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3.3 Summary

In this chapter, we take the first steps toward developing a problem-solving
method for two types of flow problems: microscopic and macroscopic. We now
summarize our progress.

The continuum model is a way of viewing fluids using a set of continuous
functions to keep track of fluid behavior, ignoring molecular details. The contin-
uous functions of fluid mechanics include the density field, the velocity field, and
the molecular-stress field, which is discussed in Chapter 4. Calculus is the mathe-
matics of continuous functions and we use it extensively to make our calculations
of fluid motion and fluid forces.

Fluid motion is governed by mass, momentum, and energy balances. We choose
to use balances on control volumes instead of on individual bodies. The control-
volume method is more convenient to use in fluid mechanics because fluids are
not individual rigid bodies like those with which we deal in introductory physics
and mechanics courses. The control-volume method is well suited for use with
the continuum picture, as shown in the final two examples in this chapter. We
continue study of these two problems in Chapters 4 and 5 and consider more
problems of this type in Chapters 7-10.

The appropriate momentum balance to use with a control volume is given by
the Reynolds transport theorem:

Reynolds transport theorem dP / / " -
(momentum balance on CV) dt 63 Cs(n ‘v ppdS = ozni el

Ccv

Recall that 7 is the outwardly pointing normal to the CV enclosing surface CS;
thus, the integral in Equation 3.188 is net outflow of momentum from the CV.

To apply the Reynolds transport theorem to a problem, we must be able to
identify the forces that are acting on the CV, including molecular forces. In this
chapter, we discuss one force—gravity—that acts on a CV. Chapter 4 introduces
molecular stress, the source of a second significant force that acts on a CV. In
Chapter 5, we discuss the link between molecular stress and fluid motion. When
these topics have been covered, we can complete our flow calculations on the
inclined plane and the 90-degree bend, and we will be ready to tackle a wide
variety of problems in fluid mechanics.

3.4 Problems

. What is a control volume? Why does the field of fluid mechanics introduce
this concept?

. What is a fluid particle? How big is a fluid particle?

. How is the concept of a continuum different from your understanding of
matter from chemistry studies? _

. What is meant by the term velocity field? What other “fields” are there in
fluid mechanics and physics?
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Table 3.2. Data of y(t) for Problem 11

(s y(m/s)

36 39
40 12.1
A 227

48 33.0
Sy 419

56 497

6.0 ; 55.6

6.4 61.0

6.8 65.5

74 71.0

8.2 76.7

92 82.0

104 86.2

12.0 90.2

134 92.7
154 94.6

74 95.9

19.4 97.1
214 98.0
228 98.4

24.4 98.5
260 98.7

276 99.0

20.4 100.0
31.2 100.2
336 100.7

. What are the principal forces that cause flow?
. What is Newton’s second law ) / = ma when written on a control volume

V with bounding surfaces CS?

. We derived the Reynolds transport theorem for the momentum balance. What
is it for the mass balance?

. Why are we unable to use the momentum balance 3" f = ma (i.e., Newton’s
second law) directly in fluid-flow calculations? N

. What is the difference between the rate of change of momentum terms fi—(;",—y

and % in Newton’s second law (Equation 3.52) and the Reynolds transport
theorem (Equation 3.135)?

. In Equation 3.126 in the development of the convective term of the momen-
tum balance, an indeterminate vector product (v v) appears. How did that
expression come to include a dyadic product? What is the meaning of the
tensor pv v?

. For the data given in Table 3.2 (i.e., arbitrary time-dependent quantity y),
find a function y(t) that fits the data well. What is your estimate of y (7.0)?

. For the experimental data given in Table 3.3 (i.e., viscosity of aqueous
sugar solutions as a function of concentration), find a function u(c) that
fits the data well. What is your estimate of u (28.2 wt%) and (50.0
wt%)?
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Table 3.3. Experimental data of viscosity
as a function of concentration .(c) of
aqueous sugar solutions for Problem 12

¢ (wt% sugar) © (ep)

10 0.62
10 0.87
10 0.88
10 0.89
20 1.0
20 1.2
20 1.2
20 1.2
20 1.2
20 1:3
30 2.0
30 21
30 2.1
30 2.3
30 3.0
40 3.8
40 43
40 43
40 44
40 4.6
45 5.2
45 5.3
45 5.3
50 8.4
50 9.3
50 9.5
50 9.7
50 14
60 28
60 30
60 30
60 32
65 63
65 64
65 65
65 69

13. For the experimental data given in Table 3.4 (i.e., pumping head as a function
of volumetric flow rate [102]), find a function Hpump(Q) that fits the data
well. How much head does the pump develop at 2.2 gpm?

14. A uniform flow v = Ué; of an incompressible fluid of density p passes
through a volume that is in the shape of a half sphere of radius R. The
outwardly pointing unit normal of the flat surface of the half sphere is 7 =
—é;. What is the mass flow rate through the hemispherical surface of this
volume? Show that you can obtain the correct answer by integrating the
formal expression for Q (Equation 3.87).

. What is the flow of momentum through the hemispherical surface described
in Problem 14?
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Table 3.4. Experimental data of
pumping head as a function of
volumetric flow rate Hyym,(Q) for a
laboratory pump [102] (Problem 13)

. A uniform flow v = Ué, of an incompressible fluid of density p passes
through a volume that is in the shape of a block (i.e., rectangular paral-
lelepiped). The sides of the block are lengths @ < b < ¢. The unit normal to
the cb surface is 7t = (&, — ¢é,)/ /2. What is the mass flow rate through the
cb surface? What is the momentum flow rate through the cb surface?

. For the volume described in Problem 16, what are the unit normals to the
other two surfaces?

. For the volume described in Problem 16, what is the mass flow rate through
the ac surface? What is the momentum flow rate through the ac surface?

- For the function f(x) given here, what is the average value ( f) of the function
between x = 0 and x = 2?

fGx)=2x*+3

. For the velocity-profile function v,(x) given here (equation uses Cartesian
coordinates xyz, v = vyé,), what is the average value (vy) of the function
between x = 0 and x = 2? The units of velocity are m/s and the units of x
are m.

6

. The y-component of a velocity field in flow through a slit (equation uses
Cartesian coordinates) is given here. What is the average value of the veloc-
ity? 2H is the gap between the plates. At what location is the velocity a
maximum? The units of velocity and 4 are m/s and the units of x and H
are m.

2
vy(x) = 3 <f) o §is

0
v=| vy(x)
0

xyz

(x — HY
HZ

v,(x) =4 (1 -
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Figure 3.37 Pressure-driven flow (i.e., Poiseuille flow) through a slit with a superimposed drag flow due to the motion of the
top plate (Problem 24).

22. The z-component of a velocity field in flow through a tube (given in cylin-
drical coordinates) is shown here. What is the average value of the velocity?
R is the radius of the tube. The units of velocity and A are m/s and the units
of r and R are m.

. For the velocity-profile function v,(r) given here, what is the average value
(v;) of the function between » = 5 and » = 10? The function is written in
cylindrical coordinates. The units of velocity are m/s and the units of 7 are m.

v,(r) = 81n <§>

. The x-component of a velocity field is given here (expressed in Cartesian
coordinates). This velocity profile results from pressure-driven flow through
a slit with the top wall moving at velocity ¥ (Figure 3.37). What is the
average value of the velocity? 2H is the gap between the plates, a pressure
gradient AP/L is imposed, and the fluid viscosity is u. At what location is
the velocity a maximum?

vx(y))
v= 0
0 5

yz
H“(AP) »? 4 3 )
x = | —= ] =5 2= i | s
Kk ( 2ul )( 72 +2< 0
. What is the wetted surface area of water flowing in a tube? Show that you can ,f
obtain the answer by performing an integration in cylindrical coordinates.

- What is the wetted surface area of a sphere dropping in a fluid? Show that
you can obtain the answer by integrating an appropriate quantity. :
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Figure 3.38
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Flow coordinate system for Problem 31.

2

28.

What is the wetted surface area of an open, semicircular channel (i.e., half
pipe) of length L and pipe radius R, in which the fluid height in the center is
h. Show that you can obtain the answer by integrating an appropriate quantity.
For a pipe that is only 80 percent full (i.e., occupied volume = 80 percent of
the total pipe volume), what is the wetted surface area? The pipe is of length
L and radius R.

. For the two vectors given here, what is |w|? What is |v|? What is (w - v)?

What is the angle between the two vectors?

1 1
w = 1 v= |6

V2 3

123 123

. For the two vectors given here, what is [w|? What is |v|? What is (w - v)?

What is the angle between the two vectors? Note that the two vectors are not
written relative to the same coordinate system.

1 1
w= |1 v=|[6

réz'r=1,0=n,6=0 3 123

. For the Cartesian coordinate system shown in Figure 3.38, what is a unit

vector in the direction of gravity? What is the component of gravity in the
flow direction?

. For the cylindrical coordinate system shown in Figure 3.39 for the axial flow

in a wire-coating operation, what is a unit vector in the direction of gravity?
What is the component of gravity in the flow direction?

. For the horizontal flow around a sphere in a wind tunnel, the top view of

the geometry is shown in Figure 3.40. Relative to the spherical coordinate
system shown, what is a unit vector in the direction of gravity? What is the
component of gravity in the flow direction?

. For a particular problem, the control volume is chosen to be a rectangular

parallelepiped of dimensions length L, width 7, and height H. What is the
total surface area of the control volume? What is the volume of the control
volume? Choose a coordinate system and write formal surface integrals over
the surfaces and verify your answer for total surface area. Write a formal
volume integral and verify your answer for volume.
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entrance:

> I£
section:
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m Axial annular flow that occurs in wire coating (Problem 32).

35. For a particular problem, the control volume is chosen to be a right-circular
cylinder of radius R and height . What is the total surface area of the control
volume? What is the volume of the control volume? Choose a coordinate
system and write formal surface integrals over the surfaces and verify your
answer for total surface area. Write a formal volume integral and verify your
answer for volume.

. For a particular problem, the control volume is chosen to be a cone of height
H and widest radius R. What is the total surface area of the control volume?
What is the volume of the control volume? Choose a coordinate system and
write formal surface integrals over the surfaces and verify your answer for
total surface area. Write a formal volume integral and verify your answer for
volume.

. Fora particular flow problem, the control volume is chosen to be a rectangular
parallelepiped with dimensions of length L, width W, and height H. The
Cartesian coordinate system chosen is located at one corner of the control
volume (0 <x<L,0<y<W,0<z< H). For each enclosing control

Xx-y plane:

X

y - into page (x, y, z coordinates)

¢ - counterclockwise from x-axis
in the xy plane
(r, 6, ¢ coordinates)

Figure 3.40 Flow around a sphere in a wind tunnel (Problem 33).
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When fluid flows in a U-shaped tube, the momentum changes direction and forces are required to restrain the tube
(Problems 41 and 44).

surface of this control volume, what are the outwardly pointing unit normal
vectors 71 for each control surface? For a uniform flow v="U,(é +¢))
through the control volume, what is the mass flow rate through each control
surface? The fluid has constant density p and Uy is constant.

38. For a particular flow problem, the control volume is chosen to be a vertical-
right circular cylinder of radius R and height . Choose a cylindrical coor-
dinate system for flow down the cylindrical axis of this control volume. For
each enclosing control surface of the control volume, write the unit vectors
that are normal to each control surface. For a uniform flow v = U. e, through
the control volume (U is constant), what is the flow rate through each control
surface? The fluid has variable density p. For a flow v = (U }) é, through
the control volume, what is the mass flow rate through each control surface?

39. For a particular flow problem, the control volume is chosen to be a truncated
cone of height H, bottom widest radius R;, and top smaller radius R,. The
cone is truncated a distance / from the tip and the cone angle is 6 = a, where
¢ is the coordinate variable for a spherical coordinate system with origin at
the core tip. For each enclosing control surface, write the unit vectors that
are normal to each control surface. For a uniform flow v = —Ue, down the
axis of the control volume, what is the mass flow rate through each control
surface? The fluid has constant density p and the flow first passes through
the bottom of the control volume.

40. An incompressible fluid (i.e., density is constant) enters a rectangular duct
flowing at a steady flow rate of O gpm. The width of the duct is ¥, the height
of the duct is /, and the length of the duct is L. What is the average velocity
of fluid entering the duct in terms of these variables? What is the average
velocity of fluid exiting the duct?

41. An incompressible fluid (i.e., density is constant) enters a U-shaped conduit
flowing at a steady flow rate of Q gpm (Figure 3.41). The conduit has a
circular cross section all along its length and the radius of the conduit is R.
What is the average velocity of fluid entering the conduit in terms of these
variables? What is the average velocity of fluid exiting the conduit?

42. An incompressible fluid enters a converging bend flowing at a steady flow
rate of O gpm (Figure 3.42). The bend makes a 20-degree turn and has a
circular cross section all along its length. At the inlet to the bend, the radius
of the conduit is R;; at the exit, the radius is a smaller value, R,. What is
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circle with
radiusR,
Np
circle with
radius R,

Schematic of a converging fitting (Problems 42 and 47).

the average velocity of fluid entering the conduit in terms of these variables?
What is the average velocity of fluid exiting the conduit?

. An incompressible fluid enters a horizontal, diverging conduit flowing at a
steady flow rate of O gpm. The conduit has a circular cross section all along
its length. At the inlet, the radius of the conduit is R;; at the exit, the radius is
a larger value, R,. What is the average velocity of fluid entering the conduit
in terms of these variables? What is the average velocity of fluid exiting the
conduit?

- In this chapter, we introduced the Reynolds transport theorem:

Reynolds transport theorem o dE x
(momentum balance on CV) %: L= dt o / /S(n ‘Y puds

The convective term is the integral in the Reynolds transport theorem, and
this term accounts for the net loss of momentum from the control volume
through its bounding surfaces. Consider two cases of flow with an average
inlet velocity of (v): (a) steady flow through a straight tube of radius R, and
(b) steady flow through a U-shaped tube of radius R (see Figure 3.41). For
Case (a), the convective term is zero; for Case (b), the convective term is not
zero. Perform each calculation and explain the results.

. In Equation 3.181 for the problem of flow in a right-angle bend, the con-
vective term of the macroscopic momentum balance is not equal to zero,
even though an equal magnitude of momentum enters and exits the control
volume. Explain why this is so.

- Evaluate the convective term of the Reynolds transport theorem for the 162-
degree bend-reducing fitting shown in Figure 3.43. The flow is into the wider
Cross section.

- Evaluate the convective term of the Reynolds transport theorem for the
20-degree bend-reducing fitting shown in Figure 3.42.

. Setup the problem of steady flow of a Newtonian fluid down an inclined plane
using a Cartesian coordinate system in which gravity is in the (—2z)-direction.

. Set up the problem of steady flow of a Newtonian fluid through a right-
angle bend using a cylindrical coordinate system with the z-direction as
the inlet flow direction. What is the velocity vector like at the exit for this
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m Schematic of a reducing fitting (Problem 46).

chosen coordinate system? What is the gravity vector? Comment on your
observations.
. The definition of a derivative is given in Chapter 1 (see Equation 1.138):

df _ o [fE+an - fe)

dx - Ax—0 Ax

What is the derivative (df/dx) of f(x) = x? Formally verify your answer
by plugging in f(x) and f(x + Ax) into the definition and carrying out the

limit.




