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The concept of the boundary layer is
important in fluid mechanics and it is dis-
cussed againin Section 8.2. Boundary-layer
formation is a common trait of flows for

libficat which both inertial and viscous contribu-
ubricating | . )
o tions are important. For engineering appli-
cations, consideration of the boundary layer
Mg is essential because heat and mass transfer
often occur through walls; thus, heat and
mass must traverse the boundary layer.

When the inertial contribution to the
flow momentum is slight, analytical solu-
tions are sometimes found using a quasi-
unidirectional technique known as the lubrication approximation. Lubrication
flow is named for flow in narrow gaps between moving parts in which the role of
the fluid is to lubricate the parts (Figure 7.52). In such gaps, the flow is only slightly
different from unidirectional; the lubrication approximation takes advantage of
this similarity by considering the flow to be locally unidirectional and parallel
[43]. With this assumption, analytical solutions may be found. The lubrication
approximation is useful in polymer-processing flow calculation. Chapter 13 in
Denn [43] discusses the lubrication approximation.

This chapter demonstrates that the continuum modeling method is versatile
and capable of providing insight to a wide variety of flow problems. The overall
strategy is outlined in Section 7.1.2.3: When tackling a difficult flow problem,
begin by identifying an idealized version of the flow that can be solved. Then,
use the solution to the idealized problem to nondimensionalize the equations of
change so that information in the governing equations can be accessed. Finally,
solve for v and p or conduct experiments and develop data correlations so that
the engineering problem may be solved.

Problems that are unidirectional and steady are not difficult to solve—the left-
hand side of the Navier-Stokes equation goes to zero, eliminating the nonlinear
terms. When we stray from these flows, inertia becomes increasingly important
and the flow behavior becomes more complex and fascinating. Chapter 8 con-
fronts these issues as we move on to external flows, which almost always exhibit
both viscous and inertial contributions.

Schematic of a lubrication flow. The central axis
may be the axle of an automobile, for example,
and the outer ring represents part of the housing.

Figure 7.52

7.4 Problems

. The governing equations for fluid flow are four coupled equations in four
unknowns. What are these equations? What is a strategy for solving them?

. What is the role of dimensional analysis in fluid mechanics?

. Using the methods in this chapter, write the continuity equation (i.e.,
microscopic-mass balance) in dimensionless form. What can we learn from
the result?

. Figure 7.6 plots results for the velocity and pressure profiles for steady,
Poiseuille flow in a tube. We choose to plot these functions using
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dimensionless combinations of the variables and characteristic quantities.
Why do we use dimensionless combinations? What difficulties would we
encounter if we choose to plot the bare v, versus 7 and p versus z?

. In terms of the problem-solving strategy defined in Section 7.1.2.3, identify
the idealized problem, the experiments, and the data correlations that were
used to solve the burst-pipe problem of this chapter.

. Complete the calculation of the velocity profile and the total-stress tensor for
steady, pressure-driven flow in a tube (i.e., Poiseuille flow in a tube). In other
words, show that Equations 7.22, 7.23, and 7.34 result from the integration
and application of Equations 7.18 and 7.19.

. Show that the Hagen-Poiseuille equation (Equation 7.28) for pressure drop
as a function of flow rate in laminar flow follows from the integration of the
velocity field across the pipe cross section (Equation 7.26).

_ In the calculation of total drag in a pipe, show using matrix calculations that =
the simplified expression in Equation 7.122 is equivalent to the definition of
axial drag in Equation 7.120. 1

_In laminar flow in a tube, calculate the axial drag by beginning with the
surface integral in Equation 7.125 and incorporating the solution for the ;;“
velocity profile. Neglect the effect of gravity.

. The solution for pressure-driven laminar flow in a tube includes the effect .
of gravity. How does the solution change if the flow is upward instead of
downward? How does the solution change if the pipe is mounted at a 30- E
degree angle to horizontal? Show that the effect of gravity in all cases can be
accounted for by defining the dynamic pressure as given here [43] (see the |
Glossary):

P=p-pgZl

. For the burst-pipe problem discussed in this chapter, we first attempt to solve
by assuming laminar flow. For the ]laminar-flow result, what was the Reynolds
number calculated in the small pipe? If the flow could have remained laminaz
up to that Reynolds number (it cannot; the flow becomes unstable), what
would have been the Fanning friction factor? Compare this number and the
pressure drop it implies to the actual f and Ap that we calculated. Disc
your answer.

. We neglect the presence of fittings and the velocity change in the burst:
pipe example in this chapter. What would be the effect on the burst-pips
calculation if we include the frictional loss due to velocity head, ben
fittings, and valves? Assume that there are eight 90-degree bends, two g
valves, and one globe valve half open in the smaller piping section.

. We assume a smooth pipe in the burst-pipe example in this chapter. Rep
Example 7.5 assuming that the pipes are galvanized iron with a pipe rou;
ness of 0.0005 foot. Was smooth pipe a good assumption?

 An 80-foot section of 1/2-inch ID Schedule 40 piping branches into
pipes of the same diameter, one of which is 160 feet long and the o
200.0 feet long (all horizontal). The main pipe is connected to the munici
water supply, which supplies a constant 50.0 psig at the pipe entrance.
are the flow rates through the two pipe exits? What is the pressure at
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Data on rough commercial pipes, represented by the Colebrook correlation (solid lines), are compared with the
data of Nikuradse [126] for sand-roughened pipes (discrete points). The two measurements agree at large Re but
not at lower values (Problem 17).

Figure 7.53

splitting point? Assume smooth pipes; do not consider friction losses due to
fittings.

. For turbulent pipe flow, show that Equation 7.156—the Prandtl correlation
for fluid friction—is equivalent to the case &¢ = 0 in the Colebrook correlation
(Equation 7.161).

. For steady pipe flow, repeat branched-piping, Example 7.9 for pipes with
roughness ¢ = 0.05 mm.

. The Colebrook correlation (i.e., Equation 7.161) gives friction factor as a
function of Reynolds number and roughness ratio for commercial pipes. The
values of roughness & for commercial pipes were deduced by comparing
the measured asymptotic values of f for real pipes, with the values for
f at large Re obtained by Nikuradse [126] on pipes roughened with well-
characterized sand of uniform size. The Colebrook equation and Nikuradse’s
data are compared in Figure 7.53. The two datasets have different shapes
at Reynolds numbers below the asymptotic values. What differences can
you think of between the wall surfaces on commercial pipes and those on
the artificially roughened walls of Nikuradse that might account for these
differences? Discuss your answer.

. In Section 7.1.1, we initially neglect the pressure difference pp — p when
analyzing the Cannon-Fenske viscometer (see Figure 7.11) before ulti-
mately resorting to experimental calibration to account for the small pres-
sure effect (see Equation 7.56). We can account for the pressure difference
po — p more formally by performing a quasi-steady-state analysis on the
system.
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Figure 7.54

The Cannon-Fenske viscometer measures fluid viscosity by allowing the user to time the passage of a set volume
of fluid through a long narrow capillary. The flow is driven primarily by gravity; the imposed pressure drop due
to the changing driving fluid head h4(t) and the back pressure due to the head hy(t) may be accounted for
applying a quasi-steady-state analysis, as described in Problem 18.

Consider the expanded view of the Cannon-Fenske viscometer shown in
Figure 7.54. Let h(¢) represent the time-dependent height of the upper menis-
cus above the second timing mark and h(¢) represent the time- dependent
height difference between the fluid level in the lower reservoir and the exit o!
the capillary tube. In the quasi-steady-state approach, we write relationships
between variables as if time were moving slowly and the system were nearly
in steady state. :

(a) Using the principles of fluid statics on our quasistationary system, wh
is the relationship among po, 41, and atmospheric pressure? :

(b) Using the same approach, what is the relationship among pz, A2, an
atmospheric pressure?

(c) Writing the volumetric flow rate Q as the rate of change of the fluid vok
ume V in the upper reservoir —d V'/dt, integrate the appropriate equatior
for volume with respect to time from 0 t0 femux tO obtain a pressure:
corrected equation for the measurement of fluid kinematic viscosity :
with the Cannon-Fenske viscometer. Assume that /() and hx(?) v:
linearly with time throughout the experiment:

Answer:

4
% oy [’;I’i L (’“;0) + ”f’) Rt f2 L COSﬁ)} i

(d) Do k() and hy(¢) vary linearly with time? How important is this effe

19. When using a calibrated Cannon-Fenske viscometer, it is necessary to emp
the same fluid volume as during calibration. To achieve this, the viscom
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Schematic of the inverted loading technique that is required when using a Cannon-Fenske viscometer (Problem

Figure 7.55
19).

is loaded with fluid as shown in Figure 7.55. The viscometer is inverted into
a beaker of fluid and suction is applied to the cleaning arm. In the inverted
position, when the fluid reaches the timing mark nearest the capillary, the
correct volume has been loaded.

When several concentrations of solution are being measured as part of
a sequence, it is convenient to dilute a concentrated solution within the
viscometer to make the subsequent measurements on less concentrated solu-
tions. This technique is used in the study of polymers [60]. The Cannon-
Fenske viscometer is inappropriate for this type of measurement due to the
excess, unknown back pressure that would result from adding additional
solvent.

The Ubbelhode viscometer is similar to the Cannon-Fenske, but the exit of
the capillary in the former is vented, preventing the back-pressure problem
(Figure 7.56). Following the quasi-steady-state technique outlined in Prob-
lem 18, calculate the equation that relates kinematic viscosity and efflux time
in the Ubbelhode viscometer.

. Liquid with the physical properties of water flows ina tube in laminar flow. A
researcher studying biological flows in tubes wants to conduct experiments
on the apparatus and must replace part of the wall with a different solid
material that is transparent to a particular kind of electromagnetic radiation.
What is the force on the patch of the wall being replaced? The patch is
one-eighth the circumference of the tube and is of length /.

. What is the purpose of the concept of the hydraulic diameter?

. The correlation between the Fanning friction factor and the Reynolds number
for turbulent flow through pipes (circular cross section) is shown in the
Moody plot (Figure 7.22). Which plot do we use for the correlation of f(Re)
for noncircular conduits? Explain.
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Figure 7.56 Schematic of a Ubbelhode viscometer. The Ubbelhode viscometer is vented at the exit of the capillary. Venting f'“.f:
the exit ensures that the pressure at the exit is known (i.e., atmospheric) and allows the sample volume to vary :"'
(Problem 19). G

23. Hydraulic radius [174] in a noncircular conduit is defined as:

Hydraulic radius ry = ﬁ
P
where A is the cross-sectional area of the conduit and p is the wetted
perimeter of the conduit. With this definition, how are hydraulic radius and
hydraulic diameter related? Discuss your answer.

. For steady flow in a duct of rectangular cross section, carry out the integra-
tions in Equation 7.229 to obtain the analytical expression for the wall drag
in pressure-driven flow.

. Calculate the Poiseuille number, fp,Rep,, fora conduit with elliptical cross
section; compare your result with Figure 7.36. The major axis of the ellipse '
is of length 2a and the minor axis is 2b. The velocity field for laminar flow
through a conduit of elliptical cross section is given by White [174] as:

1 Ap a*b? { y? 22}

b i a3 L

The average velocity in this conduit is given by:

Ap a*b?

V — ('U) — —-——4IuL -————az + bz

What is the friction-factor/Reynolds-number relationship for this geometry? .

. In steady, pressure-driven, planar-slit flow of an incompressible Newtonian
fluid, calculate the vector force on a plane given by the cross section at th
exit (see Example 7.10).




Figure 7.57 For the flow between the inner and outer surfaces of an annulus, the geometry is shown here (Problem 30).
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28.
29.

30.

31

32
33,

34.

35

Calculate the Poiseuille number, fp,Rep,,, for a conduit the cross section
of which is a rectangle of sides @ and b (b > a). What is the friction-
factor/Reynolds-number relationship for this geometry?

Calculate the Poiseuille number, fp,Rep,, for a conduit the cross section
of which is a square of side a. What is the friction-factor/Reynolds-number
relationship for this geometry?

Calculate the Poiseuille number, fp,Rep,, for a conduit the cross section of
which is a slit of infinite width. What is the friction-factor/Reynolds-number
relationship for this geometry?

Calculate the Poiseuille number, fp,Rep,,, for flow between the two circular
surfaces of an annulus. Let R; be the outside radius of the inner pipe and
R, be the inside radius of the outer pipe (Figure 7.57). What is the friction-
factor/Reynolds-number relationship for this geometry?

For flow through a rectangular duct, show that in the limit of infinite width,
the solution for velocity (Equation 7.212) becomes the solution for velocity
in steady flow through a slit.

In Poiseuille flow in a slit, complete the integration in Example 7.10 to obtain
the final velocity profile for Poiseuille flow in a slit (Equation 7.188). Calcu-
late the flow rate per unit width by carrying out the missing calculus/algebra
to arrive at Equation 7.194. vi Jofer~ L.

Water at 25° is forced through an izesee}es triangular duct that is 1.0 mm on
a side and 5.0 cm long. The driving pressure is 6.0 psig; the exit is open to
the atmosphere. What is the flow rate through the slit? Assume the flow to
be turbulent.

Under what conditions (i.e., limits) does the solution for tangential-annular
flow (see figure for Problem 37) approach the parallel-plate solution (Exam-
ple 6.3)? Using the solution given here, perform a coordinate transformation
to show that this is so.

réz

For a tank draining through an exit in the bottom, calculate the flow rate
by completing a quasi-steady-state calculation like that discussed in Exam-
ple 7.19. You may neglect friction.
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Z

cross section:

Figure 7.58 Tangential annular flow of a Newtonian fluid (Problem 37).

36. Using a numerical software package, calculate the total force on the wall
for pressure-driven flow in a slit. How does your numerical result com-
pare to the analytical result? Use the same boundary conditions in both
solutions.

. Flow Problem: Tangential annular flow. An incompressible Newtonian fluid
fills the annular gap between a cylinder of radius « R and an outer cup of
inner radius R (Figure 7.58). The inner cylinder turns counter clockwise at :
an angular velocity Q2 radians/s. The flow may be assumed to be symmetrical
in the azimuthal direction (i.e., no @ variation). A pressure gradient develops
in the radial direction; the pressure at z = L at the inner cylinder is p;. =
Calculate the steady state velocity profile, the radial pressure distribution, =
and the torque needed to turn the inner cylinder.

. Flow Problem: Pressure-driven flow of a Newtonian fluid in an annular gap.
Calculate the velocity profile and flow rate for pressure-driven flow of an
incompressible Newtonian liquid in the annular gap between two vertical
cylinders. The radius of the inner cylinder is « R and the radius of the outer
cylinder is R. The pressure at an upstream point is Po; at a point a distance L
downstream, the pressure is Py . Assume that the flow is well developed and
at steady state. You may neglect gravity.

. Flow Problem: Pressure-driven flow of a Newtonian fluid in an annular
gap, numerical. Solve Problem 38 using computer simulation software [27].
Calculate the forces on both the inner and outer surfaces.

. Flow Problem: Flow due to natural convection between two long plates. The
flow between the panes of glass in a double-pane window may be modeled as
shown in Figure 7.59. Calculate the velocity profile at steady state. Assume
the plates are infinitely long and wide (for answer, see Example 1.11). The &
density variation with position may be handled as follows. The density of the
gas is a function of temperature as given by:

p=p—pBT —T)

where /5 is the mean density, B is the mean coefficient of thermal expan:
sion, and T is the mean temperature (all constant). The temperature profile
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Figure 7.59
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Temperature difference generates a flow between two long, wide plates (i.e., hot air rises). We obtain the velocity
profile given in Equation 1.140 by using the methods in this chapter in conjunction with energy-balance equations
(Problem 40).

obtained from the energy balance is:

A=l | g
=" 4T 2
Ty=1

2b

41. Flow Problem: Radial flow between parallel disks. An incompressible New-
tonian fluid fills the gap between two parallel disks of radius R (Figure 7.60).
Fluid is injected through a hole in the center of the top disk, and a steady
radial flow occurs. The flow may be assumed to be symmetrical in the
azimuthal direction (i.e., no 6 variation). A pressure gradient develops in the
radial direction; the pressure near the center is p, and the pressure at the
rim is pg. Calculate the steady state velocity profile and the radial pressure
distribution.

. Flow Problem: Unsteady one-dimensional flow, startup. An incompressible
Newtonian fluid is in contact with a long, tall wall that initially is stationary

I

y+T

cross section:

Radial flow of a Newtonian fluid from between parallel disks (Problem 41).
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X

t = 0, stationary plate

t > 0, moving plate

Figure 7.61 Startup flow of a plate in a semi-infinite Newtonian fluid (Problem 42).

(Figure 7.61). The wall suddenly accelerates and moves at steady velocity
V. The pressure is uniform throughout the flow. Calculate the steady state
velocity profile. Plot the velocity solution for various values of time.

. Flow Problem: Flow near an oscillating wall. An incompressible Newtonian
fluid is bounded on one side by a wall and is infinite in the y-direction
(Figure 7.62). The wall is moved back and forth according to:

Ve (t)|wan = V coswt = R{V e}

What is the time-dependent velocity profile in the fluid as a function o
position and time? (see also page 102 of [104]).

. Flow Problem: Squeeze flow. An incompressible Newtonian fluid fills the gaj
between two parallel disks of radius R (Figure 7.63). The disks are subjec
to axial forces that cause them to squeeze together. The fluid in the g
responds by producing a combined axial and radial flow that pushes fi

NN
plate moves
back and
forth

Figure 7.62 A plate forms a boundary for a semi-infinite fluid. The wall is moved according to a sinusoidal function (Prob
43). :
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cross section:

Squeeze flow of a Newtonian fluid between parallel disks (Problem 44).

out of the gap. The flow may be assumed to be symmetrical in the azimuthal
direction (i.e., no @ variation). A pressure gradient develops in the radial
direction; the pressure at the center is po and the pressure at the rim is pg.
Calculate the steady state velocity profile and the radial pressure distribution.
If the plates are moving with speed /, calculate the force needed to maintain
the motion.

. Flow Problem: Rod turning in an infinite fluid. A rod rotates counterclockwise
in an infinite bath of fluid. What is the velocity field in the fluid? The radius
of the rod is R, the length of the rod is L, and the rod turns at angular velocity
€ in a fluid of viscosity . The flow is steady and the fluid is Newtonian.

_ Flow Problem: Poiseuille flow in a rectangular duct. An incompressible
Newtonian fluid flows down the axis of a duct of rectangular cross section
under the influence of a pressure gradient (Figure 7.31). The width of the
duct is 2W and the height of the duct is 2H. The upstream pressure is po
and the pressure a distance L downstream is py. Calculate the steady state
velocity and pressure profiles. Note: the velocity is three-dimensional and
the solution involves a series of hyperbolic trigonometric functions [174].

. Flow Problem: Poiseuille flow in a rectangular duct, numerical. Calculate
the velocity field and flow rate for steady, well-developed, pressure-driven
flow in a duct of rectangular cross section (Poiseuille flow in a duct; see
Figure 7.31). Compare your result to the analytical solution [174].

_ Flow Problem: Two-dimensional planar flow in a right-angle tee-split,
numerical solution. Flow enters a two-dimensional right-angle tee-split as
shown in Figure 7.64. The flow is steady, two-dimensional flow of an incom-
pressible Newtonian fluid (water may be used). Calculate the flow field and
the force on the wall as a function of the inlet Reynolds number. Produce
appropriate plots to demonstrate the characteristics of the flow.
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Figure 7.64

Figure 7.65

two-dimensional flow, planar

laminar
flow in

out

3

out

Numerical simulation software may be used to calculate the flow domain for two-dimensional planar flow ina
right-angle split (Problem 48).

49.

Flow Problem: Two-dimensional axisymmetric flow into radial wall flow in
a narrow gap, numerical solution. Flow exits a pipe at the center of a disk
and impinges on a wall producing a radial flow that spreads outward between
parallel disks as shown in Figure 7.65. The flow is steady, two-dimensional,
axisymmetric flow of an incompressible Newtonian fluid (water may be used).
Calculate the flow field and the force on the wall as a function of the inlet
Reynolds number. Produce appropriate plots to demonstrate characteristics
of the flow.

. Flow Problem: Two-dimensional axisymmetric flow through an orifice,

numerical solution. Flow passes through an orifice positioned in the center
of a tube as shown in Figure 7.66. The flow is steady, slow, two-dimensional
flow of an incompressible Newtonian fluid (water may be used). Calculate
the flow field and the pressure drop across the orifice as a function of the inlet
Reynolds number. Produce appropriate plots to demonstrate characteristics
of the flow.

. Flow Problem: Two-dimensional planar cavity flow, numerical solution. Flow

gap

is produced in a cavity by the motion of the top wall as shown in Figure 7.67.

l laminar
two-dimensional =g flOw in
axisymmetric :

flow

=D

Numerical simulation software may be used to calculate two-dimensional axisymmetric flow into radial wall flow
in a narrow gap (Problem 49).
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Figure 7.66

two-dimensional
axisymmetric

uniform
inlet flow

Numerical simulation software may be used to calculate the flow domain for two-dimensional axisymmetric flow
through an orifice (Problem 50).

The flow is steady, two-dimensional planar flow of an incompressible New-
tonian fluid (water may be used). Calculate the flow field and the force on the
stationary walls as a function of a Reynolds number based on wall velocity
and cavity depth. Produce appropriate plots to demonstrate the characteristics
of the flow.

52. Flow Problem: Two-dimensional planar gradual contraction near wall,
numerical solution. Flow enters a channel that gradually contracts as shown
in Figure 7.68. The flow is steady, two-dimensional flow of an incompressible

two-dimensional flow, planar v

/i

Numerical simulation software may be used to calculate the flow domain for two-dimensional planar cavity flow
(Problem 51).

uniform two-dimensional, planar
flow in

- 8D >

Numerical simulation software may be used to calculate the flow domain for two-dimensional planar gradual
contraction near the wall (Problem 52).
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Figure 7.69

Figure 7.70

Numerical simulation software may be used to calculate the flow domain for two-dimensional axisymmetric 4:1

contraction (Problem 53).

Newtonian fluid (water may be used). Calculate the flow field and the force on
the two walls as a function of the inlet Reynolds number. Produce appropriate
plots to demonstrate characteristics of the flow.
53. Flow Problem: Two-dimensional axisymmetric
solution. Flow enters 4:1 axial contraction as shown in Figure 7.69. The
flow is steady, two-dimensional, axisymmetric flow of an incompressible
Newtonian fluid (water may be used). Calculate the flow field and the force on

the wall as a function of the outlet Reynolds number. Produce appropriate

plots to demonstrate characteristics of the flow.

54. Flow Problem: Flow in an obstructed channel, numerical. For the obstructed
flow shown in Figure 7.70, calculate the flow field with a numerical problem

solver. What is the velocity field?

55. Flow Problem: Squeeze flow with constant
described in Problem 44, calculate the plate
time if the applied force is constant.

56. Flow Problem: Helical flow. An incompressi
annular gap between a cylinder of radius xR an

4:] contraction, numerical

force. For the same flow as
separation as a function of

ble Newtonian fluid fills the
d an outer shell of inner
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Numerical problem-solving software may be used for complex flow geometries shown here (Problem 54).
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Cross section A:

Helical flow of a Newtonian fluid (Problem 56).

radius R (Figure 7.71). The inner cylinder turns counter clockwise at an
angular velocity Q2 radians/s. In addition, the inner cylinder is pulled to the
right at a velocity V. The combined effect of these two motions produces a
helical flow. The flow may be assumed to be symmetrical in the azimuthal
direction (i.e., no @ variation). The axial pressure gradient is constant and
denoted A, and the pressure at the inner cylinder is P, . Calculate the steady
state velocity profile, the radial pressure distribution, and the torque needed
to turn the inner cylinder.




