mode is too low to be detected by the hot-wire probes at Reynolds numbers
close to R..

2.2. Vortex structures near-critical Reynolds numbers

The vortex structure in the wake of the sphere changes in the following way
through the critical Reynolds numbers. In the range of Ry <R< R, the flow is
characterized by a double-thrcad vortical structure which comprises two parallel
vortex tubes extending downstream from the end of the recirculation zone [4,9--11].
The double thread has a planar symmetry. The transition at R = R,y is argued to be
associated with an azimuthal instability of the low-pressure core of the toroidal
vortex [10].

The double thread is conjectured to be the stable solution for supercritical values
of R and its spatial form can be obtained from the eigenfunction of the unstable
mode. The full theoretical justification of this conjecture requires a nonlinear
analysis of the stability of the entire class of bifurcating solutions, which consists of
arbitrary linear combinations of the unstable mode superposed with different
azimuthal phases [1]. It is worth noting that a superposition of the m =0 and 1
modes yields a fork-like vortical structure in the sphere wake, depending on the local
amplitude of the m = 1 mode; the fork approaches the sphere as Reynolds number
increases [12].

In the range of R> R, hairpin-shape vortices with one-sided orientation are
periodically shed from the sphere (Fig. 1). Numerical simulations show that the
hairpin vortices have planar symmetry up to R = R = 350-375 [3,13]. The
oricntation of the hairpin vortices and thus the plane of symmetry are conjectured
to be determined by small irregularities in the main flow and initial conditions. This
conjecture is supported by the fact that, when a sphere is placed in a uniform shear
flow, the top of the hairpin vortices is fixed at the high-speed side of the shear flow
[14]. The formation of the hairpin vortices is completed (4.5-5.5)d downstream of the
center of the sphere at R = 280-360 since the energy of velocity fluctuation attains a
maximum at this position as shown by Ormieres and Provansal [4].

The DNS of Johnson and Patel [10] in the range R = 270-300 shows not only one-
sided hairpin vortices, but also previously unrevealed. oppositely oriented hairpin
vortices, which are conjectured to be induced by the interaction of the near-wake
flow and the outer flow. This seems Lo be due to the nature of their flow visualization,
the oppositely oriented hairpin vortices being much weaker than the other.
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(a)

(b

(<)

Fig. 1. Vortical structure in the sphere wake at (a) R = 350, (b) R = 500 and (c) R = 650 [16].

The fixed orientation of the hairpin vortices yields the time-mean and fluc-
tuating lift force in the particular direction [10,13]. The frequency of the fluctuating
lift is the same as the vortex-shedding frequency. The r.m.s. value of the fluc-
tuating lift is of the order of 1/10th of the time-mean drag, being much lower
than that of the fluctuating lift of a circular cylinder which is of the same order as
the time-mean drag. This suggests that the circulation of the hairpin vortices
is much lower than that of Karman vortices in the wake of the circular
cylinder.

2.3. Vortex structures in the range of R> Rz

The orientation of hairpin vortices tends to change from cycle to cycle at R > R,3,
thus the planar symmetry is lost. The cycle-to-cycle change becomes more and more
irregular as Reynolds number increases [3,15,16]. The power spectrum of velocity
fluctuation at R = 500 [3] shows a peak at a frequency /i on top of a primary peak
which corresponds to the vortex shedding f,, fi being of the order of (1/3 = 1/4)f,.
The low-frequency component is interpreted as the central frequency of the irregular
rotation of the hairpin vortices. At this Reynolds number the hairpin vortices are still
laminar although they are fairly distorted by the slow rotation. This is supported by
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the fact that the power spectrum has low level of high-frequency components which
corresponds to turbulence. The low-frequency component is also observed in the
DNS of Mittal and Najjar [16]. Moreover, vortex rings are formed in the
downstream region of the wake at R = 500 and 650 [5,16].

The large-scale structure at R = 1.0 x 10° is similar to that at R = 500; lower
frequencies of the same order as at R = 500 arc also observed. A power-spectrum
peak appears at a higher frequency than at the vortex-shedding frequency f,, being
interpreted as the frequency of Kelvin—-Helmholtz instability of the separated shear
layer fxn. The existence of vortices associated with this instability is confirmed by
experiments [8,17]. Small-scale vortices, associated with the shear-layer instability,
cause a rapid distortion of the large-scale structures and eventually the wake
becomes turbulent.

A large-eddy simulation (LES) was made at R = 2.0 x 10* by Tomboulides et al.
[3]. The hairpin vortices are not identifiable owing to random, small-scale structures.
The time history of drag has a high-frequency component corresponding to the
shear-layer instability on top of the vortex-shedding component f,. This seems to be
reasonable because vortex rings with significant circumferential coherence is shown
to be generated by the shear layer instability [18]. A DNS at the same Reynolds
number was performed by Kuwahara [19] in an early stage of the impulsively started
flow. The shear-layer instability and the small-scale vortices are observed but the
large-scale structure is not clear. A proper data processing is needed to study the
nature of large-scale structures in the sphere wake at Reynolds numbers of the order
of 10°~10*. It may be noted that no numerical simulations have been made at
R>2.0x 10%

The vortex structure at higher Reynolds numbers than 2.0 x 10* is experimentally
studied by flow visualizations and hot-wire measurements. Achenbach [20] employed
four hot-wire probes near the surface arranged in the circumferential direction with
the same distance to show that there exists a structure rotating in the circumferential
direction in the range of R = 6.0 x 10°-3.0 x 10*. This structure can be interpreted
as the irregular rotation of the separation line azimuthally around the rear part of
the sphere. Taneda’s flow-visualization [21] experiments at R = 2.3 x 10* show a
progressive wave motion with a planar symmetry; the plane of symmetry rotates
slowly and irregularly around the axis of the wake. This wave motion, which is
observed in the range of R = 1.0 x 10%-3.5 x 10°, suggests the shedding of hairpin
vortices from the sphere. but it is not clear whether they are one-sided or oppositely
oriented.

No helical structures are observed in Taneda’s experiment [21]. On the other hand,
Berger et al. [18] found, by measurements of coherence of pressure fluctuations at
two points in the near wake, that the helical mode m = 1 is dominant at R< 103,
while the modes m = 1 and 0 are observed approximately at the same probability in
the range of R = 10°-2.0 x 10°. The flow around the sphere in this range of
Reynolds number is sensitive to the residual turbulence and other irrcgularities in the
main flow since the drag crisis occurs approximately at R = 2.0 x 10°. Thus, the
vortical structure in the wake is possibly sensitive to these effects. More detailed
studies are needed to resolve this issue.
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In a higher range of R = 3.8 x 10°-1.0 x 10° the separation from the surface is not
symmetric in the circumferential direction but such that an attached hairpin vortex is
formed whose legs extend downstream to form a pair of streamwise vortices. The
vortex pair is shifted in the direction normal to the main flow by the mutual
interaction. The vortex pair is fairly steady with no periodic vortex shedding,
although it rotates slowly and randomly about the axis. There is no information on
large-scale vortex structures at Reynolds numbers higher than 10°.

2.4. Vortex-shedding frequency

The vortex-shedding frequency f, and the frequency of the shear-layer instability
Jxn are functions of Reynolds number [8,17,20]. Strouhal numbers defined by S, =
Jvd /U and Sky = fknd/U are plotted against R in Figs. 2 and 3 [8]. The vortex-
shedding frequency is experimentally observed at R higher than approximately 300.
The reason why this value is greater than the critical Reynolds number R, has been
explained before. The value of S at this Reynolds number is 0.14, being almost the
same as that obtained by DNS [3].

The Strouhal number of vortex shedding S, are sensitive to Reynolds number as
seen from Fig. 2. The relation between the Strouhal number S, and the vortex
structure in the wake is as follows according to Sakamoto and Haniu [8].

(1) 300<R<420: The one-sided hairpin vortices are shed periodically. The
velocity fluctuation in the wake is sinusoidal with fairly constant amplitude. The
upper limit of this range R =420 is not far from the critical Reynolds number
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Fig. 2. Strouhal number of vortex shedding S. versus Reynolds number R for sphere [8].
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Fig. 3. Strouhal number of shear-layer instability Sky (upper branch) and that of vortex shedding S,
(lower branch) versus Reynolds number R for sphere [§].

R.3 == 350--375 beyond which the planar symmetry of the hairpin vortices is no
longer preserved. The Strouhal number increases with increasing R.

(2) 420 < R<480: This is the transition region between regime (1) and regime (3)
which will be described below. The angle of the hairpin vortices is constant during a
time interval while it changes from cycle to cycle during a following time interval.
This process is repeated irregularly. The velocity fluctuation in the wake is sinusoidal
in the former while the amplitude is irregularly modified in the latter.

(3) 480 < R<650: The angle of hairpin vortices changes irregularly from cycle to
cycle to yield the velocity fluctuation in the wake which is basically sinusoidal but the
amplitude is irregularly modified. The flow in the wake is laminar. The Strouhal
number increases with increasing R.

(4) 650< R<800: The hairpin vortices experience transition from laminar to
turbulent flow. Details of the transition are not yet clarified. The Strouhal number
decreases with increasing R.

(5) 800<R<3.0 x 10%: The separated shear layer starts to develop the Kelvin—
Helmholtz instability at R = 800. The shear layer is still laminar although the hairpin
vortices are turbulent as also confirmed by DNS of Tomboulides et al. [3] at R =
1.0 x 10°. The Strouhal number increases again with increasing R.

(6) 3.0 x 10° < R<6.0 x 10*: The rolling-up vortices in the separated shear layer
experience transition from laminar to turbulent flow. The position of transition
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approaches the separation point with increasing Reynolds number. The Strouhal
number decreases from 0.24 to 0.17 with increasing R. This is because the enhanced
diffusion of vorticity by the transition requires longer time to accumulate a sufficient
amount of circulation in the vortex-formation region with increasing Reynolds
number.

(7) 6.0 x 10 < R<3.7 x 10°: The separated shear layer is turbulent from the
separation point, and the hairpin vortices are turbulent [3,19]. The power spectrum
of velocity fluctuations in the wake has a definite peak at the vortex-shedding
frequency, which can be distinguished from turbulence components [8]. In the range
of R=6.0x10-2.0x 10° the boundary layer at separation is expected to be
laminar, so that the momentum thickness of the separated shear layer near
the separation point decreases with increasing R in the same range. This decrease in
the momentum thickness causes the increase in the vortex-shedding frequency. The
vortex-shedding frequency is fairly constant at R > 2.0 x 10° because the boundary
layer is already turbulent at the separation point.

(8) R>3.7 x 10°: As mentioned before. an attached hairpin vortex is formed
whose legs extend downstream to form a pair of strcamwise vortices. This vortex
pair is fairly steady with no periodic vortex shedding.

2.5. Frequency of shear-layer instability

The shear-layer instability is observed in the range of R = 800-6.0 x 10% [8,17], as
shown in Fig. 3. The critical value R = 800 is lower than the corresponding value for
a circular cylinder, that is, R =12 x 10° for parallel vortex streets and R =
2.6 x 10° for oblique vortex streets [22]. The frequency of the shear-layer instability
of a circular cylinder is related to Reynolds number in the form fxy /f, = 0.0235R%67
for R up to 10°. This relation can be written as Jxu/fv = (R/262)O'67. Prasad and
Williamson [22] argue that some sort of resonance is caused at Rx~260 by an
interaction between the wake and the shear layer, when fiy/f, would be equal to
unity, although the shear-layer instability is not manifested for R< 1.2 x 10? for hot-
wire measurements. This argument is supported by the fact that the Karman vortex
shedding s particularly spanwise coherent at Rx260. In addition, the velocity
fluctuations appear to be particularly periodic at the same Reynolds number,
producing a distinctly sharp peak at /. in long-time averaged velocity spectra.

In the case of a sphere the shear-layer instability begins to be observed at R = 800,
at which its frequency fkn is equal to the vortex-shedding frequency f,. No
information is available to suggest that a similar resonance as for the circular
cylinder is also the case for the sphere at this Reynolds number. This is probably
because the shear-layer instability is of mode m = 0 while the vortex shedding is of
mode m = 1. The frequency of the shear-layer instability can be approximated by
fxu/fe = 0.0113R%7 on the basis of Sakamoto & Haniu’s experimental results [8].
The ratio fxn//y is influenced by the variation of base pressure, frequency of vortex
shedding and upstream motion of the transition point, as Reynolds number is
increased.
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On top of the two frequencies f, and fky, there exists the low-frequency
modulation whose typical frequency is of the order of (1/3 — 1/4)f,, as mentioned
before. This low-frequency modulation was discovered by DNS at R = 350-1.0 x 10*
[3.16]. The modulation is expected to exist at higher Reynolds numbers but no
measurements have been made of the typical frequency of the modulation.

3. Wake of a circular disk

For a circular disk normal to the main flow, Natarajan and Acrivos [1] obtained
by the linear stability analysis the critical Reynolds numbers R, = 116.5 and R» =
126.5, and the fundamental frequency S, = 0.126. The most unstable mode is helical
m = 1. The value of R, has not been confirmed either experimentally or numerically.
A flow-visualization experiment for a cone of included angle of 90° [6] shows that the
wake becomes unsteady at R = 140, which is not far from the value of R.,. More
experiments are needed to confirm the predicted critical Reynolds numbers and the
fundamental frequency. No DNS has been performed for the flow around a circular
disk.

Experiments on the wake of a circular disk were performed at Reynolds numbers
of the order of 10°-10° [18,23.24]. In this range of Reynolds number, Strouhal
number of vortex shedding is fairly constant S, = 0.13-0.15. The main results of the
cxperiments may be summarized in what follows:

(1) An antisymmetric highly coherent structure is observed, which is dominated by
helical modes m = 1 and —1 at a natural frequency S, = 0.135, at which the helical
structures rotate around the axis of the wake [18,23]. The helical structure develops
from location of the maximum pressure fluctuation, which occurs just upstream of
the rear stagnation point of the recirculating zone, rather than from the edge of the
disk. This suggests that the origin of the helical structure is associated with instability
of flow in the recirculating zone.

[t is timely here to mention a linear stability analysis of Monkewitz [25] on
an axisymmetric wake. A family of axisymmetric velocity profiles is employed
which allows for the variation of the wake depth as well as for a variable ratio
of wake width to the shear-layer thickness. The analysis shows that the first
helical mode m = 1 is absolutely unstable in the near wake for Reynolds numbers
(based on the wake diameter and the main-flow velocity) in excess of 3.3 x 10°. This
suggests that the large-scale helical vortex shedding, which is observed for the
circular disk, may be driven by a self-excited oscillation in the near wake. The
frequencies in the absolutely unstable region is in fairly good agreement with
experiments. The same is also true for spheres in the range between Reynolds
numbers 6.0 x 10% and 3.7 x 10° although no helical structures are observed in the
sphere wake.,

In the flow visualization of Miau et al. [24] at R = 1.0 x 10° hairpin vortices are
shed from the disk; the angle of shedding changes irregularly from cycle to cycle.
This is similar to the case of the sphere wake. The anti-phase characteristics of vortex
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shedding are generally preserved in the near wake at the circumferential positions
180° apart at R = 2.8 x 10*-8.4 x 10* The anti-symmetric characteristics, however,
are unable to distinguish between hairpin vortices and helical structures.

(2) The shear-layer instability yields ring vortices in the immediate wake. These
vortices tend to incline and link together, so that the m = 0 mode is not distinct as
expected for ring vortices. The frequency of the shear-layer instability is not yet
obtained as a function of Reynolds number.

(3) Berger et al. [18] observed an axisymmetric pumping of the recirculation zone
without formation of ring vortices, which is dominated by an m = 0 mode at a low
frequency of 0.05 in the form of Strouhal number. The pumping motion is
interpreted as enlargement and shrinkage of the recirculating zone. The frequency is
of the order of (1/3) /., being approximately equal to the frequency of the low-
frequency modulation for the sphere, which is interpreted as the frequency of the
irregular rotation of the hairpin vortices.

(4) Finally, it may be noted that helical structures are dominant in the wake of the
circular disk while no evidence for helical structures has been obtained in the sphere
wake. This 1s interesting because the linear stability analysis of Natarajan and
Acrivos [1] strongly suggests that the unstable modes have the same physical origin
in the two bodies. More detailed studies are needed to clarify the intrinsic similarity
and difference between the two wakes. Moreover, although vortex structures in the
sphere wake are clarified by DNS and flow-visualization experiments at Reynolds
numbers less than 1.0 x 10%, no such studies have been made for the wake of the
circular disk.

4. Wakes of elliptic and rectangular plates
4.1. Vortex structure and vortex shedding

An elliptic plate normal to the main flow, which has two length scales, is expected
to have wake properties between axisymmetric and two-dimensional blufl bodics.
Kuo and Baldwin [26] discovered an unexpected result that the far wake of elliptic
plates with aspect ratio AR of 1.67 and 5.0 have elliptical cross sections, but the
major axis of the wake is aligned with the minor axis of the body; the aspect ratio is
defined by AR = L/D, where L is the major diameter and D is the minor diameter.
This cffect was observed in both time-mean velocity and turbulence intensity in the
wake throughout the range of the experiment, from several minor diameters to
distances of 250 diameters downstream of the body. They also found a periodic
velocity fluctuation in the major plane on top of that in the minor planc. More
detailed studies on the elliptic wakes have been performed by Kiya and Abe [27],
disclosing several novel aspects of the elliptic wakes.

Michalski ct al. [28] measured the periodic vortex shedding in the wake of a
circular cylinder with free hemispherical ends to study the transition from the
cylinder wake to the sphere wake, at Reynolds number R (based on the main-flow
velocity U and D) <375, The critical Reynolds number at which the vortex shedding
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occurs is a function of aspect ratio AR, which is defined as the length of the cylinder
divided by the cylinder diameter D. The frequency of vortex shedding f, in the form
of Roshko number R, = f,D?/v (= S,R,v: kinematic viscosity) generally increases
with increasing R. This frequency was measured only in the mid span of the cylinder,
so that they did not present the second periodic component which is expected to exist
in the major plane, as in the case of elliptic and rectangular plates [26,27].

In what follows, the vortex structure and the vortex shedding in the wake of
elliptic plates with the aspect ratio of AR = 2.0 and 3.0 will be discussed on the basis
of Kiya and Abe [27]. Reynolds numbers based on U and D are R = 200 and
2.0 x 10", It may be noted that the wake of rectangular plates has basically the same
property as that of the elliptic plates of the same aspect ratio.

The flow visualization and DNS at R = 200 showed that hairpin vortices are
alternately shed in the minor plane (Fig.4). The hairpin vortices are oppositely
oriented like Karman vortices for cylindrical bodies, and their top is basically in the
minor plane of the body. No helical structures are observed.

Velocity contours in the wake in the cross sections normal to the main flow are
approximately elliptic up to approximately (4.0-4.5)D downstream of the elliptic
plates of aspect ratios of 2.0 and 3.0, the major and minor axes of the wake being
aligned with those of the body, respectively. Beyond this position the velocity
contours are also approximately elliptic but the major axis of the wake is aligned
with the minor axis of the body and vice versa. This phenomenon is referred to as the
axis switching in view of the similar phenomenon found in a jet issuing from an
clliptic nozzle [29,30].

The mechanism of the axis switching in the wake is completely different from that
in the jet. In the elliptic jet the axis switching is caused by the self-induced
deformation of elliptic vortex loops shed from the nozzle and the merging interaction
between neighbouring vortex loops, as demonstrated by Hussain and Husain [30]. In
the elliptic wake. however, no elliptic vortex loops are generated along the edge of
the elliptic plate; rather, the hairpin vortices are generated near the end of
recirculating zone. The axis switching occurs because the hairpin vortices move
outwards by the self-induced velocity, increasing the width of the wake in the minor
plane. On the other hand, the width of the wake in the major plane decreases due to
the in-flow accompanied by the out-flow in the minor plane, by the requirement of

0.0 4.0 ®.0 o0 10 R0

Gn (h)

Fig. 4. Eqi-vorticity surface in (a) major plane and (b) minor plane for elliptic plate of aspect ratio
AR = 2.0 at R = 200 [27].
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continuity. over scveral minor diameters downstream. The crossover of the widths
occurs around (4.0-4.5)D downstream of the body, which is the position of the axis
switching.

The alternate shedding of the hairpin vortices generates periodic velocity
fluctuations in the minor plane, as first found by Kuo and Baldwin [26]. The
vortex-shedding frequency fy., is a function of the aspect ratio of the body as shown
in Fig. 5, in which fir, is normalized in the form of Strouhal number Sy, = fimD/U.
Kiya and Abe [27] confirmed the existence of another periodic velocity fluctuation in
the major plane, which is also mentioned by Kuo and Baldwin [26]. This frequency
Jfum 1s also a function of AR, and is included in Fig. 5 in the form of Strouhal number
Swm = fimD/U.

A vortical structure which is responsible for the periodic component in the major
plane has not been revealed yet. Both the flow visualizations and DNS at Reynolds
number of R = 200 suggest that this periodic component is caused by a meandering
motion of the hairpin vortices in the direction of the major axis. The frequency in the
major plane fum is a smooth function of the aspect ratio, so that this frequency is
expected to be associated with the intrinsic instability in the near wake. It is not
established, however, whether the meandering motion is also the case at much higher
Reynolds numbers such as R = 2.0 x 10%,

The frequencies of the periodic components plotted against the aspect ratio are
almost the same for the elliptic plate and the rectangular plate at the same Reynolds
number. The axis switching is also the case for the two bodies. These facts strongly
suggest that the vortex structure in the wake is basically the same for the two bodies,
despite the existence of sharp corners in the rectangular plate. The periodic
components should be attributed to the global instability of the near wake, whose
analysis has not been attempted yet. Such an analysis is challenging becausc unstable
modes should be three-dimensional, having two fundamental frequencies and
different growth rates near the major and minor planes. It might be possible that the
axis switching can be interpreted by the difference in the growth rates.

0.15f
£
o1
$ 0107
5

0.05f . L

0.8 1.0 3.0 5.0
AR

Fig. 5. Strouhal number S, (circles) and S, (triangles) for elliptic plate versus aspect ratio AR at
R =20 x 10%27].
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4.2. Low-frequency modulation

A low-frequency modulation is observed for the vortex shedding in the minor
plane and the meandering motion in the major plane [27]. The representative
frequency of modulation of the vortex shedding is approximately 1/5 of the vortex-
shedding frequency fin. The same is also the case for the representative frequency of
modulation of the meandering motion, which is approximately (1/5) fum. The low-
frequency modulation is statistically in phase on both sides of the wake in each
plane, while it is out of phase in the different planes. This indicates that, when the
wake is in the phase of enlargement in the major plane, the wake in the minor plane
is in the phase of shrinkage, and vice versa. The low-frequency modulation is
necessarily of large spatial extent.

The flow field associated with the low-frequency modulation remains to be
clarified, together with the mechanism of its origin.

5. Concluding remarks

Vortex structures in the wake of the prototypical three-dimensional bluff bodies
have not yet been understood at high Reynolds numbers to the same extent as those
in the two-dimensional bluff bodies. This can be demonstrated by the fact that the
wake of the circular disk is dominated by helical structures at high Reynolds
numbers while no helical structures are observed in the sphere wake, although the
linear stability analysis of Natarajan and Acrivos [1] suggests that the unstable
modes near the critical Reynolds numbers have the same physical origin in the two
bodies.

The base pressure, which is sensitive to changes in vortical structure in the wake
[2], is not obtained as a function of Reynolds number even for a sphere. Moreover,
the Strouhal number of vortex shedding for the sphere is strongly dependent on
Reynolds number. However, only limited information is available on change of flow
in the wake associated with the change in the Strouhal number.

The oppositely oriented hairpin vortices in the wake of the clliptic plate are
expected to change to the one-sided hairpin vortices in the sphere wake at a critical
aspect ratio. The transition may give us further insight into the dynamics of wakes of
three-dimensional blufl bodies.
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