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6.4 Problems

. Compare and contrast the solution to the flow down an incline plane pursued

in Chapters 3-5 with the solution in Example 6.2.

. What is the difference between solving for pressure with the mechanical

energy balance and solving for pressure with the Navier-Stokes equation?

. In the derivation of the continuity equation, we omit details of some vec-

tor/tensor manipulations. Using matrix notation in a Cartesian coordinate
system or using Einstein notation, show that Equation 6.41 may be simpli-
fied to give Equation 6.43.

. In the derivation of the Cauchy momentum equation, we omit details of some

vector/tensor manipulations. Using matrix notation in a Cartesian coordinate
system or using Einstein notation, show that Equation 6.62 may be simplified
to give Equation 6.63.

. In the derivation of the Navier-Stokes equation, we omit details of some

vector/tensor manipulations. Using matrix notation in a Cartesian coordinate

system or using Einstein notation, show that Equation 6.68 may be simplified :

to give Equation 6.70.

. In the calculation of the total flow rate down an inclined plane, integrate

Equation 5.193 to obtain the final result.

. Show that the results for creeping flow around a sphere (see Equation 5.101

satisfy the continuity equation for incompressible fluids.

. For each of the four coordinate systems shown in Figure 6.13, what is th

vector that expresses the acceleration due to gravity?

. In Figure 6.13, the following equality is given:

Uz

Explain how both of these ways to express v are correct. Note that v, # vs,

Uz # Us.

. Show with matrix operations on Cartesian coordinates that V - p/ = Vp.

Use Table B.2 in Appendix B to obtain the Cartesian coordinates of
Gibbs expression.

. Using matrices and the definition of the gradient of a vector (Appendix

show that the following two expressions are equivalent:

V-(pr)=v-Vp+p(V- )

. Using matrices and the definition of the gradient of a vector (Appendix

show that the following two expressions are equivalent:

)
(a’;y) +V-(pyy)=pa—y

dp
=0 .V V-
8t+yat+p(y v) + 1V - (pv)

- Using matrices and the definition of the gradient of a vector (Appendix B}

show that the following two expressions are equivalent (viscosity is constant

Ve (1 (Ve+ (VD)) = uViu+ uv(V - v)

i
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14. Using matrices and the definition of the gradient of a vector (Appendix B),
show that the following two expressions are equivalent:

a—%@+v-(2pé) =p%+£[%§+v-(py)}+p(y-VE)

. Using matrices and the definition of the gradient of a vector (Appendix B),
show for a Newtonian fluid that £ T . Yy is always positive. This term appears
in the derivation of the microscopic energy balance [108].

. Compare and contrast the form of the momentum balance in the Navier-
Stokes equation and the form of the momentum balance given by Newton’s
second law of motion, > f = ma.

_ What is the difference between the equation of motion with the extra-stress
tensor f included (i.e., the Cauchy momentum equation, Equation 6.65)
and the equation of motion with viscosity u present (i.e., the Navier-Stokes
equation, Equation 6.71)? Can both equations be used for Newtonian fluids?

. In the solution method for microscopic-momentum-balance problems out-
lined in Section 6.2, how would the solution steps change if the fluid under
consideration were non-Newtonian rather than Newtonian?

_ A fluid flows down an inclined plane. The magnitude of the total force on the

plane is 100N. If a fluid of the same density but 10 times higher viscosity
flows down the incline, what is the magnitude of the total force on the plane?
Explain your answer.

. If the velocity vector v in m/s and pressure in Pa for water flow in a pipe
(radius 0.010 m, length 2.00 m) are given by the following expressions, what
is the vector F that indicates the magnitude and direction of the force on the
walls of the pipe?

p[Pa] = —240z

v[m/s] =

where r and z are expressed in m.

. If the velocity vector v in m/s for flow through a pipe of radius 0.012 m is
given by the following expression, what is the volumetric flow rate Q of fluid
through the pipe?

v[m/s] =

where r is expressed in m.

. Fluid is trapped between two concentric cylinders and the inner cylin-
der (with radius = «R) is turning, producing the velocity field v given
here. What is the torque on the inner cylinder? What is the torque on the
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outer cylinder (with radius = R)? Assume that the pressure is constant
throughout.

. For a pressure-driven flow in a slit, the total stress tensor g is given here,
where P = Cx is pressure, u is viscosity, B is the gap half-height, and 4 is
the velocity at the centerline. The fluid is an incompressible Newtonian fluid.
What is the x-component of the force due to fluid on the bottom plate?

2
v (z) = A <1 - %)

_P 0 Bz
n=| o -P 0

_2uAz s
B? 0 P xyz

. For water in a flow with the velocity vector given here, what is the force in
the fluid on a square surface with unit normal 7 = ¢ extending fromx =0, &
y =0tox =1, y = 1. All distances are in meters; assume the pressure is &
the same everywhere.

—0.04x
v[m/s]= | —0.04y
0.08z

xyz

. What is the torque on a rod turning in an infinite bath of fluid? The radius of *

the rod is R, the length is L, and the rod turns at angular velocity €2 in a fluid =
of viscosity x. You may leave your answer in terms of the unknown velocity
distribution.

. The velocity field for squeeze flow between parallel plates is given here
(This was obtained with a quasi-steady-state solution [12]), where 4 is the
instantaneous gap height. What is the instantaneous flow rate through the
circular strip of surface of height 2/ at » = R/2? The area of this surface is.
27 (R/2)2h.

. A fluid in a circular tank is in solid-body rotation on a turntable. The velocity:
field is given here. What is the fluid force on the wall due to the rotation?

Explain your results.
0
rQ2
0 réz
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Pressure-driven flow in a tube (see Problem 30).

28. The z-direction velocity shown here results from the effect of natural con-
vection (i.e., hot air rises) between two vertical parallel plates (the plates
are long and wide). At what position in the flow does the velocity reach a
maximum? In the equation, v, is the velocity and y is the coordinate direction
in a Cartesian coordinate system,; all other quantities are constants related to

the flow.
_PBmL =TV | (¥ *(y
= BB () (2)]

. For the combined pressure-driven and wall-drag flow discussed in Exam-
ple 6.11, sketch the coordinate system that was used to find the velocity
solution provided in the example. What are the boundary conditions that
were used?

. What are the velocity boundary conditions in the flow shown in Figure 6.20?
Express your answer in the coordinate system shown.

. The problem of a thin film falling down an incline is discussed in this chapter.
In Figure 5.41, a version of this problem is illustrated and a Cartesian coordi-
nate system is proposed. Write the velocity vector in this coordinate system.
How does the continuity equation simplify? How does the Navier-Stokes
equation simplify? Comment on the chosen coordinate system.

. For the velocity described in Figure 5.31 (i.e., the planar-jet flow), apply
the microscopic mass balance (i.e., the continuity equation). What is the
relationship between the velocity gradients that the mass balance requires?

 Two different fluids with different densities and viscosities are layered
between two long, parallel plates. The thickness of the bottom and more
dense fluid layer is /;; the thickness of the top and less dense fluid layer
is h,. The top plate is made to move parallel to the bottom plate at a low
velocity V. The bottom plate is stationary. The flow is steady and both fluids
are incompressible. The flow problem is solved in a Cartesian coordinate
system with flow in the x-direction, and y is the direction perpendicular
to the plates, with y = 0 at the surface of the bottom plate. What are the
boundary conditions for this flow? Give your answer in mathematical form
in the coordinate system described.
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34. An incompressible fluid with density o and viscosity u is placed in the
region between two coaxial cylinders. The outer cylinder (radius = R) is
stationary and the inner cylinder (radius =« R) is moving counterclockwise
at angular velocity Q in rad/s. The flow is steady. The flow is solved in
a cylindrical coordinate system with z =0 at the bottom surface of the
apparatus; &, points upward. What are the boundary conditions for this flow?
Give the answer in mathematical form in the coordinate system described.
Check the units of your expressions.

. In Example 6.2, we discuss the solution for the velocity field for flow
down an inclined plane. The upper boundary of this flow is a free surface,
meaning that there is no solid surface there. The boundary condition
at the free surface where two fluids meet is that the velocity and stress
should be continuous across the boundary. Consider the free surface in the
flow-down-an-incline problem as the meeting point of two fluids—air and =
water—with the viscosity of air being much lower than the viscosity of
water. Using the stress-matching boundary condition, justify the boundary
condition used for the free surface in Example 6.2.

_ Sketch the flow domain for upward flow in a circular pipe inclined by -
a 30-degree angle to the horizontal. Pipe flow usually is analyzed in a &
cylindrical coordinate system. In terms of the cylindrical coordinate system k-
for this problem, what is the gravity vector? Hint: choose gravity to be in the -
x-z plane. What are the implications of this complicated expression? How
would this complication affect the solution of the Navier-Stokes equations
for this problem?

. Figure 6.12c depicts the steady flow of a drop of Newtonian fluid “rolling”
down an inclined plane. Because of the complex geometry of the flow domain,
this flow is best analyzed numerically, and the details of that calculation are
beyond the scope of this text [70]. Although numerical methods are needed
to solve the differential equations, we can arrive at the correct equations to
solve by following the methods in this text. What is the differential equation
that governs this flow and what are the appropriate boundary conditions?

. Flow Problem: Drag flow of a Newtonian fluid in a slit. Calculate thy
velocity profile and flow rate for drag flow of an incompressible Newtonian
liquid between two infinitely wide parallel plates separated by a gap of H
The pressure in the gap is uniform in the flow direction. The lower plat
does not move, but the upper plate is pulled to the right at a speed V. Thi
flow is steady and well developed.

. Flow Problem: Pressure-driven flow in an uphill slit. An incompressibl
Newtonian fluid is made to flow between two long, wide parallel plates by
a constant driving pressure gradient. The pressure at an upstream point i
P, and a distance L downstream the pressure is P;. The plates tilt upwards,
making an angle ¢ with the horizontal; do not neglect gravity. Calculate thy
steady state velocity profile, the flow rate, and the force on the walls. Th
gap between the plates is B.

. Flow Problem: Combined forward pressure and drag. An incompressibl
Newtonian fluid is made to flow between two long, wide, horizontal parall
plates by the combined effect of a constant driving pressure gradient an

o
o
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entrance:

Py /;:
w
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X

Schematic for Problem 41.

the motion of the wall. The gap between the plates is B, and the top plate
is pulled to the right at a speed ¥ while the lower plate remains stationary.
The pressure at an upstream point is Py and a distance L downstream
the pressure is Pr. Calculate the steady state velocity field and the flow
rate.

. Flow Problem: Combined backward pressure and forward drag of a
Newtonian fluid in a slit. Calculate the velocity profile for the flow shown in
Figure 6.21. The flow is steady flow of an incompressible Newtonian fluid
between two wide plates. The flow is driven forward by the motion of the
top plate (i.e., the top plate moves in the x-direction at speed 7") and the flow
is opposed by the pressure, which is slightly higher at the exit, P, than at
the entrance, Py, P, > Py. Neglect the effect of gravity. Use the coordinate
system given in Figure 6.21.

. Flow Problem: Combined pressure-driven/drag flow of a Newtonian fluid
in a slit that is tilted upward. Calculate the velocity profile and flow rate for
pressure-driven flow of an incompressible Newtonian liquid between two
infinitely wide parallel plates separated by a gap of H. The slit is inclined to
the horizontal by an angle . The top plate moves forward at velocity V. The
pressure at an upstream point is Pp; at a point a distance L downstream, the
pressure is P;. Assume that the flow between the plates is well developed
and at steady state. The axial pressure gradient is constant.

43. Flow Problem: Axial annular drag, wire coating. An incompressible
Newtonian fluid fills the annular gap between a cylindrical wire of radius k R
and an outer shell of inner radius R (Figure 6.22). The wire is pulled to the

entrance:

Cross
section:

Figure 6.22 In wire-coating, a wire is drawn through a bath. This axial drag flow is addressed in Problem 43.
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right at a speed V. There is no pressure variation throughout the apparatus.
Calculate the steady state velocity profile, the flow rate, and the force on the
wire. This geometry occurs in wire-coating. Answer: v,/ V = In(r/R)/ Ink.

. Flow Problem: Upward, pressure-driven flow of a Newtonian fluid in a pipe.
Calculate the velocity profile and flow rate for pressure-driven flow of an
incompressible Newtonian liquid in a vertical pipe of radius R. The pressure
at the bottom entrance to the tube is Py; at a point a distance L upward, the
pressure is P. Assume that the flow is well developed and at steady state.
Do not neglect gravity.

. Flow Problem: Two-layer drag flow between parallel plates. Two different
fluids with different densities and different viscosities are layered between
two long, parallel plates. The thickness of the bottom and more dense fluid
is hy; the thickness of the top and less dense fluid is /,. The top plate is
made to move parallel to the bottom plate at a velocity V. The bottom
plate is stationary. The flow is steady and both fluids are incompressible.
Solve for the velocity profile in a Cartesian coordinate system with flow in
the x-direction; y is the direction perpendicular to the plates, with y = 0 at
the surface of the bottom plate.

. Flow Problem: Two-layer drag, pressure-driven flow between parallel plates.
Two different fluids with different densities (p;, ;) and viscosities (i1, 12)
are layered between two long, parallel plates. The thickness of the bottom and  §
more dense fluid layer is /;; the thickness of the top and less dense fluid layer
is hy. Both plates are stationary and a flow is produced by the imposition of
a small, constant pressure gradient such that the interface between the two &
fluids remains flat and parallel to the walls. The flow is steady and both fluids
are incompressible. Solve for the velocity profile in a Cartesian coordinate
system with flow in the x-direction; y is the direction perpendicular to the f
plates, with y = 0 at the surface of the bottom plate (copious algebra!). .

. Flow Problem: Two-layer flow down an incline. Two different fluids with .
different densities (o1, p2) and viscosities (i1, 4,) are layered on a long plate
tilted at an angle B to the horizontal. The thickness of the bottom and more
dense fluid layer is 4 ; the thickness of the top and less dense fluid layer is
h». The bottom plate is stationary and a flow is produced by gravity. The flow
is steady and both fluids are incompressible. Solve for the velocity profile in
a Cartesian coordinate system with flow in the x-direction; y is the direction
perpendicular to the plates, with y = 0 at the surface of the bottom plate.

. Flow Problem: Drag flow with viscosity varying. Calculate the velocity
profile and flow rate for drag flow of an incompressible Newtonian liquid
between two infinitely wide parallel plates separated by a gap of H. The
viscosity of the fluid varies linearly with position in the gap as u = ay + b.
The pressure in the gap is uniform in the flow direction. The upper plate is
driven such that the velocity is ¥ and the lower plate is stationary. Assume
that the flow between the plates is well developed and at steady state. Solve
for the velocity profile in a Cartesian coordinate system with flow in the
x-direction; y is the direction perpendicular to the plates, with y = 0 at
the surface of the bottom plate.
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49.

50.

Flow Problem: Axial annular drag with pressure drop, wire coating. Repeat
Problem 43 with an imposed pressure gradient = (—Ap/L) in the flow
direction. Calculate the velocity field only.

Flow Problem: Drag flow in a slit, power-law non-Newtonian fluid. Repeat
Problem 38 with a power-law, generalized Newtonian fluid with parameters
m and n. Calculate the velocity and stress fields.

. Flow Problem: Pressure-driven flow in a slit tilted upward, power-law

non-Newtonian fluid. Repeat Problem 39 with a power-law, generalized
Newtonian fluid with parameters m and n. Calculate the velocity field only.

. Flow Problem: Upward pressure-driven flow in a tube, power-law

non-Newtonian fluid. Repeat Problem 44 with a power-law, generalized
Newtonian fluid with parameters m and n.




