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ECENICAL MEMORANDUH NO, 1068

HEAT TR/SSFER IN A TURBULENT LIQUID OR G.iS STREBAL*

By H., Latzko

The theory of heat transfer from a solié body to a lig-
uid stream could be presented previously¥** only with linit-
ing assumptions about the movement of the fluid (potentlal
fl;w, laminar frictional flow), (See references 1, 2, and
3.

For turbulent flow, the most important practical case,
the previous theoretical considerations did not go beyond
dimensionless formulas and certain conclusions as to the
analogy bvetween the friction factor and the unit thermal
conductance. (See references 4, 5, 6, and 7,) In order %o
obtaln numerical results, an experimental treatment of the
problem was resorted to, which gave rise $0 numerous inves-
tigations because of the.importance of this problem in many
branches of technology. However, the results of these in-
vestligations frequently deviate from one another, The ex-
Perimental results are especially dependent upon the over-
all dimensions and the specific proportions of the equipment.

In the present work, the attempt will be made to devel-
op systematically the theory of the heat transgfer and of the
dependence of the unit thermal conductance upon shape and
dimensions, using as a basis the velocity distribution for
turbulent flow set up dy Prandtl and Vorn Kérmén,

*"Der Wirmellbergang an einen turbulenten Flissigkeits-
oder Gasstrom,' (Abstract of a Dissertation presented to the
Phil, Faculty of the Univ., of Vienna.,) Z.f.a.M.il., vol, 1,
no, 4, Aug, 19231, pp, 268-280,

¥¥Ag long as the velocitises remain much below-the veloc-
ity of sound, compressible fluids (gases) and incompressibdble
filulde follow, as is known, approximately the same laws of
flow; therefore, in the following, the expression for the
flow of fluide will be used for actual liquids as well as
for gases,

NOTE: Translation received from Univ, of California,
Berksley 4, CGalif.
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1, HYDRODYNAMIC PRINCIPLES

First of all, the results of the Prandtl-Kdrman theory
(reference 8) whieh will be used constantly, will be se%b
forth,

¥For the distribution of the shear stress in the immedi-

ate vieinity of the wall, dimensional considerations (ses
note 1 in the appendix) yield the expression:

y, ¥, Y,
7
T =3 T TR A %?‘ (1)

where the symbols are:
u velocity in the dirsction of flow
To shear stress at the wall

i absolute viscosity

u/p, kinematic viscosity

<
1}

B constant (note 2), (8.82)%*
v distance from wsgll
p mass density

In the same region, when the shear stress at the wall
is assumed 28 known, the velocity follows from the equation

(note 3): 4 1
Neo)
u = 5 5

There are two methods (note 4) of obtaining the distri-
bution of veloclity and shear stress for the entire region of
the fluid, XEither one starts from equation (2) and sets

1
u(y) = y'% (Ao + A,y + Azyz + . . .) (28)

*The value of the constant corresponds 0 the eguation
for the velocity distribution, which is used below, Compare
equation (8), '
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in which the constant Ay 4is determined from the reguire-
ment that egquation (2a) is transformed into equation (2) at
small values of ¥y, or the basic equation (1) for %the shear
stress transmitted between the individual layers can be ex-
tended and equationr (la) can bYe written

r- ) 6/
(T.-_-KIvY(y)]?g-% (1a)

in which Y must change t0o ¥y in the vicinity of the wall,
With this basic equation the velocity field for fturbulent
flow can be calculated as long as no separation from the
boundary walls takos place.

For the special case of flow in a right circular cyliz-
der it was shown by Von Kdrmédr that the sxzperimental results
on the velocity distridbution can be reproduced with suffi-
cient accuracy if the function Y (y) is made, (called the
influence function),

Y=L—:—Z—-
2y

where y = r - ¥.

Tor time and volune inﬁariant, the velocity distridbu-

tion is then?
a =%,

and finglly, the reletion of the maximum veloclity at the
axls of the tube upgyx to the average velocity v in the

cross section is

v o= %’umax (4)

2, TURBULENT THERHAL CONVECTIVITY

In the following, the transmission of heat by matter
only is considered, consequently limiting the study %to a
temperature region in which the amount of heat carried off
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by radiation is negligible in comparison with that carried
off by particles of matter. Furthermore, the velocity dis-
tribution shall be affected only by external conditions;
that 1is, the influence of the temperature field upon the ve-
locity field is disregarded, At relatively great velocities
of flow where the motion is turbulent, the resulting error
need not be taken into acecount as long as the differences in
density in the cross section, caused by temperature changes,
are not too great,

Corresponding to the ideas tasken from those on the con-
duction of heat in solid bodies, a distinction is likely to
be made in the case of hsat transfer in fluilds, in general
between the thermal conductivity, which describes the heat
transported by molecular movement, and the so-called thermal
convection - that is, transfer of heat by movements of the
mass. Tie order of magnitude of the carrier of heat is thus
used as the basis for distinction, A somewhat different
mode of consideration, which pushes into the foreground the
nature of the motion of the carrier of heat, seems, however,
to be more advantageous both for mathematical treatment amd
for comprehension of the process, Accordingly, by "thermal
conduction" in liquids is understood the transmission of heat
by the random moition of the molecules, as has been repre-
sented by the concepts of the kinetic theory of gases., It
then will be regarded as characteristic of the molecular
movement of heat that it is a pure function of temperature
at a fixed pressure and a fixed density of the fluid and
especially that it is not dependent upon the state of motion
of the fluid, Thermal convection, on the other hand,
shall signify the transfer of heat which results when the
motion 0f the particles is directed, In many textbooks of
physics free convection 1s considered as the origination of
a natural flow produced by differences of density under the
influence of the force of gravity. This concept, then, is
contained in the preceding definition,

In the case of laminar flow, all the heat transfer can
be accounted for by the foregoing concepits, For turbulsnt
flow, however, one manner of heat btransfer is still uanen-
tioned. As is known, steady-state turbulent flow is repre-
sented as having at esach point a certain average veloclty
vector upon which is superposed anothsr velocity vector,
varying in direction and magnitude, having an averags value
over a sufficient span of time equal %o zero., According to
Von Kédrmédn this kinematic pieture can be described more ex-
actly by the reprosentation that vortex filaments witn a
random motion float in the bulk of the fluid, which movos
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along with a fixed time-average velocity distribution., The
movenments of the vortex filaments, as well as those of the
molecules, obey laws of statistics, The fluctuating veloc-
ity vector (time average is zero) is then defined at a point .
of the fluid by the circulation and by the relative position
of all the vortex filaments,

This concept leads to introduction, apart from the usu-
al thermal conductivity, which appears as an expression for
the statisticsal law of molecular motion, of a conductivity
of turbulent motion which expresses the statistical influ-
ence of vortex motion upon the transfer of heat, It then
will depend primariiy upon the state of motion of the fluigd,
which is especially influcnced by the nature of the boundary
surfaces, '

The method of gecounting for this phenomenon by intro-
duction of an increased conductivity for turbalent motion is
known, Several authors have proposed different basic equa-
tions in which the increased conductivity is regarded as an
empirical function of the veloecity, Recognition of the true
circumstances was partially olarified by the considerations
of Reynolds and Prandtl, Both began with the idea that tur~
bulent friction and turbulent heat transfer are analogous
Processes, and that the same mechanisgm which in the first
case causes a '"momentum transport" leads to transfer of heat
in the second case, BReynolds (referonce 4) in an intuitive
manner, according to this consideration, went dircectly from
the friction factor to the unit thermal conductance in cir-
cular tubes and compared, as it were, the integral procssses.,
On the other hand, Prandtl (reference 7) sots uvp the exact
conditions under which a directly analogous conclusion is
rermissible; he shows that in certain cascs the temperature
fleld is an exact image of the velocity field, so that
knowledge of the motion permits direct conclusions about tho
thermal fiocld, Howoever, ho shows that this is clearly not
the casc for right oircular tubes, so that conclusions can
only be drawn as to the form of the relation betwcen tho
different parameters, since numerical results cannot be ob-
tained, Recent advances (sec, 1) in the mathematical repre-
sentation of turdbulent flow and the velocity distribution
corresponding to 1%t now make possible a mors exact expres-—
gion of the "elementary law' for turbulent heat exchasnze, so
that the following statements start out from Prandtl's re-~
sults in two directions, by first of all furnishing numeri=-
cal results and then allowing a mathematical consideration
of the different arvangements in whigch thero exists no spa-
tial constancy of the velocity and temperature fields, This
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magkes possible a detalled discussion of experimental results
t0 explain individual devigtions.

3, THE FUNDAMENTAL LAW OF TURBULENT HEAT EXCHANGE

First of all, the processes of thought applied to the
kinetic theory of gases, which lead to the differential law
of internal friction and heat transfer by random motion of
molecules, will be applied to the case of turbulent exchange,

Oonsider a layer at a distance y from the wall; there
the average velocity u prevails in the direction of flow
and let; |wi{ be the average absolute amount of the veloclty
perpendicular to direction of flow., Tiaen the average velo~

city of flow in two layers at a distance==§v from the layer

y under consideration (where x 1is 2 kind of "mean path®)

is:

The momentum transport per unit of surface perpendicu-
lar to the average flow is given, introducing a proportion-
ality factor B wkichk depends upon the nature of the cohsr-
ent parts of the fluid and the formation of the mean value
with respect to time, by the exzpression:

Bpw %‘jx:T (5)

ard is equal to ths shear stress T at ¥.
If C is the heat capacity of a unit volume, then, on

the other hand, the heat transport q per unit of surface,
likewise perpendicular to the averago flow, is given by

q = BCOw foka x (6)

This states that the same fluid particles which produce
the shear stress T by their transmission of momentum, also
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transmit the heat, The proportion of heat transmitted can
be caleulated by a kind of counting of these particles,

One guch Y"counting® is given, as 1s easily seen, by the
product pFwx (ecalled the coefficient of turbulence). The
coofficient of turbulencs, together with the constsnt O,
reprosents an expression for the statistical law of heat
trangfer in the caese of turdbulent flow just as does the con-
duectivity A in the cass of no flow,

The coefficient of furbulence can be calculated from
previously obtained knowledge of the state of flow,

From equations (1) and (1la)

T = pply) %?
from which (note 5)
3,
7T T :
Bvx = oly)' = o -5%7’- w’ 1% (7)

The basic equation (1) expresses the total effect of
the molecular conduction of momentum (internal friction) and
of the momentum transport by eddy convection. Correspond-
ingly, the basic equation itself, as well as the veloclty
distribution originating from 1%, is to be regarded only as
an expression which becomes asymptotic at very great
Reynolds numbers, where the effect of the molecular sondus-
tion of momentum is small in comparison with the second part
of the frlction mechanism - that is, eddy convection, How-
ever, 1t has been found that the proportionality bebtween T

"
and v ig a very good approximation even at values of the
Reynolds number which correspond to about five times the
eritical velocity., ZFrom this, it is concluded that the sta-
tistical laws for the molecular and eddy transport of momen-
tum can be represented to a good approximaition, even ab
moderate Roynolds numboers, by the general oxpression (1).

By referring %o equation (1) for calculation of Bwx,
1t is assumed that all the heat transfer can be expressed
also by a general statistical law which summarizes molecular
and eddy processes, It has been assumed, therefore, that
there exists In the molscular processes the sams proportion-
ality between momentum and energy transfoer as exists in the
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eddy processes; that is, it is assumed that the ratio be-
tween A gnd p is the same as that between' § and p.

The error committed is negligible for gases, as is
shown by the following consideration, On the one hand, the
portion of heat carrised over by pure turbulent convection 1is
several times that transferred by molecular condition, as is
shown by a comparison of unit thermal conductance for lami-

A
nar and turbulent flow; on the other hand, the ratio 6%

lies between 1.25 and 0.97 according tc the number of atons
in the gas; that is, the molecular mechanism of condition of
momentum (internal friction) and that of conduction of heat
are essentliglly similar. Hence, for gases and superheated
steam, practical and quantitatively correct results can be
expected from the calculation, The following derivations

are $0 be understood in this sense., The case where E&
differs greatly from unity will be referred to once again at
the conclusion of the work,

By consideration of equations (6) and (7), there is ob-
tained for the t0tal amount of heat o transferred through

o

a unit surface of a layer at a distance ¥

3
7 TN 1 6. 09
c_=—(—9-) v oo x? = (8)
3 \p oy
In practice, the limiting value of g¢q, for y = C -

that is, the amouant of heat going out of the wall per unit
of surface ~ will be calculated as follows: The veloclty u
is represented by:

N

iy -
u(y) =¥ 7 AO + Aly + A2y~ + . » vj

The shear stress T has a fixed limiting value for

¥y = 0, and is a regular function of y in the visinity of
¥y = 0. %herefore, T ocan be developed as a power seriss in
T

=4
T = Bwxp -@-‘l‘.: T° + le + Ty oL,

¥
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Inserting OR,
oy
: 2
1 Ty + Tay + Toy®o + o o .
Bux =_;ﬂ o1 3 3 _ yé@

8
;AO + ;A’ly + . e .

then developing this fractional expression according %o
powsers of y in the region y = O

7 70 ¥ f ' }
wa = = 7T 7 l + d,y + ¢ . -
p 2 ¥ T _

firnally, considering squation (6), yieldss:

0 |

T ' :
= © lim [b—ﬁ ys/"] - (9)
o y=o0 ay

o =

4, HEAT EXCHANGE IN TUBES

When there is steady-state flow through a tube, two
regions can be distinguished: -

I. Fully developed flow state - that is, one in which
the velocity-profile remsins similar along the direction of
flow

2, The hydrodynamic calming length at the entrance %o
the tudbe

Assume, for example, that the fluid flows into the tube
through a smcoth passage from a large reservoir; then at the
inlet cross section the streanmlines will have approximately
equal velocity. On progressing further, the layers near the
wall will be retarded by friction until the constant (with
length) velocity profile, which corresponds to the steady
state, has been developed, This part of the tube is often
called the entrance section.

In the following sections the temperature field and the
heat transfer in the tube are ocalculated for the case where
a temperature distridbution for the entrance section is given
beforehand and the wgll temperature is kept constant along
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the direction of flow. Separate solutlions are set up for
the twq regions mentioned, but by a continumous transition
from the first solution to the second, they can satisfy~tke
general function through summation of the partial solutions.

5, HEAT TRANSFER FOR THE CASE IN WEICE THE VELOCITY
DISTRIBUTION HAS BEEN ESTABLISHED AT THE

ENTRANCE TO THE THERMAL SECTIOW

In order %0 set up the differential equation for the
temperature field, an element of volume, bounded on %the
sides by two concentric cylindrical surfaces, parallel to
the walls of the tube, and bounded on the ends by the cross
sections perpendicular to them, is considered, In order %0
complete the representation it is assumed that a warm fluld
flows through a colder %ube; that is, the flow of heat shall
be from the fluid %o the wall, Furthermore, the constant
temperature of the tube is set oqual %o 0, so that the fluid
temporature is the excess temperaturc above that of the wall,.
However, since no assumption is made which distinguishes one
direction of heat flow from the other, all relations are
valid wvhen ¥ changes i%s sign,.

If .z = coordinate of the direction of flow
¥ = distance from the axis (note 8)
C = heat capacity per urnit of volume

then the heat balance for the steady state gives:

...a....{ a = 39 v 0
¥ \Zﬂyq} Cu &= any (% )

From equations (3) and (4), w 4is replaced by (note 7)

- tv ()

while gq follows from equation (8); then, also considering
(13:)3 (3), and (4:) ’
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q = 0,199

3 1 -\ 5
-V-/4U /4G (ra _ .‘_).r..g)°/7 38

3,
(21“ ) /BE_

If this equation (note 8) is introduced into equation
(10), there is finally obtained as the differential equation
for heat transfer when the conditions of flow are hydrody-
namically complete:

S [= (22 - 5N 38l -y_g Y
D Bl-m0-@F 8w
where
K 8 v1/4 (21.)3/28 (11a)
7 0,199 v

The boundary conditions are?
I, 4=0fory = r,

I, Q% = 0 for ¥ = 0, because of the universal symmetry.
oy
ITI, The radial temperature distribution must be given
for 2 = 0,

Since the fluid temperature approaches asymptotically

the temperature of the wall, as the tube-length incroases,
then the solution is of the form

¢ = g(7)e ¥2

If this expression is inserted into the equation, then
there is obtained for the funetion ¢ the ordinary differ-
ential equation

2

&, v,
ar_<r ~§2> dg} — AN
=<7 —=r = -kKye(¥y) {1 - (L
.d.yi 2r dy r f

vwhich, after elimination of the fractional exponents by the
transformation
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C-@)

becomes (note 9)

d 7y 48] _ ?
—J; {(1 - X ) d.X} = wx g glz)
where (note 10) g,
7
w = 49KEK (%) (12a)

The boundary conditions are now: _
I. g =0 for == O

11. 8 s finite for x = 1 E
dx

An approximate solution is obtained by means of dhe
Ritz method (note 11), when the problem is changed %o one in "
the Oalculus of Variations (note 12); that is, as can be :
verified ea811y (note 13):

U/n{(l - x°) (dé> - wx7ga\ = minimum -(lé)

with the boundary conditions I and Il as supplemsentary con-
ditions. Here the problem is one of finding the "character-
istic values," since squation (13) will have solutions which

also satisfy the boundary conditions, only for fixed values _
of w, Substituting for g N

g(x) = g1P(x) + goPsz(x) + gaPsl(x) + . . . (14)

4

in which g,, &z, 83 are undetermined coefficients and

P,, Pz, and so forth are the Legendre spherical functions
(note 14) of the first kind, and taking only three terms
first, results, for w gt the minimal conditions, in an
equation of the third degree the roots of which are

wy, = 8,712, wp = 164.36, wy = 1700.40 . (14a)

The characteristic functions are normalized, in con~-
trast to the customary procedurs, so that

s



NACA TM No, 1068 13

gy * g2 *+ gz =1 (15)

in order that the temperature at the axis of the tube will
become unity; g (y) is, therefore, the ratio of the tempera-
ture at the point under consideration to the temperature at
the axis of the tube, Thus the first characteristic func-
tlions are?

gr = 0,9703 P, + 0,0212 P + 0,0085 Pg
gry = -0.7812 P, + 0,9665 Py + 0,7647 Pg (16)
gryp = 2.6662 Py - 6,1589 Py + 4.5037 Ps

The choice of development according to spherical funec-
tions nust be Jjustifiled. Since i% is a minimal problem, the
exact characteristic values can only be less than the ap-
proximate values., The magnitudes of the charscteristic val-
ues which are obtained according to the choice of the basic
series equations for the function to be varied, form a sult-
able criterion for the validity of the approximation., Now,
it can be seen that, compared to a simple power equatlion in
X, as well as several Fourier developments, the basic equa-
tion in spherical functions leads to the least characteristic
values. As t0 their behavior on making further approxima-
tions, the first three approximations for the first charac-
teristic funcetions furnish successively, for example, the
values 8,75, 8,67, 8.,71L; consequently the convergence of the
procedure ought to be satisfactory,

In order to obtain egqually good results for the other
characteristic values, further approximations must naturally
be made; the third characteristic value, in particular, will
agree only in magnitude in the case of a three-member baslc
equation, As will be seen, however, this has only a slight
influsenee upon the results,

The particular merit of the spherical functions for the
problem in hand aleo can be demonstrated by the following
simple consideragtion, which can at the same time dispel
doubt caused hy the increase of the second coefficilents in
the second characteristic function, Considering figure 1,
it is sesn that the characteristic values themselves show
great simllarity to spherical funections. If a form, like
that represented by equation (16), is now set up according
to functions which are identical with the characteristic
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values, then the coefficient the index of which is equal %o
the ordinsl number of the characteristic value becomes equal
to unity, all others being equal to zero. The characteristic
value concerned is already represented exactly by one nember
‘of the development. If developed according to functions
which are not identical with the characteristic values, bub
which have, however, & certain eimilarity to them, then, in
the development tho coefficient having an index equal to the
ordinal number will be slightly greater. Olearly, such a
development will closely approximate, with relatively few
members, the function +to be represented.

If the values of w from (14a) are inserted into equa-
tions (1la) and (12a), then for the coefficients of the ex~
ponents .

Y 1y - 1y
L 4 1 4 1 4
ky = 0.1510 T (55) ! kg = 2,844 7 (.-V% i ks=290R7 (7,"5) (17)

The complete solution of the partial differential egqua-
tion (13) can be written as a development.according to char-
acteristic functions ' '

~ -l - -1
.9 = algIe klz + angIe Laz + asgIIIe ks (18)

where the coefficlents are to be determined so that the pre-
scribed temperature distridbution is fulfilled for 1z = O,

The calculation will be carried out first for the case of
wniform temperature distribubion at the initigl cross socc~
tion. Therefore a; . . o 85 first must be determined so
that % (y) must be as close to % = 1 as possible, BEvery
other temperature then follows with the aid of a multiplica-
tive constant, The least square error yields the values:

a; = 1.129, ap = =0,180, a, = 0,048

Thus the final equation of the temperature fisld for
turbulent flow in a hydrodynamically complete state in tubes
for the case where the uniform temperature %o prevails in

the initial cross section, is
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_ 3,
-o.151<$%> '% N
$=8,¢1.129 e ' [0,9544 x~ 0,0212 x®+ 0,0668 x°)

v %gy
"3'“"'(??1') T

~-0,180 e [-0.7472 x~4.275 x°+ 6,022 x°) y (19)

Y,

4
_39,42<v > z
+0,048 e va Et20.34 x~ 54,80 x> + 35,47 xsi>

o

in which the similar powers of =x are collected from the P
(Legendre spherical functions).

It is also recognized now that an error in the third
characteristic value and in the third characteristic func-
tion is of glight significance; even if the third exponent®
should be still somewhat smaller, the third characteristic
function dies out several centimeters from the beginning of
the thermal effect, the error having no influence upon the
remaining part of the tube, A fourth approximation always
can be calculatbed,

6., DISCUSSION OF RESULTS AND AGREZHENT WITH EXPERIMENT

By reference to figure 1, the temperature distridution
over the cross section (of the fluid stream) can be discussecd.
For 2z = 0, a sguare distribution was assumed; that isj the
fluid enters with a uniform temperature over the whole cross
section,

g
In the interval between O and 0,8 for 7 ‘the uni-

form temperature is represonted t0 a maximum error of 2%
(per 1000) by equation (19).

=T

For > betwsen 0.9 and 1 thers is a sharp temporature

decrease, since only three torms were considered, Similar
sltuations also exist in roality, since the layers near the
wall will undergo a change in temperature, due to radiation,
before making diroet contact with tho wall, On moving far-
ther along the tube, the temperature gradient at the wall
levels out more gnd more; the so-called final tempsrature
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distribution; which is represented by the first characteris-
tic function only, is reached when the second characteristic
function has died away. From then on, all temperature pro-
files remain similar since all temperatures decrease in the
z-direction sccording o the same exponeantial function; the
expresgion "final temperature distribution" is to be under-
stood in the above sense, As shown by egquation (16), the
first characteristic function and, consequently, the final
temperature distridbution, differ but little from the velo-
city distridution in the hydrodynamically complete state,

With the help of the known temperature field the point
now ls reached where all the questions about the heat trans-
fer can be answered., For example, to calculate the unit
thermal convective conductance a, the ratio is set up of
the amount of heat transferred per unit of wall surface for
the mixed~mean tenperature difference at the cross section;
thet is,

q
o = ——Q— (30)
m

According to equation (9), gq, is given by

0.176 v7¢ Cp*e ‘:aﬁ 6/7]
o 7

= lim
q‘o r‘?yas y=o ay

and the average temperature 'ﬁm is defined by the egquation:
r

§_ = 1 IF) onvay
m ﬂrz&/ (¥) 2nydy

Hence, the expression (note 15) for o is:

LY - I - -t
@=-0.0346 v0 (_2_>/4 1.078 ¢~%3%+ 0,184 o"¥2% + 0,980 o7Fs % |,
va 0,970 o™ %1% 4 0,024 e~¥2% 1+ 0,006 e~ ks %

The analogous result for laminar flow was calculated dy
Wusselt, (See reference 6, )

Figure 2, which is caleculated for the special value

1)
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y
%(;‘%) * = 0,037, shows the variation of the unit thermal

convective conductance with distance into the tube. A%t

z = 0, o is infinite, then, corresponding to the decresase
in the temperature difference at the wall; it decreasses,
though considerably faster than it does when the flow ig
laminar, finally approaching a minimum value: apipn., AL-

though this least vealue is independent of the wvelocity in
the case of laminar flow, for turbulent flow equation (21)
is changed into the form:

v\ Y
Cmin = 0,0384 +C (;E:) (Bla)

Equation (2la) is analogous t0 the equation developed
by Reynolds, Since, as mentlioned already, the eddy hsat
transfer in turbdbulent flow exceeds the molecular one by a
nultiple, it seems Justifiable that only those magnitudes
which are determingtive for the condition of flow and also
for the eddy %ransport of heat should appear in the formula
for the unit thermal convective conductance., These arc mag-
nitudes v, &, and v or G, The variaetion with tempera~
ture depends upon the values of the kinematic viscosisy V.

If the relation for gases %& =z 1 1is consgidered, it is ob-
served that equation (2la) likewise agrees in form with the
dimensionless formulas of Nusselt .and Prandtl. (Seo rofor-
ences 2 and 7, respectively.)

The existing experimental material is not sufficient,
unfortunately, for an exact test of these results, since
averags unit thermal convective conductances were always

measured and the "entrance sections" weré not chosen long
enough so0 that in the measuring length a hydrodynamically
complete state with a temperature profile which remalned
similar could have been attained with certainty. In most
cases the point at which the thermal effect began cannot
even be determined, Obviously this is en indication that
the experlmenters possibly did not have a clear concept of
the iafluence of the arrasngement upon the results of the
measurement,

Husselt, in a short series of experiments®, connected a

*Research work publiéhed in reference 7, table 6,
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piece of tubing 2 meters long in front of the actual experi-
mental sectlon, According to the calculations, which are
Giscussed in the next section, the state of flow was cer-
tainly complete. 3Besides, since this entrance sectlion and
the heated experimental tube hoth wers made of brass and
were Joined firmly to one another metallically, the added
length of tubing likewise was heated, at leest in the part
directly connecting with the experimental tube, The first
point of temperature measurement was, on the average, about
15 centimeters downstream from the beginning of the test
section, so that it can safely be assumed from the resulis
of egquation (21) that the unit thermal convective conductw
ance had reached its minimum vglue, Theseo experiments wers
checked, using the equation for apin. The results are pro-
sented in the following tadle {p, air pressure, Y, unlt
weight density of air):

Exper~{ - ' Differ-
iment ¥, ) Pm ; Ym v Unecg ! Fogle ence
num-~

ber ‘ : (percent)

95 39.0 {0,6133} 1,161} 1,273 1 4.24 ! 19,29 | 20,09 4,14

96 37.8 | ,62451 1.167( 1.285 i 5,75 1 24,95 | 25,36 1,64

97 | 3.2 ) .6368| 1.168] 1,255 | 8.29 | 32.751 32.57 { =5
98 '
9
100

31.5 | 64381 1,163 1,307 {13,06 | 46,8 | Ly, M4 | 1,3

35,6 | 1.0590 | 1. 16u! 1.291 : 21.06 | 65,3 | 67.51| 3.35

32,1 1. 1zool 1. 167[ 1,309 | 24,05 ! 73,0 | 75,25 | 3.0

l
i : !
¥

Experiment 95, at a Reynolds number of 6100 (about three to

four times the critical velocity), was near the limit of the
region of the validity of the above-developed theory. OCon-

sidering the limits of the accurascy of measurements of this

kind, the agreement seems t0 be absolutely satisfactory,

In the following sections, the heat transfer in the
calming length of a tube {that is, the heat transfer for the
hydrodypamically incomplete state) will be investigated,
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Ingsmuch as a solution for the velocity field in the calming
length of a tube has not been given previously, it must
first of all be determined,

7. THE VELOCITY FIELD IN THE UCALMING LENGTH!

In order to obtain an approximate sexpression for the
velocity field in the calming length of tubes under condi-
tions of turbulent flow (see refersnce 9, for the caso of
laminar flow), the momentum consideration introduced by
Von XKérmdn (reference 8, pp, 235 and 256) will be used,

Consider a longitudinal section through the beginning
of the tube, At 4, fluid from a large reservoir flows into
it with a uniform velocity distribution, The layers near
the wall will be retarded under the influence of the viscos~-
ity, and the thickness of the layer, in which the shear
stress ig transferred (shown by the shaded lines in tho fig~
ure) will increase until the two boundary layers meet, From
then on, with the insertion of a shorst transition region,
the velocity distribution over the cross section will remain
constant,

Hence, it is assumed that there is at the beginning of
the tube, a region in the interior of the flowing fluid
where viscosity can be neglected, For this reglon, the va=
11dity of the Buler esquation, formulated for frictlonless
flow, is assumed, '

If the steady state is assumed, a balance on an element
. of the boundary layer is considered, which has a ringe~shape
structure; =a b ¢ d in figure 3 represents a cross section
of this element,

Let
Q@ = the volume flowing through the cross section in the
boundary layer per second
J = the transport of momentum per second in the dirsotion
of flow through the cross-sectional surface
U = the velocity of free stream
u = velocity in the boundary layer

*L, Schiller, who most recently studied experimentally -

a theoretlical explanation also was published - the problem
of the entrsnce section, treats only thoe laminar caso.
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v = aversage velocity over the cross section

§ = thickness of the boundary layer

p = pressure
¥y = distance from the wall of the tube
T, = shear stress at the wall

coordinate in the direction of flow

N
[}

The equilibrium condition for the element of the bound~
_ary layer can then be written as follows (note 16):

1}

2
&J oU aQ . _ dp (2r8 - 8§ ) ™ = 2rnT, (22)
dz dz dz

In addition, the following condition appears: Because of
continulty, the same amount of fluid must pass through all
cross sections of the tube, If, therefore, the layers at
the wall are retarded, then the veloeclty of the undisturbed
Fluid (undisturbed always in the sense that no shear stress
is transmitted) must increase. Then, according to the equa-
tion of motion for ideal fluids, this inorease in veloclty
must be accompanied by a decrease in pressure, This fur-
nighes additional boundsary egquations:

‘ 2 2

QU+ Ul{r =~ 8) m=vr (23)
&2 4 oy oo (24)
dz dz

From equation (2a), v 1is set into the form:

SMCRSHOY

- and the coefficients o and P are determined from the re«
quirementsi

for vy =0

e
1l
o



NACA TM No, 1068 21

Then there results:

u_U< i fs —()} . (25a)

Results of T, from the condition at (25a) must change
to sguation (2) for small values of yi

. '7/4 7/ 1/4

4 v
T, = — U - 26
0 p(?B) | <6> (26)

Consider the relation, which follows from equation (23),
between the velocity of the free stream U and the' average
veloclity w:

U = - 165y (27)
482 - 22¢ + 165
in which i = t; then the steady-state condition yields an

ordinary differentlal equstion in £ , with variables sepa-
rated, There is obtained then (note (17):

64 ,3_100 206, 616Y .Y
5t T " - AR < ) 5
'0 [l{.ga - 20 g + 165 ] /4 (165) 4 \_TB 52 5/ Z o 28

Instead of determining the guadrature numerically, the fol-
lowing method of calculation 1s applied.

For small wvalues of £ , the higher powers of ¢ can
be neglected and there is obtained

E = F (zé/a)
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4
If 2’6 is set equal to %, then £ can be repre-

sented as a power series in %, Therefore:
Eo= At + Bto + Ct° + . . . . .
Write equation (28) in the form:

(1 + ot + BE® + vE3)E

(1 + pt + qéals/“'

4t = Kd z

and introduce the above expression; then the fractional
powers of ¢t drop out and, by developing in powers of ¢
and comparing the coefficients on left and right revealing
the history of the boundary layer at the beginning of the
tube, there is obtained:

5 1/5 4 /5 a/s 8/5 3/5 1 2/5
=== X EATE A z LY (Z )
£ =2 =11 <vd.> <d> 0.0u8 (vd> (d) + 0.168 (vd> <d> (29)

The series 1g ended at the third term.

In figure 4 (note 18) £ is presented as a funetion of

LCIEY,
X = Z% z °; ¢ =1 for ¥ = 0,686; thus the length of the

tube up to the section where the boundary layer fills the
tube is (note 19):

. y
* 4
- vad
z, = 0,625 d(—;—) (20)

With equation (29) the field of the average velocities
in the entrance section ig determined and all questions, for
whiech knowledge of its variation is sufficient, can be an-
swered. Thus, for example, one obtaing the resistance of
the tube between two cross sections at 2z, and =z, of the
initial length; that is, the intogral
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Za

W= - Zrnt/f’To(z)dz

Z3

by calculéting the difference of momentum transport through
the cross sections %2, and 2z and caleculating the pres-

sure difference times the cross~sectional area and then add-
ing the two results.

8, HEAT TRANSFER IN THE ENTRANCE SECTION

For the calculation of the temperature field a similar
consideration is employed by setting up a heat balance for
one element of the boundary layer. 4gain, let a warm fluid
flow into a tube with constant wall temperature 99, = 0O,

The only simplifying assumption made is that at a place
where shear stress is not transmitted, heat transfer will
not occur, In so doing the small awmount of heat which is
continually carried away at the inner 1limit of the boundary
layer by molecular condition is neglected. However, at that
Place the temperature gradient is so small, since the calcu-~
lation is carried out for velocitiss in oxcess of the criti-
cal, that the error committed can bso taken directly into
consideration, Therofore it is assumod that in tho resgion
where tho undisturbod fluid flows with .veloecity U, the
temperature always should be equal to the entrance tempera-

ture ¥,« The heat balance for the element considersd is
then?
8
2/ wos 2w (r = y) &y = C9, &R Brmq, (z1)
a2z dz

o]

Inasmuch as it already has been seen for hydrodynam-
1cally complete flow that in the case 0f turbulence the tem-
Perature distribution is very similar t0 the velocilty dis-
tribution, ¥ is given ase:

(D)t ®) s
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Corresponding to the above assumptions, the boundary
conditions are: '

9 =0 for y =0

which permit reduction of the three coefficients «, B, VY
to a single one, Thus is obtained

3 = & (x)gg 8 Llx\svy (1aZV) (32v)
c® {3-39+v (-9

The first term i1s identical with the equation for the
veloclity distribution and the second can be interpreted as a
kind of correction term to the equation of the velocity dis-
tribution, This can be easily understood in a physical
sense, At y = 0, temperature and velocity curves begin
with the same power of y. At y = §, ©Dboth have horizontal
tangents., The curves must therefore have a similar charac-~
tor in the intermediate rsgion,

For q, 1t is found that:
1,340 v 2y 72 0o, {?/7 + v}
(32a)

1/ a

q =
3% Y
[4t® - 22¢ + 165] * & *a

Equation (31) will now furnish, since the variation of
the boundary-layer thickness & i1s known, an ordinsry lin-
sar differentlial equation of the first order for determina~
tion of Y, This differential equation can be brought into
the form:

&Y 4 Alz)Y = B(2)
dz

The functions A and B are very unwisldy, however,
80 that the general integral of this first order differen-
tial equationi '
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-fadz -SAdz Jadz
¥ = EKe + @ , Be dz

would require a very troublesome numerical calculation., A
graphical method is chosen, for it is still poseible to ob-
tain far greater accuracy than corresponds to the physical
assumptions of the problem, If &§/r = ¢ is introduced as a
new independent wvariable, the squation is essentially sim-
plified, the fractional powers of ¢ drop out, and after
some calculation there is obtained:;

-0,1855 £3 + 1,477 t2 - 2.658 ¢

N =
0.1623 £° - 0.701 £° - 23,05 £ + 45,4

4 3 a2
-0, 9 + . 390 - .10 + . b%
26 g 2.290 ¢ 16,10 ¢ 37,59 ¢t i (33)

3 2
0.1623 ¢ - 0,701 ¢ - 23,05 & + 45,4

in which Y! = &Y

at

In this form equation (23) is directly suitable for
calculation of the directional field of the differential
equation which is given in figure 5a. The point ¢ = O,

Y = 0 is the point of origin; all solution curves come fronm
plus or minus © up to a unique curve which leads t0 the
point 0,0, Since Y must likewise be finite tor £ = 0,
then for the initial condition there is obtained

Y =0 for & =0

Thisg is likewise readily understandable from a physical
viewpnoint, As long as 8« r, the immediate beginning of
the tube can differ, either in hydrodynamical or thermal re-
gspect, from the behavior of a plate in & free stream, It
wlll be ssen later that the velocity and temperature fields
are the same in the case of the plate, Accordingly, at the
beginning of the tube (z = 0), the temperature distridution
will coinclde with the veloclty distrivution,



¢

NACA TM Xo, 1068 : 26

If equation (33) ie solved in terms of Y! and the
limiting value toward which Y! +tends is considered, for
£ = 0, then there is found:

-

All 1lsoclines begin at the point 0.0; the isocline Zor
Y! = 0,032 with the slope assigned to it, rune into this

point; however, it is rather weakly concave toward the ab-
scissa, Tho isoclines of greater slope lie entirely sbove
1%; those with a lesser slope lie below it, From this be-
havior it follows that the solution curve sought must lie
for 1ts entire length in the narrow strip between the iso-
cline Y' = -0,032 and its tangent at the zoro point, The
line ¥ = ~0,032 £ will, theroforo, roprescnt a first ap-
proximation with a maximum orror of 12% porcont,

In order to obtain a second approximation, Y g set
equal to =0,032 £ + h{€) and this expression is introduced
into equation (33), which then changes into a differential
equation for h, -the femily of isoclines of which is shown
in figure 5b. In order %0 incrcasec the accuracy, a thousand~
fold scale of ordinates is chosen.

The solution naturally begins with h = 0 for £ = 0,

If e 1is set equal to 1000 h, then this magnitude, as
is easily proved by plotting on a logarithmic scale, is
given by the formula e = 1,48 £1:-F85 g0 thagt the following
expression for ¥ is finally obtained:

Y = -0,032 £ + 0,00148 {1866 (34)

This function is given in figure 5a by the deocp, solid
line, '

In this manner the temperaturc ficld for the region of
the simultaneous hydrodynamic and thermal calming length is
obtained. Then for 4§ may be written:

3= 60@’-) {%-l u—-(l-.’L [0.00148 E1+®%5_ 0,032 £]}  (35)

7 8 5 S

The values of & and ¢ are taken fronm equation (29)
and figure 4, respectively. For £ = 1, &4 Ybecomes

Vo ¢ 2
8 = b8, (& 1.112 - 0,0819 L - 0,0305 (L (35a)
by r r
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that is, the final temperature digtribution for thse hydrody-
namical steady state is not attained (fig. 6), which was,
perhaps, %0 be expected

In order %o get further agreement, svery solutlon of
the differential equation for the temperature field beyond
the hydrodynamic calming section, which also satigfies the
initial condition (equation (35a)), is determined, To this
end the functlion represented by equation (35a) must be de=
veloped according to the characteristic functions, (Ses
equation (16).) Since the temperature distribution of egua-
tion (35a) does not differ very much from the first charac-
teristic function (equation (16)), the development is carried
out with only two members,

The development naturally cannot represent the funotion
(35a) quite exactly, becaguse at one time the velocity dis~
tribution was established with the "influence factor," the
other time with a power seriscs development, However, in
order t0 obtain the best possible transition from the one
solution $0 the other, it can be arranged that the two tem=-
perature curves agree completely in important vroporties,

The heat transfer is limited by the processes at the
wall; accordingly, it will be stipulated that: (1) both
curves begin with the same term of the development at the
wall of the tube, and (2) the flow of energy through the
whole cross section be equal.

This furnishes two equations of condition for determin-
ing the two coefficlients of the development, Hence there ls
obtained for the temperature field in the hydrodynamically
complete reglon

o éo {%.016 e

~ 0,051 o F2F% [- 0.747%2 x - 4,275 x% + 6,022 x5]}- (z6)

ka2 {0.9544 x -~ 0,0212 x% + 0,0668 x5%]

Knowledge of the temperature field first shall be used
for calculation of the unit thermal convective conductance.
The calming length first will be considered.

Bquation (36) already has given an expression for P
The averags tempe§ature of the cross sectlon is then:

' r
4p = ;%; J/n62ﬂ(r -y) dy + 15'f0g/12'ﬂ(1' - y) 4y
(o]
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The expression for «, (o, = a 1in the hydrodynamical
calming region) is then: :

3
o, = 1,340 vC (#%)

1,143 - 0,032¢ + 0.0014gEt+ 888
(37a)

S
(ugz-22§+165f&‘{}79.133§+o.oau§2+(o.001usgL865 -o.o32€)(o.5eo§~o.1u3u§2)}

The continuation in the second reglon ! (ay = o in
the hydrodynamical steady-~state region) is:
b \% 0,969 5 2% 4 0,038 o 2%
a, = 0,03461 v0 (-;> . e 22— (37D)
vd, 0,873 6 1% + 0,0068 & 2"

The variation of the unit thermal convective conduct~
ance with location in the calming length of the tube is
shown in figure 7a (note 20). Write equation (37a) in the
form

@, = KvC g%)”a “(kcal/nr m® °C)

then the factor ¥, which is a pure function of E, is
plotted as ordinate, with ¢ as abscissa, PFigure 74 (note
21), in combination with figure 4, from which the particular
values of £ can be taken, covers all possible cases. In
figure 7B, with 2 as the abscissa scale, the variation of
& for a certain case 1s shown in conparison with the same
case for the completely developed hydrodynamic flow, It is
seen that the decrease of a +takes place less quickly in
the first case.

9, SUMMARY AND COMPARISON WITH OBSERVATIONS

Now comes the point where the heat transfer in a tube
can be surveyed in all particulars. The results will be
summarized briefly:
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With respect to heat transfer, the following cases in
which the heat transfer obeys different laws are %0 be dis-
tinguished according to the structure of the velocity and
temperature fields,

1., Fully developed hydrodynamic and thermal fields,-
This condition is atitained when the fluid has passed through
a congiderable portion of the tube length., The unit thermal

%onvictive conductance 1s constant and is given by equation
2la).

2. Fully developed hydrodynamic flow field, temperature

uniform at entrance.~ Realized by s connected entrance sec-

tion which is maintained at the originsgl fluid temperature

by suitable heating, The unit thermal convective conduct-~
ance is dependent upon the location in the tube, falls very
quickly from lts maximum value, and asympitotically approaches
a constant minimum value, (See equation (21),

3. Unilform velocity and temperature distributions

across the section at entrance.~ The unit thermal convective
conductance is likewise dependent upon the location in the
tube, but falls to a minimum value more slowly. The point
unit thermal conveotive conductance is given by equations
(372 and 37b). -

4, The application of heat begins at a sectlion somewhors
in the middlo of the calming length.- For this last case a

good approximation for the unit thermal convective conduct-
ance o 1s obtained by drawing the curves which represent
the variatlon of a with the laocation in the tube for cases
2 and 3, in the same system of coordinates but with the zero
point of the abscissa scale for a, (a fully developed hy-
drodynamic flow) displaced by the distance 1 Dbetween the
beginning of heating and the inlet section. Since the curve
for a5 has a much steeper slope, it will cut the curve for

oy; the envelope (note 22) represents (%o a first approxima-
tion) the o distribution for this special case,

The great differences in the results of the individual
experimental works are now understandable., Whereas Nusselt
ascribed this, at the conclusion of his work on heat trans-
fer in® laminar flow, exclusively to the conditions mentioned
under point 2, now the possibility of a series of factors
which influence the process by interchangeable combinations
may be seen,
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The two most careful investigations known, those of
Fusselt and Jordan (references 6 and 10, respectively), usocd
a right-anzle gas approach to the moasuring section, A%t the
beginning of this section the flow was not completely devel-
oped, Obviously case 4 1s to be considered here, No fur-
ther experimental data, however, have appeared to date, The
beginning of the thermal mction, as well as the exact posi-
tion of tho first tomporature-measuring station, cannot bo
ascertained accurastely.*. An exact evaluation of the exper~
imental results on the basis of the above-mentioned theory
is not possible for these exporiments. Novortholess, a
series o0f experiments by Nusselt were investigated to deter-
mine the magnitude of the measured unit thormal conductances
with rospect $0 the minimum o. The results arc compiled in
table 2, Gonsidering the dimensions of Nusselt's apparatus,
it is seen that these figures are affected by them, which is
t0 be oxpected according to the above-mentioned derivations,

TABLE 2
P.v:::per- f j j ) ) T):’Lffer-
%ﬁ;ft ! l Pm Y Ym v Umeas |[Mmin ence
ber (percent)

7 0.5906 | 1.153 | 43.7 | 1.245] 8.52 | 35.7 33.43 6.1
10 5983 | 1.152 | 35.3 | 1.278| 18.33 | 65.5 60.4 g1
13 5880 [ 1.171 | 3.6 | 1.315| 27.2 | 91.7 | 8&2.6 11,0
19 .7870 | 2.050| 69.0 | 2.050| 8&.9%| 57.3 | 50.9 12.5
2y 6022 | 1.883! 30.4 2.12é 29.94% | 146.6 | 127.2 15.3
30 61781 3.96 | 31.9| L.45 | 10.87 | 124.8 | 103.8 20.0
k] 5888 { 6.97 | 29.2 | T.91 9.27 1 162.9 | 1l41.6 15.1

Bl .5863| 9.98 | 26.0! 11.41 | 10.04{ 233.0 | 198.0 17.7

If experiment 10, for example, were evaluated with the
assumption that case 3 is 4o be considered hero, which comos
closc %o tho oxporimontal conditions in any casc, then a

*These results are based on a letter sent to Latzko by
Prof. Nusselt, ' _
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value of o is obtaired, which is 10,2 percent above Cpine

In reality the hydrodynamical condition of uniform distridbu-
tlon of velocity at the firet tomperature-measuring statlion
was not complotely fulfilled, so that the value of o nmust
fall somewhat lower; tho moasured valuoc is 8.4 percont above

“mine

According to equation (29), the length of the calming
section ig proportional to WAp; accordingly the ratio of
the calming length %0 the total length of the measuring sta-
tion must increase with increasing velocity, and density and
therofore the values of « also must increase somewhat.
Experiments 7, 10, and 13, in which the velocity is varied,
the other parameters being maintained reasonably constant,
show this clearly, as do experiuments 7, 19, 41, and 54, in
which the values of p arc changed up 0 a ratio of 1:10,

10, PRACTICAL COMPUTATION OF THE AMOUNT

OF HEAT TRANSFERRED

Finally the question of the practical computation of
the amount of heat transferred in tubes must be discussed,
Becaunse of the fact that two different solutions for the
temperature field have been obtained, dopeonding upon whethor
or not the hydrodynamic field is fully developed, it is nec~
essary also, in the computation of the amount of heat trans=~
ferred in a certain cection of the tubs, t0 determine in
which region the flow takes place. However, several gener-
al remarks, whiech hold for both regions, must be presented
first.

The amount of heat transferred hetween two cross sec-
tions at an interval 1 = z, - zz can always be found in
two ways.

1, The calculation is referred to the volume of fluid
Passing through the cross section per unit time., Since the
voloelty and temperature dietributions are known, then tho
flow of heat which passes through the cross-sectional area
rer unit of time can be obtained by integration., The amount
0f heat transferred at a strip of wall of length ! between
Zy and 2y thus is given by the difference of two integrals:

Q= c/u(ytzl)’s(Y:zl)df ~ Cf“(&'a'za)ﬁ(Ysza)@f <38)
T f
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where d4df 1ie an element of areas in the cross section the
form of which depends upon the choice of y.

2. Only the processes at the wall are considered. For
this purpose the equations for gq, have been set up. With

the foresgoing notation, the amount of heat transferred is
then:
Z2

Q = Zrﬂu/nqo(z)dz (39)

24

the term 9%, in qo 1is replaced by the difference at the

cross section z; Tbetween the wgll temporature and the
tenperature at the axis of the tube.

The expressions for 4, are, however, rather unwieldy,

so that equation (38) is usually preferable. As an example,
equation {38) will be applied to the most important cases.

la. For the case where a uniform temperature distribu-
tion and a uniform velocity distribution prevail in the ini-
tial cross section, the heat transfer in the entire entrance
section 4ig:

. .
Q = 0,116 r°mv03d, ‘ (40)

The value is constant since the temperature and velocity
distributions coincide at the initiel and the final cross
sections., The special cases differ in the length of the
tube section from the inlet oponing to the fully doveloped
hydrodynamic state,

lb., Oonsidering a section of the tube from the inlet %o
a cross sectlon at a distance L and letting 1 be the
length of the entrance section, then, (using equation (36)),
the total heat transferred in the length I 1is:

- ka1
Q = r°uvCd rl - 0.886 e kaby 0,0037 e ke 1}- {40a)

° L
whore 1l =L - 1,

2. In the fully developed hydrodynamic state the amount
of heat transferred from the beginning of the heating (z=0)
¥0o a cross section 2z at a distance 1 from it, comes to?
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Q='nr2v060 {}-—0.985 e-klz-0.0lS e_k21-0.0022 e-ksz} (41)

11, ESTIMATION OF THEE INTERNAL HEATING

OF THE FLUID BY FRICTION

In the previous derivations the generation of heat in
the interior of fluids by friction was entirely disregarded,
An exact consideration of this is not possible as long as
the pulsating velocities are not known individually, knowl-
sdge of the distribution of the (time) average velocity be-
ing especially insufficient for this, since thé pulsation
veloclities contain the dissipation function in quadrature
terms, However, an attempt will be made to determine, by an
approximate consideration, in which velocity region the
above~mentioned neglect of this term is allowable., In doing
this, only processes in the fully developed hydrodynamic and
thermal states are considered; that is, the unit thermal con-
ductance must be independent of the location in the %ubo,

It is assumed, for example, that a cold fluid flows
through a heated tube, an element of volume bounded by the
tuve and btwo cross sections at a distance dz is considered.
Let ¢, be the constant wall temperature; let 8(z) bse the

average temperature of the cross section at the position 3;
and let the difference between wall and average temperature
in the initial cross gsection be designated by 66. Then the

heat balance on the element reads:
r°mv0ds = ald, - §)2rmiz + T{v 2rmiz (42)

where T is the thermal equivalent of work and { is the
ratio of the frictional resisbtance to the square of the ve-
locity, Equation (42) +then is written in the form:

as
@y Be s . 3o <§W+T-$-v">
dw rvC rvC o

The term T & v® has dimensions of temperature;

T 2 v® will be called the friction temperature and will be

 Jure

designated by  dz.
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With consideration of the initial conditions at 2z = 0,
the soclution of the differential equation (42) is:

_ Rd 7
rv0

v, = (éw + ‘33) - e (3, + éR] (43)

KEence, the temperature of the fluid is proportional to
the wall temperature increased by the friction temperature.

If thils relation is plotted in a system of coordinates
with ¥ as ordinate and =z as abscissa, then there is ob-
tained the clear results of figure 8, which are drawn for
the cass of gir flowing with

v = 200 n/sec r = 0,025 m p =1 atn

C = 0.282 kcal/m® v = 0,175 cm®/sec

The fluld temperature asymptotiecally approaches a limit
which is equal to the wall temperature plus the friction
temperature. Since the amount of heat transferred 1is pro-
portional to the areas (which are crosshatched in fig. 8)
betweon the straight line 9, = constant and the curve of

the temperature of the fluid, it is seen that there exists
such a relation between the length of the tube section and
the velocity o0f the siream that, for a given length, theore
exists a coertain voelocity and, for a given velocity, there
exists a certain length of tube for which the maximum heat
is transferred,

The factor 5- is then:

and, <$therefore, if the slight variation of the heat capac-
ity with temperature is disregarded, it is a function of ve-
locity alone, For ¢ = 0,238 kilocglorie per kilogram °C,
39 for air has becn calculated for soveral velocitios and
compiled in the following table:

v = 10 25 50 100 150 200 m/sec

0,102° 0,634° 2.54° 10.,15° 22.80° 40.8° ¢

I

¥z
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It can be seen that neglecting 95 1is directly permis-
sible in most practicecsl cases, )

The heat carried away 1s obtained by substitution of
(43) into the equation: -

aQ = alrmdz (8 -:ﬁz)

and integration between =, = O and 1z = 1 to

: _ 2al 1 a
Q = d,r°nvC \1 - & TVC) - E'ﬁRranvG (?Qi) (44)
v
in which higher powers of 2l are neglected.
. rvC

12, EEAT TRANSFER ON A FLAT PLATE

As a second geometric configuration for which the heat
transfer will be calculated, the flat plate parallel to the
direction of flow is chosen. The plate shall be so thin
that the influence of the forward edgs car be neglected.
Prandtl, in the previously mentioned work, has already shown
that for the case of an infinite thin plate, which 1s moved
parallel to itself through a fluid, the velocity field and
temperature field agree, if tho heat from the internal fric-
tion 1s aeglected, .

If wu denotes the velocity vector and p denotes the
pressure, then, for the time change of the momentum vector
of an incompressible fluid referred to a unit of volume, the
result 1s, neglecting gravity sffects (note 23):

2 d&p + pA
Pgg =~ grad p an
(45)
D -3 4 - S+ S
at 9t Yz 3x Ty oy Yz 3z

On the other hand, the Kirchhoff differential equation for
the temperature fleld is:
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22.: _h.Aa (486)
dt cpP

For the plate, p 1is a constant, in case it is infi-
nitely thin; or, in case the plate thickness is finite, the
average value of p over g certain region is still a con-
stant; grad p 1is, therefore, egqual to 0 and it may be ssen
that the two equations (45) and (46) agree in form., When

gt = 1, a solution of (45) also will be a solution of (486),

If use igs made of this condition when the solution for
the veloclty field, as given in the previous work by
Von Kirmén, is accepted, thero results:

Y, Y
R ' _ Y
w=TU (g) , & = 0,366 (U;> z (47)

and correspondingly:
v
ér- 7
coo )

The condition for thermal equilibrium in an element of
the boundary laver is:

8 )
AV v, Y,
/D e (D FOK
= [ U (L) o, (L) ay - 68y = [ U (L) ay + = 0
az%/n <6 °\s/) & ° 4z, 5 ¥ 7
(o]

Introducing equation (47), solve for g, and obtain:
_ . o\ (
1, = 0.0285 8, OU (=~ 48)

The total amount of heat leaving a plate strip of wunit
width is then (note 24):

1
. v 1/5 ( g
Q = ['qqdz = 0.0856 CUS, 1 (5%> | 49)

o]

(1 = length in the direction of flow).
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13, TRANSMISSION IN LIQUIDS

In the preceding section it has been seen that the laws
for the heat transfer in a turbulent fluid stream, derived
for the two most important basic geomectric forms, lead, in
the casc of flowing gascs (and suporhesated steams, to re-
sults which also agree well guantitatively with experiments,
Here the statistical basis of the kinetic theory of gases
can be used to arrive at a uniform concept of the molceular
proccssos as woll as the ocddy procossos in friction, on tho
one hand, and in heat transfer on the other hand,

Naturélly, one cannot transfer the foregoing simple
congsiderations direetly to liquids, where the effect of the
molecular forces of cohesion may no longer be neglected,
Whoroas the hoat and momontum convection through the cddy
system also represent here processes which are similar in
character, this is no longer true of the molecular conduc-
tion of heat and momentum, which finds its expression in

o
that the ratio %L is very different from 1, TFor water,
W .
the magnitude of this ratio, which is quite dependent upon
temperature, is about 0,1,

The mutual law for the moleocular and eddy phenomena of
internal frietion, which is represented by the coefficient
of turbulence, will be applicable to the propagation of hoat
only in that region in which eddy processes dominate, How-
ever, this is the case for the entire mass of fluid up to a
very thin layer* at the wall, Accordingly, the differential
equations derived in the foregoing will maintain thelr va-
1idity everywhere except in this thin layer,

To attaln a suitable description of the heat transfer
in fluids, it will be necessary to seck a transition from

*Closer investigation shows that this layer is much
smaller than the boundary layer itself, which was defined as
the regior in which shear stresses are transmitted. TFor the
right circular tube, the thickness of this layor in the hy-
drodynamically perfect state is given by the expression

§ = B5.51 ﬂ%g where d is the diameter and R 1is the
R

Reynolds number,
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the statistical law for the interior of the mass of fluid
(coefficient of turbulence) to the molecular law in the very
neighborhood of the wall {thermal conduectivity). Mathemati-
cally,. this %ransition can be made by a medification of the
boundary conditions, This extonsion of the theory shortly
will be discussocd morec closely., Still, it is to be noted
that ovon the provious experimontal results of rescarch,
which relate exclusively to heat transfer in water, show re-
sults deviating so muech from one another that only with 4if-
ficulty can a picture of the process be made clear t0 some
degree,

At considerable expenditure, Soennecken (1911) under-~
took experiments on the heat transfer of water in tubes.
These oxporiments arc frequontly cited in modern litoraturc
as authoritative, His results are summariged in two formu-
las for the unit thermsl conductance a:

1, Smooth surfaces:

0.9
@ = 2020 “zrr (1 + 0,014 T;) —keal
. 4 hr m

2., Rough surfaces:

V°'7

kcal
@ = 735 To7S (L + 0,014 17,) =

200

hr o
wherse

v water velocity, meters per second

& tube diameter, nmeters

Ti internal tube-wall temperature, degrees centigrads

By "smooth surface! is understood & seamless drawn-brass
tube; whereas the experiments with "rough surfaces" wers
performed with iron tubes. These formulas directly contra-
dict the fundamental ideas on tho nature of the heat transfer
Prosented herc. It is out of the guestion that the unit
thermal conductasnce can be smaller in the case of rough sur-
faces than it 1s for smooth surfaces, Because of the in-
creased eddy formation, the eddy transporit is increased and
consequently the unit thermal conductance is increased. The
smaller values which wore moasured in the case of the iron
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tubes are most probably ascribable to an incorrect determina-
tion of the actual wall temperature due to the presence of
layers of boiler scale and rust,

Extensive experiments on condensers were performed by
Josse in Charlottendurg, Josse measured the over-all unit
thermal conductance k of condensing steam to water, which
is defined by the formula (reference 11):

k =
1o+
Gy

Oa|>a [

2
Gz
where
%y ,%2 unit thermal conductances of the flulds
A thermal conductivity of the partition
] thickness of the partition

Since Josse substitutes for A and & the known values and
uses the figures of Nichol (about 4500 kecal/hr m?® °G), which
represent in magnitude a mean between the figures of
Soennecken for smooth and for rough surfaces, for the heat
transfer in the water, he obtains unusually high wvalues for
the heat transfer from condensing steam t0 metals, Accord-—
Ing to these experiments the unit thermal conductance for
econdensing steam would be about seven times as large as that
for flowing water,

These results are llkewise not understandable. Accord-
ing to Nusselt (reference 12), the process of condensation
on a cold perpendicular wall produces on the cold side of
the surface 2 £film of water in which occurs all tHe drop
from stocam to wall temperaturc. The Ffilm of water clings to
the wall, the remaining layers flow downward under the of-
fect of gravity. Since the thicknesgs of the film of water
is very small in any case - fractions of a millimeter accord-
ing 0 Nusselt's calculation ~ the flow obviously must be
laminar, It is impossible t0 understand why the unit thermal
conductance from water to the metallic wall should be seven
timos groeater on tho one side of the wall (whereo tho state
of flow is laminar) than on the othoer side (whoro there is
turbulent flow).
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The experimental results of Josse accordingly ought to
have some cther explanation so that k, the over-all unit
thermal conductance, ls represented by two terms, approxi-

mately oqual in magnitudo, -+~ and -- where a; and o
0y aa

are average values,

It seems quite probable that, for this reason, the unit
thermal conductance for water has higher valuss than were
frequently assumed previously. An extensive experimental
investigation of the heat transfer to fluids seems 10 be
urgently needed in order to bo able to test the accuracy of
tho thoorotical calculations, Tho difficultios which are
encountered due to formation of rust and scale when water is
used, suggest the use of other fluids, such as oil, for ex-
ample,

Translation by L. M. K, Boelter,
G, Young, and A, G. Guiberst.
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EXPLANATORY NOTES BY THE TRANSLATORS

NOTE 1

The equation,
ot Yo Vo, (Y.
T L (1) TR T ) T ,

can be obtained in the following manner, Fostulate that the
1/7-power equation for the velocity distribution holds near
the wall and that the ghear stress at, and in the vicinity.
of, the wall is & function of y, the distance from the wall,

and of %?w tho velocity gradient at that point, Then,

I—:F "..B_E
P <y oy

divide by bthe particular velocity gradient, which gives

T
P30y 2u
e (0 B
oy

From the 1/7-power squation (see notse 3),

GHOK
u =3B{— -
p v

there is obtaineod:

4 1 -5
HCNONON
oy 7 \p v v

%, Y, -%,
CGHONO
P/ v

or

éﬂg’Tﬂﬁ
~2{td| o]
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In the vicinity near the wall, let

) du 0 du
—_— = F.. —
’ (y'_a:»'> :'“’°< ’BV>

therefore
X To
P P
él [B To>4/7 1 V,? _6/7 g
vz (z) (5) v
7\ P v

¥ 74 Yy, %,
T = % To 7 o 4 " 7 v 7 %§

Latzko dropped the subscript (y—=o0) and stipulated that the
equation is valid only in the vicinity of the wall,

NOTE 2

Sydney Goldstein (Modern Developments in Fluid Dynamics,
Clarendon Press (Oxford), 1938, pp. 339-340) recommends a

value of B3 = 8,%7.

NOTE 3

For fluid flow near the wall in smooth pipes the velo-
is determined by the following variadles: T, the

shear stress at the wglly y, the distance from the wall;

the dengity of the fluid, and v,
By dimensional analysis there is obtained

city u

P
ity of the fluid.
T T
o -9
w 5 ¥ ) o ¥y
- - v

/1o
P

A comparison of this equation with the Blasius resistance

the lkinematic viscos-—
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formula {empirical) for flow in smooth pipes {see Goldstein,
Modern Development in Fluid Dynamics, pp. 339-340) allows
the determination of the magnitude of the exponent n and
X; so there results the 1/7-power equation for velocity
distribution,

1/7

T K \
J
(p v/

As an attempt to correlate the hydrodynamic principles
presented by latzko with the more rccent knowledge of veloc-
ity and shear distributions, the Prandtl mixing longth was
calculated from equation (75 and compared with those dorived
from Prandtl's and Kdrmdn's logarithmic formulas for voloc-
ity distribution and also with that obtained from Nikuradse'ls
data.™®™ Although there are some inconsistencies in ILatzko's
equation (inconsistencies also appear in Prandtll's and
Kédrmén's equations), the variation of the mixing length does
have the same trend as that calculated from Nikursdsels ex-
Perimental data and differs from it only by a constant ratio

s (1 (¥ikxuradse) _ o
of approximately 1,25 ( T (Latzko) 1.256 ) The method of

calculation and the results are shown in table A~1 and fig~
ure A-1l,

The most important inconsistency appears in the deter-
mination of the velocity distribution near the wall., Recent
developments indicate that the velocity is a linear function

-
(F = 5% y> of the distance from the wall in the laminar
sublayer, Latzko's expression for the velocity distridbution,

however, approaches the 1/7-power equation near the wall and
would yield an infinite instead of a finite velocity gradi-

ent at the wall (,%?- = ¥>. Latzko may be justified in
y=o0

using such an expression by the faet that his expression for

*Sec Bakhmetev, Boris A,: The Méchanics of Turbulent
Flow, Princeton Univ, Press, 1941, p. 73.
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Y du | ;
shear stress is T = K (y) 3y which could yield a finite

value for T,, however, because the product of zero and in-~
finity 1s indeterminate.

NOTE 5

The term PBwx, called here the coefficient of turbum
lence, is identical with the modern term "eddy diffusivity,
€ 1in

NOTE 6

From this point on, Latzko uses y for the distance
from the pipe axig. Up to this point, however, he used ¥
as the distance from the wall and ¥ for the distance from
the axis, To avoid confusion, this translation continues %o
use ¥y for the distance from the wall and ¥ for the dis-
tance from tho axis only., The equations that follow have
been altered (from the original) to conform with these orig-
inal definitions,

NOTE 7

The original article gave the equaetion,
e Y,
- @)
r
2 Y
-}
vl -\
\ N

NOTZ 8

fu]
L]
(0o} M)

It should be

e
i
~1jo

The derivation of
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% Y, - ¥
-0199”4"40(1‘8'37779:1
1 ) (2r)%s 2r dy

from eaquations (8), (2), (3), and (4).

Equation (8):

T 7
Z (——°— oy Ty 28
1= 5 \5p y
Bquation (2):,
4/? 1/7
To ¥
M€
Bquation (3):
2 Y
¥y
U = VUpax [1 - ;) ]
Bquation (4):
7
v = 5 Ymax

From equation (2) there is obtained
%
a

>'@ e
< < )1/ 4 B 3/&<_y;>3/2 8
v

But by equations (3) ana (4),

2 Y,
£-0)
AN °\ e
SNORICY

H

\‘IICD

u

or

therefore
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ORI SIGIR
@

Substituting into equation (8),

%
() “ (@) |
= Yroy¥r 28
4 3/4 <>/28 ' v | dy

B 2B
1 8 5
, WEC
. 3 4 3 - 7
=(7K8) v3/4v1/4c<r _."y> 88 z
Bzﬁ 2r oy ¥
and since
a
1 - (Z
r r® « r® + 2py - y® = 2/ - X
¥ rzy 2r 217
thus
Ya . % Y
28 74 4 2 - 7,
(7 x 8 ) a 2% %y r -3 7 8 1 y \2°
qQ = 7 %
B4 (2r) 7as 2r oy 2r
. e
and taking (1 - §%> = 1, which is approximately true in
the vicinity of the wall (y small), yields
% Y %,
g = Ql88 v v 0 (fz - y?) Y
(Zr) /a5 or dy
NOoTE 9

Transformation of eonation (11) %o equation (12).
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Equation (11):

6/, g-
2 ly P - A k¥ J1 - (Z) 1/7 33
o7 2T Y r 3z

where -
L7 /2 e
8 v 4 (2r)
K = - Ya
7T %X 0,199 v
Let
3 =g (F) e F2
then
oy dy
and
éi = - ke-kzg(?‘)
8z

Substituting in equation (11) yields
q('7

.é_(_ rz_s;. 22 . o 5_?21/7
a;iy ( 5n a) S—;}= ~ Ex7e(¥F) {1 -(;)}
. v
y 2
To simplify, let -{1 - <;> } = x

F2= (1 - x") 2®

or

then

Aydy = - ra 7 z°&x

2 7 x%ax

, 3y

By substituting, there is obtained

ay =

a f ? .Bg r\ 77 ” ”
ix L(l -x") g; = = 49kK <?> x‘g = - wx'g

48
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(2)

NOTE 10

The original article gave

e
7.
w = 4gkX <§> ’

a/'I
w = 49kK <§>

NOTE 11

ould read

Some references t0o the Ritz method of solution of
differentiasl equations. -

Ritz, Walter: Uber eine neue Methode zur Ldsung
gewisser Variationsprobleme der mathematischen
Physik., ¢, f., reire u, angew. Math., vol, 135,
1308, pp», 1-61,

Uver eine neus Methode zur Llsung gewligser Rand-
wertaufgaben., GBttinger Nachrichten, 1908, pp.
256"'24:8 .

Both in "Oeuvres de Walther Ritz,” Paris, Gauthier-
Villars, 1911.

Timoshenko, S.: Vibration Problems in Enginesring,
D, Van N¢strard Co,, New York, 1928, p. 259,

The manipulations involved in the Ritz method as ap-
plied to thieg problem,

1, Insert the Legendre spherical functions of the
first kind into egquation (14). Then,
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=3 —E +.._...15 + _E -._._‘: X + — 2.X
g(x) <€1 ‘—2 g2 8 ga) x. (2 82 8 g> 3 683 53

2. Now differentiate equation (14) with respect to x

50 obtain 98

3 15 5 70 5.63
€ = <g1 - =gz + ?r'€;> + 3\=— 82 - =4 g;> x8 + 8 gzx*

[« %

dx

3, Substitute into equation (13), the value of g and

%§ obtained in steps (1) and (2) and integrate.
x
Then,
15 +2 2. (15)
-x') -wxg ax: X& -3g182H—= g18x+= &2 ——gag >
/{ (;b) J e 10 Ty Ty @2°°

+ % % g g182 -115-8 51%'5 _gag:s 780b183+§}€0- gzgs'——sﬁ—g >

7 w63 ,1553 3W 25, 2_350
f<‘ ixg—g g'*—zrg 383+ )( *——gzgsh?mfg )

30 wY5.63 63.70 7 25 WXG3>2
*\ix"g 2pPeags- g &5 T TBAE.

L, Then differentiate the equation obtained in step (3) with
- respect to gy, g2y and g, ylelding the three equabtions
8 . aJ 3J
for —' and -——, where

g1 agz
{(l z) <a ) w:t?ga}

and set them equal to zero.

55 =05 (75-0.2 Wy + (0.875-0, 1167 Wga+ (1,22 0.04 wies
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a3 :

a_g‘.‘.; 0= (0.875= 0.1167 w) g1+ (6.54~0.092 w) go+ (3.43-0.06 w) g,
dJ '

Se=0= (0.22- 0,042 ) g,+ (2.41=0.05 w) gz+ (11.145~0.053 w) g,
5. Set 99 _ 2d = 9J = 0; by setting the determi-

Bgl - dg2 Bgs

nants of the threc equations %o zero, a third
degreec slgebraic equation involving W is ob~

tained:

109,83 - 18.3 w + 0,088 w° - 0,000027 w° = 0
6. Solve this third-degree equation in w, %0 obtain

the three characteristic values, wy = 8.712,

wg = 164.36, and wz = 1700,40 as given by

Latzko, ) '

7. Substitute these characteristic values into the
: thres equations in step (4) to obtain three sets
of gy, 83, and gzi and insert these into
equation ?14) o obkain equation (16) and thus
equation (18),
8, The values of a,, 8z, and & in equation (18)

are obtained by the method of least squares,
thus ylelding equation (19).

¥OTE 12
Reforences to Calculus of Varliation:
Woods, Frederick S.: Advanced Calculus, Ginn & Co.,
1926,
Bliss, Gilbert A.: Calculus of Variations, 1225,

NOTE 13

The function
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a

£ (xygy8') = (1 ~ x7) dx - wx'g®

satisfies Buler's differential equation, which is the neces-
sary though not sufficient condition for a minimum,

bg-dx< >“°

for
%g = - 2wx7g

and

of 7 (bg)

og! ( =) dx

£ (38~ = {e -0 ()

dg!? dx dx

therefore

of _ & i) = -2ux' g - 2 & {(l -x7) (QE->}
dg dx \dg! dx dx

and since
4. {(1 - x7) 9;5_} = ~wx'g (12)
dx dx :

thus

3f _ 4 .EE{) = 0
d¢g 0x \og!

NOTE 14

References to Legendre's Polynomials,

1, Jahnke, E.,, and Emde, F,! TFunktionentafeln mit formeln
und kurven, Dover Publications, 1943,

2, Woods, ¥, S§,: Advanced Calculus., Ginn & Co,, 1925,
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NOTE 15

¥. ten Bosch in "Die Wirmellbertragung" (Julius Springer
(Berlin), 1936) rearranged squation (21) to yield:

~a 7_z
0,25 g
,oiggazg {} + 0,1 oR® b0 o\
Re J
which when more terms are added becomes
' —2e 7 _'_2,: 39,87 _2.’- ~31.96 _Z_
0.0384 +C 0e254 0.25 4 0.25 d
o = -E;;sj;;g' 1+ 0.1 eRe ’ + 0.9 eRe - 0.023 eRe

which i1s a more convenient form of equation (21), Notice,
however, that these sguations do pot yield an infinite unit
thermal conductance at the entrance where 2z = 0, which is
in contradiction to latzko's statement in the Daragraph fol-
lowing eguation (21).

NOTE 16

The momentum egquation of the boundary layer can be
writuen

aJ aQ _ _ ap 2 '
= U To (2r§ -8 )} = T, (22)

Referring to figure 3, 1t can be determined that:

)
= (g%}j/‘quZH (r - y) iY) dz
S

the flux of momentum across EE that exceeds that across
ab

i _ 2 .2 1274 _ 2303
az 7 "o P [U {207 545 E}

165v (8¢ -~ 22) 274 2303 0Q
- = = U {— ¢ - ¢ }J -~ = pU — dz
(4f « 22f+ 188) 207 690 dz
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the inward flux of momentum across bva

- pU %% =+ 2pUnr2[U (€~ 1)

-2 (2r5 - 5°) au
dz dz

165v (8t~ 22)(1~ 28+ Ea)]ﬂ
(at® - 22¢ + 165)°

difference in pressure between ab and cd

% (ong - §%) - . 2mrRoU(26- £%V165v (af - 11) & _L__Zr"T iz
dz (48® ~ 22t + 165)3 dz

retarding force at the wall

i/ 7 1/4
. 8N\ % (v
- BI‘TTTO = - JI'MP ;—g U -E—
r

where 5

Q = d/‘an (r = y) uady

[¢]

By substituting these values into equation (22), there is
obtained equation (28),

HOTE 17

Though the original article gave 2z 1in equation (28),
1t is obviously 2z, after considering the linits of the

integration,

P=1

NOTE 18

The original article indicates that fthe curve in figure
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4 is o greph of equation (29). However, on replotting the
expression, a discrepancy was found. It appears (see fig.
A-II) that the curve given by Latzko in figure 4 is in er-
ror, -

XOTE 19

From figure A-II, it is seen that for E =1, ¥x = 0,686

Y Y,
z.\ /5
X = (l <_9.) = 0,686
vd a

or a vd s .
z, = (C.688) d 7£>‘
v
‘ = 0,625 4 %%) *

Latzko derived from figure 4, that

1/4
z, = 0,693 d 15)
v

NOTE 20

This plot is givon in the original article under fig-
ure 7A with ordinate migsrepresented as K.

¥OTE 21

A plot of K against E, vhich was to have bsen given
by figure 7A, i1s missing in the original article. It is
presented here in figure A-ITI,
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NOTE 22

An exemple of case 4.

for case 2

!
t
|
!
!
!

Q
i

e

- oy T a for case 3

for case 4

I
|
I
R

56

z/d
NOTE 23
The original article gave the eguation,

Du
ds

g - grad p + pAun

I+ should be
| Du

- 4 + wAu
P at graa p W
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NOTE 24

This equation is derived for a fluid the Prandtl number
of which is unitdy, OColburn* gives an expression for heat
transfer at plane surfaces which is valid for Pr other
than unity,

Colburn's equation is
o/,

” 1/5
1) U (.‘3.)
cU k U

which is practically the same as Latzko's equation for Pr
= 1

__Q_ 1/

91 & v S

—Ee m —— = O, 0356 { =~
18] cU U

*Colburn, Allan P,: A Method of Correlating Forced
Convection Heat Transfer Data and a Comparison with Fluid
Friction, Trans. Am Inst. Chem. Eng., vel, XXIX, 1933, p,
199, equation (22).



MABLE A-1
Velocity
distri~ Latzlco 1/7tb-power lew Logarithmie
bution
KL
L l
: ()" (%) ()()
du 8, ( 6\%’ v 7 Y—Q' 3.( ‘> Yy l;.flﬁ
dy 7 \p/ 7 Ky~ p
TO/p -To/p ¥y 2 2 ¥ du_
c — e 1 - = K y 1 -
du/dy du/dy r T
ITN\Y ¥ &, AL To\Y ¥,
€ 0.794 Ty (1-—L 0794(—9->7 "(-y— KY(I—?/
\p. x /v P
B . - 1 Y4 4
1 = (0. 794) °\ 7 2" 2/(1- ) (0 794) 2(To ) B/(yq') ( ) %y? {1 - --)
du r
dy
. ___1/ 6/ . _1’.1
T 14 g T 14
: 0'?94(_0) vy 7( "1_> 7 (0.794) ("9' o7y s - /’1 -
: 2 NP T
~ 714 Y % -4y, &
1 J.%( L o792 (To) 7T L X 1/
Xr Br Kr \p v T
*xk A &/ . W
L OBSBL— A 0,638 L~ /1 - ¥ /
Er ‘)r T r
" = ( - L)
ar 5
**For Re ~ 60,000, v = 0,175 x 10 ° ££°  x = 0,4,
see
¥***50e fig. A~l for plot of — agalnst E.

*OR L VOVH

890 T
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Fig. 1

Figure 14.,- The three

character-
istic functions a, b,
¢ plotted against x as
abscissa.

Figure 1B.~ The same

plotted
ageinst y as abscissa,
d = initial distribu-
tion for z = 0.
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Figure 1A.
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Figure 2.~ Variation of heat transfer coefficient along pipe length for
hyiroiynamically fully leveloped state (¢ = 0.304 Cal/m3, v =
18.3 m/sec, v= 0.175 cmn®/sec, 1 = 2.2 cm).
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Figs. 6,7

Figure 6.~ End temperature distribution for hydrodynamically developed
state (e) and distribution at the end cross-section of the

entrance run (h).
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Re = 60,000
—-— ¥ikuradae
1.25 Iatzko
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Flgure A-I.- Mixing length derived from different formulaec.
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