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XXII. On the Theories of the Internal Friction of Fluids in Motion, and of the
Equilibrium and Motion of Elastic Solids. By G. G. StoxEes, M.A., Fel-
low of Pembroke College.

[Read April 14, 1845.]

THE equations of Fluid Motion commonly employed depend upon the fundamental hypothesis
that the mutual action of two adjacent elements of the fluid is normal to the surface which
separates them. From this assumption the equality of pressure in all directions is easily deduced,
and then the equations of motion are formed according to D’Alembert’s principle. This appears
to me the most natural light in which to view the subject; for the two principles of the absence
of tangential action, and of the equality of pressure in all directions ought not to be assumed
as independent hypotheses, as is sometimes done, inasmuch as the latter is a necessary consequence
of the former*. The equations of motion so formed are very complicated, but yet they admit
of solution in some instances, especially in the case of small oscillations. The results of the theory
agree on the whole with observation, so far as the time of oscillation is concerned. But there
is a whole class of motions of which the common theory takes no cognizance whatever, namely, those
which depend on the tangential action called into play by the sliding of one portion of a fluid along
another, or of a fluid along the surface of a solid, or of a different fluid, that action in fact which
performs the same part with fluids that friction does with solids.

Thus, when a ball pendulum oscillates in an indefinitely extended fluid, the common theory
gives the arc of oscillation constant. Observation however shows that it diminishes very rapidly
in the case of a liquid, and diminishes, but less rapidly, in the case of an elastic fluid. It has
indeed been attempted to explain this diminution by supposing a friction to act on the ball,
and this hypothesis may be approximately true, but the imperfection of the theory is shown
from the circumstance that no account is taken of the equal and opposite friction of the ball on
the fluid.

Again, suppose that water is flowing down a straight aqueduct of uniform slope, what will be
the discharge corresponding to a given slope, and a given form of the bed? Of what magnitude
must an aqueduct be, in order to supply a given place with a given quantity of water? Of what
form must it be, in order to ensure a given supply of water with the least expense of materials
in the construction? These, and similar questions are wholly out of the reach of the common
theory of Fluid Motion, since they entirely depend on the laws of the transmission of that
tangential action which in it is wholly neglected. In fact, according to the common theory
the water ought to flow on with uniformly accelerated velocity; for even the supposition of
a certain friction against the bed would be of no avail, for such friction could not be transmitted
through the mass. The practical importance of such questions as those above mentioned has
made them the object of numerous experiments, from which empirical formule have been con-
structed. But such formule, although fulfilling well enough the purposes for which they were

* This may be easily shown by the consideration of a tetrahedron of the fluid, as in Art. 4.
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constructed, can hardly be considered as affording us any material insight into the laws of nature;
nor will they enable us to pass from the consideration of the phenomena from which they were
derived to that of others of a different class, although depending on the same causes.

In reflecting on the principles according to which the motion of a fluid ought to be calculated
when account is taken of the tangential force, and consequently the pressure not supposed the
came in all directions, I was led to construct the theory explained in the first section of this
paper, or at least the main part of it, which consists of equations (13), and of the principles
on which they are formed. I afterwards found that Poisson had written a memoir on the same
subject, and on referring to it I found that he had arrived at the same equations. The method
which he employed was however so different from mine that I feel justified in laying the latter
before this Society*. The leading principles of my theory will be found in the hypotheses of
Art. 1, and in Art. 3.

The second section forms a digression from the main object of this paper, and at first sight
may appear to have little connexion with it. In this section 1 have, I think, succeeded in shewing
that Lagrange’s proof of an important theorem in the ordinary theory of Hydrodynamics is
untenable. The theorem to which I refer is the onme of which the object is to show that
udx +vdy + wds, (using the common notation,) is always an exact differential when it is so
at one instant. 1 have mentioned the principles of M. Cauchy’s proof, a proof, I think, liable
to no sort of objection. I have also given a new proof of the theorem, which would have served to
establish it had M. Cauchy not been so fortunate as to obtain three first integrals of the general
equations of motion. As it is, this proof may possibly be not altogether useless.

Poisson, in the memoir to which I have referred, begins with establishing, according to
his theory, the equations of equilibrium and motion of elastic solids, and makes the equations of
motion of fluids depend on this theory. On reading his memoir, I was led to apply to the theory
of elastic solids principles precisely analogous to those which I have employed in the case of
fluids. The formation of the equations, according to these principles, forms the subject of
Sect. 111,

The equations at which I have thus arrived contain two arbitrary constants, whereas Poisson’s
equatious contain but one. In Sect. 1v. I have explained the principles of Poisson’s theories of
elastic solids, and of the motion of fluids, and pointed out what appear to me serious objections
against the truth of one of the hypotheses which he employs in the former. This theory seems
to be very generally received, and in consequence it is usual to deduce the measure of the cubical
compressibility of elastic solids from that of their extensibility, when formed into rods or wires,
or from some quantity of the same nature. If the views which T have explained in this section
be correct, the cubical compressibility deduced in this manner is too great, much too great in
the case of the softer substances, and even the softer metals. The equations of Sect. 111 have,
I find, been already obtained by M. Cauchy in his Ewercises Mathématiques, except that he
has not considered the effect of the heat developed by sudden compression. The method which
I have employed is different from his, although in sowe respects it much resembles it.

The equations of motion of elastic solids given in Sect. 111. are the same as those to which
different authors have been led, as being the equations of motion of the luminiferous ether in
vacuum. It may seem strange that the same equations should have been arrived at for cases
so different; and I believe this has appeared to some a serious objection to the employment of
those equations in the case of light. I think the reflections which 1 have made at the end of
Sect. 1v., where T have examined the consequences of the law of continuity, a law which seems
to pervade nature, may tend to remove the difficulty.

* The same equations have alsp been obtained by Navier | T. v1.) but his principles differ from mine still more than do
in the case of an incompressible fluid, (Mém. de ¢ Institut, \ Poisson’s.
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SECTION L
Eaplanation of the Theory of Fluid Motion proposed. Formation of the Differential
Equations. Application of these Equations to a few simple cases.

1. Brrork entering on the explanation of this theory, it will be necessary to define, or fix
the precise meaning of a few terms which I shall have occasion to employ.

In the first place, the expression ¢ the velocity of a fluid at any particular point ™ will require
some notice. If we suppose a fluid to be made up of ultimate molecules, it is easy to see that these
molecules must, in general, move among one another in an irregular manner, through spaces
comparable with the distances between them, when the fluid is in motion. But since there
is no doubt that the distance between two adjacent molecules is quite insensible, we may neglect the
irregular part of the velocity, compared with the common velocity with which all the molecules
in’ the neighbourhood of the one considered are moving. Or, we may consider the mean velocity
of the molecules in the neighbourhood of the one considered, apart from the velocity due to
the irregular motion. It is this regular velocity which 1 shall understand by the wvelocity of
¢ fluid at any point, and 1 shall accordingly regard it as varying continuously with the
co-ordinates of the point.

Let P be any material point in the fluid, and consider the instantaneous motion of a very
small element £ of the fluid about P. This motion is compounded of a motion of translation,
the same as that of P, and of the motion of the several points of E relatively to P. If we
conceive a velocity equal and opposite to that of P impressed on the whole element, the remaining
velocities form what I shall call the relative velocities of the points of the fluid about P; and
the motion expressed by these velocities is what I shall call the relative motion in the neigh-
hourhood of P.

It is an undoubted result of observation that the molecular forces, whether in solids, liquids,
or gases, are forces of enormous intensity, but which are sensible at only insensible distances.
Let E be a very small element of the fluid circumscribing E, and of a thickness greater than
the distance to which the molecular forces are sensible. The forces acting on the element E
are the external forces, and the pressures arising- from the molecular action of E'. If the
molecules of E were in positions in which they could remain at rest if E were acted on by no
external force and the molecules of E’ were held in their actual positions, they would be in
what I shall call a state of relative equilibrium. Of course they may be far from being in a
state of actual equilibrium. Thus, an element of fluid at the top of a wave may be sensibly in
a state of relative equilibrium, although far removed from its position of equilibrium. Now, in
consequence of the intensity of the molecular forces, the pressures arising from the molecular action
on E will be very great compared with the external moving forces acting on E. Consequently
the state of relative equilibrium, or of relative motion, of the molecules of E will not be sensibly
affected by the external forces acting on E. But the pressures in different directions about
the point P depend on that state of relative equilibrium or motion, and consequently will not
be sensibly affected by the external moving forces acting on E. For the same reason they will not
be sensibly affected by any motion of rotation common to all the points of E; and it is a direct
consequence of the second law of motion, that they will not be affected by any motion of translation
common to the whole element. If the molecules of E were in a state of relative equilibrium,
the pressure would be equal in all directions about P, as in the case of fluids at rest. Hence
1 shall assume the following principle :—

That the difference between the pressure on a plane in a given direction passing through
any point P of a fluid in motion and the pressure which would exist in all directions
about P if the fluid in its neighbourhood were in a state of relative equilibrium depends
only on the relative motion of the fluid immediately about P: and that the relative motion

Vor. VIII. Parrt IIL Per
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due to any hwtion of rotation may be eliminated without affecting the differences of the pressures
above mentioned.
Let us see how far this principle will lead us when it is carried out.

2. It will be necessary now to examine the nature of the most general instantaneous motion
of an element of a fluid. The proposition in this article is however purely geometrical, and
may be thus enunciated : —<¢ Supposing space, or any portion of space, to be filled with an
infinite number of points which move in any continuous manner, retaining their identity, to
examine the nature of the instantaneous motion of any elementary portion of these points.”

Let wu, v, w be the resolved parts, parallel to the rectangular axes Ox, Oy, Oz, of the
velocity of the point P, whose co-ordinates at the instant considered are @, y, &. Then the
relative velocities at the point P’, whose co-ordinates are @ + ¥y y+vy, 2+ 2, will be

du , du , du |, el ¢
i —_— — & parallel to a,
da;'w+dyy+dz P

dv dv , dv ,

/

d—mm + d—y‘y -+ szz.......... ceesls
dw ,+dw ,+dwz, o
— &+ — — 2 i
iz " tay Y T 4z ’

neglecting squares and products of &, ¥, . Let these velocities be compounded of those due
to the angular velocities o', o”’, & about the axes of w, y, =, and of the velocities U, V, W

!

parallel to @, y, =. The linear velocities due to the angular velocities being "2’ - o™y,

2

"% - &%, oy — o'a parallel to the axes of @, y, %, we shall therefore have

U du P du n;) ; (du ” ’
= w+(dy+w y+dz w)z,
dv W\ . dv o, N (dv ,
= |-~ e )
(dm ‘”)”+dy-y d *“’)

w (dw ,,) 7+ (dw ,> - "
= %— + w dy w |y P .
are arbitrary, let them be so assumed that

dU dV dV dW dW dU

ol ’ 4 1
Since w's v, @

which gives

od (I oy (B ey (0
V=4 (%4.%)”'.,.% ’+%(g§+%§> ¥y b eereeerienneceenen (2)
W=%(%+%)w’+%(%+%)y’+g—gzﬁ

The quantities o', w”, o are what I shall call the angular velocities of the fluid at the
point considered. This is evidently an allowable definition, since, in the particular case in which
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the element considered moves as a solid might do, these quantities coincide with the angular
velocities considered in rigid dynamics. A further reason for this definition will appear in Sect, 111.

Let us now investigate whether it is possible to determine &', ¢/, &' so that, considering only
the relative velocities U, V, W, the line joining the points P, P’ shall have no angular motion.
The conditions to be satisfied, in order that this may be the case, are evidently that the incre-
ments of the relative co-ordinates a’, y', &' of the second point shall be ultimately proportional
to those co-ordinates. If e be the rate of extension of the line joining the two points considered,

we shall therefore have .
Fa' +hy +g5 =ea', 1
ha + Gy +f8 =€y s [ eeiiiiiiiiiinnnnn, cevesensens ...(8)
gy +fy + H¥ = ex'; J
, du dv dw dv dw dw du du dv
X = — == — = — Qf = — — 20 = — _— 2h = — —
where F'= o G=Gy’ i Tt ey T T dy " dw

If we eliminate from equations (3) the two ratios which exist between the three quantities
¥, y's %, we get the well known cubic equation

(e-F)(e- Q) (e—- H) —fi(e-F)-g(e-G) -k (e- H)—-2fgh=0,...... 4)

which occurs in the investigation of the principal axes of a rigid body, and in various others.
As in these investigations, it may be shewn that there are in general three directions, at right
angles to each other, in which the point P’ may be situated so as to satisfy the required conditions.
If two of the roots of (4) are equal, there is one such direction corresponding to the third root, and
an infinite number of others situated in a plane perpendicular to the former; and if the three
roots of (4) are equal, a line drawn in any direction will satisfy the required conditions.

The three directions which have just been determined I shall call azes of ewtension. They
will in general vary from one point to another, and from one instant of time to another. If we
denote the three roots of (4) by ¢, €”, €”, and if we take new rectangular axes O, Oy, Ox,
parallel to the axes of extension, and denote by u, U, &c. the quantities referred to these
axes corresponding to u, U, &c., equations (8) must be satisfied by y/ =0, 8/ =0, e=¢, by =0,
%' =0, e=¢’y and by @/ =0, y/=0, e=¢", which requires that f,=0, g=0, 4, =0, and
we have

d d
e’ =F = jul’ e"= G = vl e" =H = w’

, .
T da, = dy, <~ d,

The values of U, V, W, which correspond to the residual motion after the elimination of
the motion of rotation corresponding to «', «" and "', are

ol ! S ) !
U=¢caz/, V=¢y/, W=¢"2.

The angular velocity of which o, ", @ are the components is independent of the arbitrary
directions of the co-ordinate axes: the same is true of the directions of the axes of extension,
and of the values of the roots of equation (4). This might be proved in various ways; perhaps
the following is the simplest. The conditions by which o', &”, ™ are determined are those which
express that the relative velocities U, ¥, W, which remain after eliminating a certain angular
velocity, are such that Uda’ + Vdy' + Wdz' is ultimately an exact differential, that is to say
when squares and products of 2/, y' and 2" are neglected. It appears moreover from the solution
that there is only one way in which these conditions can be satisfied for a given system of
co-ordinate axes. Let us take new rectangular axes Ox, Oy, 0z, and let U, V, W be the resolved
parts along these axes of the velocities U, ¥V, W, and %/, y's Z, the relative co-ordinates of P'; then

re2
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U=Ucosax + Vcosay + W cos vz,
da’ = cosaxdx’ + coswydy + cos wzdz’, &c.;

whence, taking account of the well known relations between the cosines involved in these equations,
we easily find
Uda' + Vdy + Wds' =Udx' + Vdy' + Wdz'.

It appears therefore that the relative velocities U, V, W, which remain after eliminating a certain
angular velocity, are such that Udx' + Vdy + Wdz is ultimately an exact differential. Hence
the values of U, V, W are the same as would have been obtained from equations (2) applied
directly to the new axes, whence the truth of the proposition enunciated at the head of this
paragraph is manifest.

The motion corresponding to the velocities U, V,, W, may be further decomposed into a
motion of dilatation, positive or negative, which is alike in all directions, and two motions which I
shall call motions of shifting, each of the latter being in two dimensions, and not affecting the
density. For let § be the rate of linear extension corresponding to a uniform dilatation; let o/,
— oy, be the velocities parallel to @, y,, corresponding to a motion of shifting parallel to the
the plane @,y, and let ¢'=/, — o’%, be the velocities parallel to @, %, corresponding to a similar
motion of shifting parallel to the plane 2 %,. The velocities parallel to x, y, 2, respectively
corresponding to the quantities 6, ¢ and o' will be S +o+0)a/,(-0)y’, (§-o) =/, and
equating these to U, V, W, we shall get

747

d=L(+e" +¢"), a=1(+e"-2¢"), o= 1(e+e~2¢

Hence the most general instantaneous motion of an elementary portion of a fluid is compounded
of a motion of translation, a motion of rotation, a motion of uniform dilatation, and two motions of
shifting of the kind just mentioned.

3. Having determined the nature of the most general instantaneous motion of an element
of a fluid, we are now prepared to consider the normal pressures and tangential forces called
into play by the relative displacements of the particles. Let p be the pressure which would exist
about the point P if the neighbouring molecules were in a state of relative equilibrium: let p + P,
be the normal pressure, and ¢, the tangential action, both referred to a unit of surface, on a plane
passing through P and having a given direction. By the hypotheses of Art. 1. the quantities p,, ¢,
will be independent of the angular velocities w’, ”, w”, depending only on the residual relative
velocities U, V, W, or, which comes to the same, on ¢, ¢” and €, or on ¢, ¢’ and 8. Since this residual
motion is symmetrical with respect to the axes of extension, it follows that if the plane considered
is perpendicular to any one of these axes the tangential action on it is zero, since there is no more
reason why it should act in one direction rather than in the opposite; for by the hypotheses
of Art. 1. the change of density and temperature about the point P is to be neglected, the
constitution of the fluid being ultimately uniform about that point. Denoting then by p +p/,
p+p’,p +p" the pressures on planes perpendicular to the axes of @, y,, %, we must have

p= ¢ (¢,€,¢"), p'= ¢ (¢"s€”,¢), p’= ¢ (¢", ¢, ¢"),
¢ (€,¢", ¢”) denoting a function of ¢, ¢’ and ¢ which is symmetrical with respect to the two
latter quantities. The question is now to determine, on whatever may seem the most probable
hypothesis, the form of the function ¢.

Let us first take the simpler case in which there is no dilatation, and only one motion of
shifting, or m which ¢’ = —¢', ¢” =0, and let us consider what would take place if the
fluid consisted of smooth molecules acting on each other by actual contact. On this supposition,
it is clear, considering the magnitude of the pressures acting on the molecules compared with
their masses, that they would be sensibly in a position of relative equilibrium, except when
the equilibrium of any one of them became impossible from the displacement of the adjoining
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ones, in which case the molecule in question would start into a new position of equilibrium. This
_start would cause a corresponding displacement in the molecules immediately about the one which
started, and this disturbance would be propagated immediately in all directions, the nature of the
displacement however being different in different directions, and would soon become insensible.
During the continuance of this disturbance, the pressure on a small plane drawn through the
element considered would not be the same in all directions, nor normal to the plane: or, which
comes to the same, we may suppose a uniform normal pressure p to act, together with a normal
pressure p, and a tangential force ¢, p, and ¢, being forces of great intensity and short duration,
that is being of the nature of impulsive forces. As the number of molecules comprised in the
clement considered has been supposed extremely great, we may take a time + so short that all
summations with respect to such intervals of time may be replaced without sensible error by
integrations, and yet so long that a very great number of starts shall take place in it.
Consequently we have only to consider the average effect of such starts, and moreover we may
without sensible error replace the impulsive forces such as p, and ¢,, which succeed one another
with great rapidity, by continuous forces. For planes perpendicular to the axes of extension
these continuous forces will be the normal pressures s o5 p”

Let us now consider a motion of shifting differing from the former only in having € increased
in the ratio of m to 1. Then, if we suppose each start completed before the starts which would
be sensibly affected by it are begun, it is clear that the same series of starts will take place in the
second case as in the first, but at intervals of time which are less in the ratio of 1 to m.
Consequently the continuous pressures by which the impulsive actions due to these starts may be
replaced must be increased in the ratio of m to 1. Hence the pressures p’, p’ p" must be
proportional to ¢, or we must have

p=Cé, p'=Cé, p"=C".

It is natural to suppose that these formule held good for negative as well as positive values
of €. Assuming this to be true, let the sign of ¢ be changed. This comes to interchanging
x and y, and consequently p must remain the same, and p’ and p” must be interchanged. We
must therefore have C” = 0, C' = — C. Putting then C = — 2p we have

p' = — 2u¢€, p” = 2;/.6', p’" = 0.

It has hitherto been supposed that the molecules of a fluid are in actual contact. We
have every reason to suppose that this is not the case. But precisely the same reasoning will apply
if they are separated by intervals as great as we please compared with their magnitudes, provided
only we suppose the force of restitution called into play by a small displacement of any one
molecule to be very great. :

Let us now take the case of two motions of shifting which coexist, and let us suppose
=g 4+d, € =—a € =—g. Let the small time = be divided into 27 equal portions, and
let us suppose that in the first interval a shifting motion corresponding to € = 20, €= — 20 takes
place parallel to the plane =z, y, and that in the second interval a shifting motion corresponding
to €=2¢, ¢" = — 25 takes place parallel to the plane z, %, and so on alternately. On this

supposition it is clear that if we suppose the time on to be extremely small, the continuous forces
n

by which the effect of the starts may be replaced will be p'= — 2u(o + ), p'=2p0, P’ = 2uc. By
supposing 7 indefinitely increased, we may make the motion considered approach as near as we
please to that in which the two motions of shifting coexist; but we are not at liberty to do so,

i : . T
for in order to apply the above reasoning we must suppose the time o to be so large that the
n

average effect of the starts which occur in it may be taken. Consequently it must be taken as an
additional assumption, and not a matter of absolute demonstration, that the effects of the two
motions of shifting are superimposed.
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Hence if 8 =0, i.e. if € + ¢’ + ¢” =0, we shall have in general
p=- 2ue, p" = - 241.6”, . pw = - 2#6'”..................(5)

¢t was by this hypothesis of starts that I first arrived at these equations, and the differential
equations of motion which result from them. On reading Poisson’s memoir however, to which
I shall have occasion to refer in Section 1v.,, T was led to reflect that however intense we may
suppose the molecular forces to be, and however near we may suppose the molecules to be to their
positions of relative equilibrium, we are not therefore at liberty to suppose them iz those positions,
and consequently not at liberty to suppose the pressure equal in all directions in the intervals of
time between the starts. In fact, by supposing the molecular forces indefinitely increased,
retaining the same ratios to each other, we may suppose the displacements of the molecules from
their positions of relative equilibrium indefinitely diminished, but on the other hand the force of
restitution called into action by a given displacement is indefinitely increased in the same proportion.
But be these displacements what they may, we know that the forces of restitution make equilibrium
with forces equal and opposite to the effective forces ; and in calculating the effective forces we
may neglect the above displacements, or suppose the molecules to move in the paths in which they
would move if the shifting motion took place with indefinite slowness. ILet us first consider a

17,

" single motion of shifting, or one for which ¢’ = ~ ¢, ¢” =0, and let p, and ¢ denote the same

quantities as before. If we now suppose ¢’ increased in the ratio of m to 1, all the effective forces
will be increased in that ratio, and consequently p and ¢, will be increased in the same ratio. We
may deduce the values of p’, p” and p” just as before, and then pass by the same reasoning to
the case of two motions of shifting which coexist, only that in this case the reasoning will be demon-

strative, since we may suppose the time Py™ indefinitely diminished. If we suppose the state of
: n

things considered in this paragraph to exist along with the motions of starting already considered,
it is easy to see that the expressions for p’, p” and p”" will still retain the same form.

There remains yet to be considered the effect of the dilatation. Let us first suppose the
dilatation to exist without any shifting: then it is easily seen that the relative motion of the
fluid at the point considered is the same in all directions. Consequently the only effect which
such a dilatation could have would be to introduce a normal pressure p, alike in all directions, in
addition to that due to the action of the molecules supposed to be in a state of relative equilibrium.
Now the pressure p, could only arise from the aggregate of the molecular actions called into play
by the displacements of the molecules from their positions of relative equilibrium ; but since these
displacements take place, on an average, indifferently in all directions, it follows that the actions
of which p, is composed neutralize each other, so that p, = 0. The same conclusion might be
drawn from the hypothesis of starts, supposing, as it is natural to do, that each start calls into
action as much increase of pressure in some directions as diminution of pressure in others.

If the motion of uniform dilatation coexists with two motions of shifting, I shall suppose,
for the same reason as before, that the effects of these different motions arve superimposed. Hence
subtracting § from each of the three quantities ¢, ¢” and ¢”, and putting the remainders in the
place of €, ¢’ and ¢” in equations (5), we have

pl = %Iu(eu + elll _ 2el), p// - %’,L(e’” + el _ Qe"), p’” = %#(el + en _ Qe’”) ......... (6)

4

If we had started with assuming ¢ (e, €’, €”) to be a linear function of ¢, ¢’ and e”,
avoiding all speculation as to the molecular constitution of a fluid, we should have had at once
p'=Cé + C'(¢" +€”), since p’ is symmetrical with respect to ¢’ and e”; or, changing the
constants, p'=%u(e”" + € —2¢) + « (¢ +¢” + €”). The expressions for p” and p” would be
obtained by interchanging the requisite quantities. Of course we may at once put « =0 if we
assume that in the case of a uniform motion of dilatation the pressure at any instant depends
only on the actual density and temperature at that instant, and not on the rate at which the
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former changes with the time. Tn most cases to which it would be interesting to apply the
theory of the friction of fluids the density of the fluid is either constant, or may without sensible
error be regarded as constant, or else changes slowly with the time. In the first two cases the
results would be the same, and in the third case nearly the same, whether « were equal to zero or
not. Consequently, if theory and experiment should in such cases agree, the experiments must
not be regarded as confirming that part of the theory which relates to supposing x to be

equal to zero.

4. Tt will be easy now to determine the oblique pressure, or resultant of the normal pressure
and tangential action, on any plane. Let us first consider a plane drawn through the point P
parallel to the plane yz. Let O, make with the axes of w, y, % angles whose cosines are ', m’, n';
let I, m", n” be the same for Oy, and 1”, m", w"” the same for Oz, Let P, be the pressure,
and (xty), (wtx) the resolved parts, parallel to g, = respectively, of the tangential force on the
plane considered, all referred to a unit of surface, (#fy) being reckoned positive when the part
of the fluid towards — @ urges that towards +& in the positive direction of y, and similarly
for (vtz). Consider the portion of the fluid comprised within a tetrahedron having its vertex
in the point P, its base parallel to the plane y#, and its three sides parallel to the planes 2y, y 2,
% @, respectively. Let 4 be the area of the base, and therefore /' 4, 1" 4, 1" 4 the areas of the faces
perpendicular to the axes of #,y,%,. By D’Alembert’s principle, the pressures and tangential
actions on the faces of this tetrahedron, the moving forces arising from the external attractions,
not including the molecular forces, and forces equal and opposite to the effective moving forces will
be in equilibrium, and therefore the sums of the resolved parts of these forces in the directions
of @, y and = will each be zero. Suppose DOW the dimensions of the tetrahedron indefinitely
diminished, then the resolved parts of the external, and of the effective moving forces will vary
ultimately as the cubes, and those of the pressures and tangential forces on the sides as the
squares of homologous lines. Dividing therefore the three equations arising from equating to zero
the resolved parts of the above forces by 4, and taking the limit, we have

P=30(p+p) (zty) =2m (p + p), (wtz)=Zin'(p +2'),

the sign = denoting the sum obtained by taking the quantities corresponding to the three axes
of extension in succession. Putting for p’, p” and p" their values given by (6), putting € +e”+e”
= 39, and observing that %=1, Zl'm'=0, Zi'n'=0, the above equations become

Pi=p -2uSl% +2ud, (2ty)=- eu3ln'e, (@tz)=-— euZln'e.

The method of determining the pressure on any plane from the pressures on three planes
at right angles to each other, which has just been given, has already been employed by MM. Cauchy
and Poisson.

The most direct way of obtaining the values of Sr2d &ec. would be to express !, m’ and
% in terms of ¢ by any two of equations (3), in which #, 4, % are proportional to I, m', 7,
together with the equation " + m™ + n*=1, and then to express the resulting symmetrical function
of the roots of the cubic equation (4) in terms of the coefficients.  But this method would
be excessively laborious, and need not be resorted to. For after eliminating the angular motion of
the element of fluid considered the remaining velocities are e/, €'y, ¢" 2/, parallel to the axes of
@59, %, The sum of theresolved parts of these parallel to the axis of @ is Vewn'+ ey +17e" /.
Putting for /, y,, %, their values I'o'+m'y +n'% &c., the above sum becomes

A2 +yf SUm'e + FSin'e;
but this sum is the same thing as the velocity U in equation (2}, and therefore we have

du du dv du dw
l/2 '=_, ¢t I,_—_.l el ==, ? t r=_€l et r) .
2lte an Si'm'e 9(\dy +d1’) Slne z(dz-i— P
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It may also be very easily proved directly that the value of 34, the rate of cubical dilatation,
satisfies the equation

38—d—u dv+dw 7)
—dm+dy jr79RRIELEILI LT LI AL R LR AL (

Let P, (ytz), (ytx) be the quantities referring to the axis of y, and P, (x¢), (vfy) those
referring to the axis of 2, which correspond to P, &c. referring to the axis of #. Then we see
that (ytz) = (sty), (3tx) = (xt2), (#ty) = (ytx). Denoting these three quantities by 7', T,, T},
and making the requisite substitutions and interchanges, we have

du
Pi=p-2u (—;“3>a

N )

" dv dw dw du du dv
P]__M(dz’-’-@) . T2=—p. (E+$), T3=-~p.(@+zd—a-}').
It may also be useful to know the components, parallel to @, y, =, of the oblique pressure on a
plane passing through the point P, and having a given direction. Let I, m, n be the cosines of the
angles which a normal to the given plane makes with the axes of w, y, x; let P, Q, B be the
components, referred to a unit of surface, of the oblique pressure on this plane, P, Q, R being
reckoned positive when the part of the fluid in which is situated the normal to which /, m and n
refer is urged by the other part in the positive directions of #, y, %, when /, m and n are positive.
Then considering as before a tetrahedron of which the base is parallel to the given plane, the
vertex in the point P, and the sides parallel to the co-ordinate planes, we shall have

P=iP +mT;+nT,
Q= lT3 + sz"‘ nT]a ree Pt aeseastes ararsneesesetotpovae (9)
R=lT2+mTl+nP3.[

In the simple case of a sliding motion for which =0, v = f(2), w =0, the only forces,
besides the pressure p, which act on planes parallel to the co-ordinate planes are the two tangential

L. . . dv . .
forces 7', the value of which in this case is — u e In this case it is easy to show that the axes of
@

extension are, one of them parallel to O, and the two others in a plane parallel to @y, and inclined
at angles of 45° to Ox. We see also that it is necessary to suppose u to be positive, since
otherwise the tendency of the forces would be to increase the relative motion of the parts of the
fluid, and the equilibrium of the fluid would be unstable.

5. Having found the pressures about the point P on planes parallel to the co-ordinate planes,
it will be easy to form the equations of motion. Let X, Y, Z be the resolved parts, parallel
to the axes, of the external force, not including the molecular force; let p be the density, ¢ the
time. Consider an elementary parallelepiped of the fluid, formed by planes parallel to the
co-ordinate planes, and drawn through the point (@, y, ¥) and the point (z + Aw, y + Ay, ¥ + A%).
The mass of this element will be ultimately p A2 Ay Az, and the moving force parallel to « arising
from the external forces will be ultimately p X Aw Ay As; the effective moving force parallel

to 2 will be ultimately p —DDi:A.r Ay Az, where D is used, as it will be in the rest of this paper,




AND THE EQUILIBRIUM AND MOTION OF ELASTIC SOLIDS. 297

to denote differentiation in which the independent variables are ¢ and three parameters of the
particle considered, (such for instance as its initial co-ordinates,) and not ¢, @, y, . It is easy also
to show that the moving force acting on the element considered arising from the oblique pressures
. ) dP dT, dT, . . .
on the faces is ultimately (E + dy + —d;) Ax Ay As, acting in the negative direction. Hence
we have by D’Alembert’s principle
Du dpP, dT, dT.
()t

zu el Pt = 0y &Cupreransernrnnarnranensennons
D f st dy T ds » &c (10)

i hich ti t t for its value + % " + “ + d similarly f v

w . l ,,,,, — [—— e v — —— e

in which equations we must put fo Dt di d: w » and simllarly for p
Dw

and D In considering the general equations of motion it will be needless to write down more

than one, since the other two may be at once derived from it by interchanging the requisite
quantities. The equations (10), the ordinary equation of continuity, as it is called,

do dpu dpv dpw
PP R R b e, (1)

dt  da dy dz

which expresses the condition that there is no generation or destruction of mass in the interior

of a fluid, the equation connecting p and p, or in the case of an incompressible fluid the equivalent

D . . .
D.g =0, and the equation for the propagation of heat, if we choose to take account

of that propagation, are the only equations to be satisfied at every point of the interior of
the fluid mass.

As it is quite useless to consider cases of the utmost degree of generality, I shall suppose
the fluid to be homogeneous, and of a uniform temperature throughout, except in so far as the
temperature may be raised by sudden compression in the case of small vibrations. Hence in
equations (10) p may be supposed to be constant as far as regards the temperature; for, in the
case of small vibrations, the terms introduced by supposing it to vary with the temperature
would involve the square of the velocity, which is supposed to be neglected. If we suppose
i to be independent of the pressure also, and substitute in (10) the values of P, &c. given by (8),
the former equations become

Du X d duw d'u du u d du dv dw

P(m— )+%—M(@+W+d-,—%’5)—EE(E+@+E§)=O, &C.......(l?)

Let us now consider in what cases it is allowable to suppose u to be independent of the
pressure. It has been concluded by Dubuat, from his experiments on the motion of water in
pipes and canals, that the total retardation of the velocity due to friction is not increased by
increasing the pressure. The total retardation depends, partly on the friction of the water
against the sides of the pipe or canal, and partly on the mutual friction, or tangential action,
of the different portions of the water. Now if these two parts of the whole retardation were
separately variable with p, it is very unlikely that they should when combined give a result
independent of p. The amount of the internal friction of the water depends on the value of p.
I shall therefore suppose that for water, and by analogy for other incompressible fluids, u is
independent of the pressure. On this supposition, we have from equations (11) and (12)

equation

Du dp du du  du
P(E?'X>+Zz—m’“<%?+?¢fy—2+3?)=°’&° ------------ .(19)
due dv dw
P R

Vou. VIII. Part IIL Qe
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These equations are applicable to the determination of the motion of water in pipes and canals,
to the calculation of the effect of friction on the motions of tides and waves, and such questions.

If the motion is very small, so that we may neglect the square of the velocity, we may

D d . . . T .
put 1—)—:—‘ = d—; » &c. in equations (18). The equations thus simplified are applicable to the
determination of the motion of a pendulum oscillating in water, or of that of a vessel filled with
water and made to oscillate. They are also applicable to the determination of the motion of
a pendulum oscillating in air, for in this case we may, with hardly any error, neglect the
compressibility of the air.

The case of the small vibrations by which sound is propagated in a fluid, whether a

d
liquid or a gas, is another in which EL‘ may be neglected. For in the case of a liquid reasons

have been shown for supposing 4 to be independent of p, and in the case of a gas we may neglect

Zi, if we neglect the small change in the value of u, arising from the small variation of
p

pressure due to the forces X, Y, Z.

6. Besides the equations which must hold good at any point in the interior of the mass,
it will be necessary to form also the equations which must be satisfied at its boundaries. Let
M be a point in the boundary of the fluid. Let a normal to the surface at M, drawn on the
outside of the fluid, make with the axes angles whose cosines are I, m,n. Let P, Q, R be
the components of the pressure of the fluid about M on the solid or fluid with which it is in
contact, these quantities being reckoned positive when the fluid considered presses the solid or fluid
outside it in the positive directions of a, ¥, %, supposing !/, m and » positive, Let § be a
very small element of the surface about Af, which will be ultimately plane, §" a plane parallel
and equal to .5, and directly opposite to it, taken within the fluid. Let the distance between .§
and 8" be supposed to vanish in the limit compared with the breadth of $, a supposition which
may be made if we neglect the effect of the curvature of the surface at M ; and let us consider the
forces acting on the element of fluid comprised between .§ and .§°, and the motion of this
element. If we suppose equations (8) to hold good to within an insensible distance from the
surface of the fluid, we shall evidently have forces ultimately equal to PSS, QS, RS, (P,Q and R
being given by equations (9),) acting on the inner side of the element in the positive directions of
the axes, and forces ultimately equal to P'S, Q'S, R'S acting on the outer side in the negative
directions. "T'he moving forces arising from the external forces acting on the element, and the
effective moving forces will vanish in the limit compared with the forces PS, &c.: the same
will be true of the pressures acting about the edge of the element, if we neglect capillary
attraction, and all forces of the same nature. Hence, taking the limit, we shall have

P=P, Q=@ R =R

‘The method of proceeding will be different according as the bounding surface considered is a
free surface, the surface of a solid, on the surface of separation of two fluids, and it will be
necessary to consider these cases separately. Of course the surface of a liquid exposed to the
air is really the surface of separation of two fluids, but it may in many cases be regarded as
a free surface if we neglect the inertia of the air: it may always be so regarded if we neglect
the friction of the air as well as its inertia.

Let us first take the case of a frec surface exposed to a pressure I1, which is supposed to
be the same at all points, but may vary with the time; and let L = 0 be the equation to the
surface. In this case we shall have P’ =iIl, Q = mIl, R =xll; and putting for P, Q, R their
values given by (9), and for P, &c. their values given by (8), and observing that in this case
d =0, we shall have
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dx

HH-p)+ {Q’du*’”(du‘“dv Ge+)t=o & (19
( P “ dy da))+n dz’+dm I_ ] [ ) )

dL dL dL .
in which equations {, m, » will have to be replaced by 32’ dy ’ dz’ to which they are pro-

portional.
If we choose to take account of capillary attraction, we have only to diminish the pressure II

1 1 . . . ) .
by the quantity H (— + —), where H is a positive constant depending on the nature of the fluid,
T T

and 7, 7, are the principal radii of curvature at the point considered, reckoned positive when
the fluid is concave outwards. Equations (14) with the ordinary equation

dL dL dL dL 0 (15)

e UV + W—— = 0y tereeiriiiiiniiaiiaanee

dt dx dy dx ’
are the conditions to be satisfied for points at the free surface. Equations (14) are for such
points what the three equations of motion are for internal points, and (15) is for the former
what (11) is for the latter, expressing in fact that there is no generation or destruction of fluid
at the free surface.

The equations (14) admit of being differently expressed, in a way which may sometimes
be useful. If we suppose the origin to be in the point considered, and the axis of z to be the
external normal to the surface, we have I=m =0, n =1, and the equations become

dw du dw do

dw
dw 0 2 0, M=p+2u =0 cereerrenninnenn
=tz iy M-p+2u_—=0 (16)

The relative velocity parallel to  of a point @, v, 0) in the free surface, indefinitely near

L. . g dw d
the origin, 1is E% Z + d—y—y + hence we see that d—;: , :i??:) are the angular velocities, reckoned

from @ to ¥ and from y to = respectively, of an element of the free surface. Subtracting the
linear velocities due to these angular velocities from the relative velocities of the point @, ¥, 2),
and calling the remaining relative velocities U, V, W, we shall have

U< duz, +du ‘4 (du ﬂ),{
T da dyy dz " dw )’
V—-d”w'+dv ; dv dw)z,
T da dyy+(&_z+dy ’
dw
W=—%.
dz ®
Hence we see that the first two of equations (16) express the conditions that —; =0

ds

av . . - s p 1
and PP 0, which are evidently the conditions to be satisfied in order that there may be no
%

sliding motion in a direction parallel to the free surface. It would be easy to prove that these
are the conditions to be satisfied in order that the axis of » may be an axis of extension.

The next case to consider is that of a fluid in contact with a solid. The condition which first
occurred to me to assume for this case was, that the film of fluid immediately in contact with the
solid did not move relatively to the surface of the solid. T was led to try this condition from the
following considerations. According to the hypotheses adopted, if there was a very large relative

QaqQ?2
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motion of the fluid particles immediately about any imaginary surface dividing the fluid, the
tangential forces called into action would be -very large, so that the amount of relative motion
would be rapidly diminished. Passing to the limit, we might suppose that if at any instant the
velocities altered discontinuously in passing across any imaginary surface, the tangential force
called into action would immediately destroy the finite relative motion of particles indefinitely close
to each other, so as to render the motion continuous; and from analogy the same might be
supposed to be true for the surface of junction of a fluid and solid. But having calculated,
according to the conditions which I have mentioned, the discharge of long straight circular pipes
and rectangular canals, and compared the resulting formule with some of the experiments of
Bossut and Dubuat, I found that the formulae did not at all agree with experiment. I then
tried Poisson’s conditions in the case of a circular pipe, but with no better success. In fact, it
appears from experiment that the tangential force varies nearly as the square of the velocity with
which the fluid flows past the surface of a solid, at least when the velocity is not very small. It
appeérs however from experiments on pendulums that the total friction varies as the first power
of the velocity, and consequently we may suppose that Poisson’s conditions, which include as a
particular case those which I first tried, hold good for very small velocities. I proceed therefore
to deduce these conditions in a manner conformable with the views explained in this paper.

First, suppose the solid at rest, and let L = 0 be the equation to its surface. Let M’ be a
point within the fluid, at an insensible distance 2 from M. Let @ be the pressure which would
exist about M if there were no motion of the particles in its neighbourhood, and let p, be the
additional normal pressure, and # the tangential force, due to the relative velocities of the
particles, both with respect to one another and with respect to the surface of the solid. If the
motion is so slow that the starts take place independently of each other, on the hypothesis of starts,
or that the molecules are very nearly in their positions of relative equilibrium, and if we suppose
as before that the effects of different relative velocities are superimposed, it is easy to show that
p, and £, are linear functions of %, v, w and their differential coefficients with respect to @, y, and z;
%, v, &c. denoting here the velocities of the fluid about the point M’, in the expressions for which
however the co-ordinates of M may be used for those of M, since £ is neglected. Now the

. . . . . d 4
relative velocities about the points M and M’ depending on Eﬁt &e. are comparable with £ hy
x x

while those depending on u, v and w are comparable with these quantities, and therefore in
considering the action of the fluid on the solid it is only necessary to consider the quantities
#, v and w. Now since, neglecting %, the velocity at M’ is tangential to the surface at M,
u, v, and w are the components of a certain velocity ¥ tangential to the surface. The pressure p,
must be zero; for changing the signs of %, v, and w the circumstances concerued in its production
remain the same, whereas its analytical expression changes sign. The tangential force at M will
be in the direction of V, and proportional to it, and consequently its components along the axes
of @, y, ¥ will be proportional to %, v, w. Reckoning the tangential force positive when,
I, m, and n being positive, the solid is urged in the positive directions of @, y, =, the resolved
parts of the tangential force will therefore be vu, vv, vw, where v must evidently be positive,
since the effect of the forces must be to check the relative motion of the fluid and solid. The normal
pressure of the fluid on the solid being equal to &, its components will be evidently =, mw, nw.

Suppose now the solid to be in motion, and let 2/, v, &’ be the resolved parts of the velocity
of the point M of the solid, and o', w', &” the angular velocities of the solid. By hypothesis,
the forces by which the pressure at any point differs from the normal pressure due to the action of
the molecules supposed to he in a state of relative equilibrium about that point are independent of
any velocity of translation or rotation. Supposing then linear and angular velocities equal.and
opposite to those of the solid impressed both on the solid and on the fluid, the former will be for
an instant at rest, and we have only to treat the resulting velocities of the fluid as in the first case.
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Hence P' = lw + v(u — %), &c.; and in the equations (8} we way employ the actual velocities
w, v, w, since the pressures P, Q, R are independent of any motion of translation and rotation
common to the whole fluid. Hence the equations P’ =P, &c. give us

, du du dv du dw R
(w-p)+v(u—-uw)+upu {Ql((% - S) + m(@ + 37) 3 ( + ——)}=0, &eayeenna (17)

" ‘dz  dx
which three equations with (15) are those which must be satisfied at the surface of a solid, together
with the equation L =0. It will be observed that in the case of a free surface the pressures
P, Q, R are given, whereas in the case of the surface of a solid they are known only by the
solution of the problem. But on the other hand the form of the surface of the solid is given,
whereas the form of the free surface is known only by the solution of the problem.

Dubuat found by experiment that when the mean velocity of water flowing through a pipe is
less, than about one inch in a second, the water near the inner surface of the pipe is at rest.
If these experiments may be trusted, the conditions to be satisfied in the case of small velocities
are those which first occurred to me, and which are included in those just given by supposing v = .

I have said that when the velocity is not very small the tangential force called into action by
the sliding of water over the inner surface of a pipe varies nearly as the square of the velocity.
This fact appears to admit of a natural explanation. When a current of water flows past an
obstacle, it produces a resistance varying nearly as the square of the velocity. Now even if the
inner surface of a pipe is polished we may suppose that little irregularities exist, forming so many
obstacles to the current, Each little protuberance will experience a resistance varying nearly as
the square of the velocity, from whence there will result a tangential action of the fluid on the
surface of the pipe, which will vary nearly as the square of the velocity ; and the same will be true
of the equal and opposite reaction of the pipe on the fluid. The tangential force due to this cause
will be combined with that by which the fluid close to the pipe is kept at rest when the velocity
is sufficiently small.

There remains to be considered the case of two fluids having a common surface. Let
u, v, w, w, ¢ denote the quantities belonging to the second fluid corresponding to w, &c.
belonging to the first. Together with the two equations L = 0 and (15) we shall have in this
case the equation derived from (15) by putting u, v, w for u, v, w; or, which comes to the
same, we shall have the two former equations with

lw-u)+m@—-v)+n(w-w) =0 (18)
If we consider the principles on which equations (17) were formed to be applicable to the
present case, we shall have six more equations to he satisfied, namely (17), and the three
equations derived from (17) by interchanging the quantities referring to the two fluids, and
changing the sigus of I, m, n. These equations give the value of =, and leave five equations
of condition. If we must suppose v = co, as appears most probable, the six equations above
mentioned must be replaced by the six # =, v =wv, w =w, and

ip - f‘-f(U’ v, w) =1p - u f(, v, w'), &c.,

f (u, v, w) denoting the coefficient of # in the first of equations (17). We have here six equations

of condition instead of five, but then the equation (18) becomes identical.

7. The most interesting questions connected with this subject require for their solution a
knowledge of the conditions which must be satisfied at the surface of a solid in contact with
the fluid, which, except perhaps in case of very small motions, are unknown. It may be
well however to give some applications of the preceding equations which are independent of
these conditions. Let us then in the first place consider in what manner the transmission of
sound in a fluid is affected by the tangential action. To take the simplest case, suppose that
no forces act on the fluid, so that the pressure and density are constant in the state of
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equilibrium, and conceive a series of plane waves to be propagated in the direction of the
axis of @, so that uw=f(x,¢), v=0, w=0. Let p, be the pressure, and p, the density of
the fluid when it is in equilibrium, and put p =p + p’. Then we have from equations (11)
and (12), omitting the square of the disturbance,

1 dp+du 0 du+dp' 4 du o (19)
;’H =0 P, TR Bdez = Ovevvennecnas

Let AAp be the increment of pressure due to a very small increment Ap of density, the
temperature being unaltered, and let m be the ratio of the specific heat of the fluid when
the pressure is constant to its specific heat when the volume is constant; then the relation
between p” and p will be

p' = mA (P - P,)' vesvervsanss no-ullo..l..i.-(go)
Eliminating p’ and p from (19) and (20) we get

d*u d*u  4n dPu

aF "™ a5y dtar

. 2w
A
stituting in the above equation, we see that ¢ (f) and (#) must satisfy the same equation,
namely, ’ '

2
To obtain a particular solution of this equation, let == ¢ (Z) cos + v (¢) sin —:—m Sub-

167 1
8A%p,

3O+ T mAp D+ ot (O =0,

the integral of which is

2xb , . 2mwbt
¢(t)=e“‘(Ccos‘ 7;\t+ C sm—’;—),

2 2
where ¢ = ——, ’=m4 - M,
8X°p, 0
expression with different arbitrary constants for - (¢), replacing products of sines and cosines
by sums and differences, and combining the resulting sines and cosines two and two, we see
that the resulting value of w represents two series of waves propagated in opposite directions.

Considering only those waves which are propagated in the positive direction of @, we have

8§ . . .
il C and C' being arbitrary constants. Taking the same

u=C e “cos {—2}{ (bt -2) +C,; }...............(21)

We see then that the effect of the tangential force is to make the intensity of the sound
diminish as the time increases, and to render the velocity of propagation less than what it
would otherwise be. Both effects are greater for high, than for low notes; but the former
depends on the first power of u, while the latter depends only on u’. It appears from the
experiments of M. Biot, made on empty water pipes in Paris, that the velocity of propagation
of sound is sensibly the same whatever be its pitch. Hence it is necessary to suppose that for air

Nt is insensible compared with 4 or 2. I am not aware of any similar experiments made

L. P,

2

on water, but the ratio of ()\L’L) to 4 would probably be insensible for water also. The
P,

diminution of intensity as the time increases is, in the case of plane waves, due entirely to

friction ; but as we do not possess any means of measuring the intensity of sound the theory

cannot be tested, nor the numerical value of u determined, in this way.
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The velocity of sound in air, deduced from the note given by a known tube, is sensibly
less than that determined by direct observation. Poisson thought that this might be due to the
retardation of the air by friction against the sides of the tube. But from the above investigation
it seems unlikely that the effect produced by that cause would be sensible.

The equation (21) may be considered as expressing in all cases the effect of friction; for
we may represent an arbitrary disturbance of the medium as the aggregate of series of plane
waves propagated in all directions.

8. Let us now consider the motion of a mass of uniform inelastic fluid comprised
between two cylinders having a common axis, the cylinders revolving uniformly about their
axis, and the fluid being supposed to have attained its permanent state of motion. Let the
axis of the cylinders be taken for that of ®, and let ¢ be the actual velocity of any particle,
sothat wu = —¢qsin@, v=gcosh, w=0, r and 6 being polar co-ordinates in a plane parallel to xy.
&f d&f dif 1df+ 1 &°f

Observing that Py + d—f == + T hRde where f is any function of # and y, and

d . . . . .
that a = 0, we have from equations (13), supposing after differentiation that the axis of w

dé .
coincides with the radius vector of the point considered, and omitting the forces, and the part
of the pressure due to them,

dp ¢
ar Py =0
d’q 149 ¢

= = 0y veiesscnceninsnssasas (22
dr Trdr w0 (22)

and the equation of continuity is satisfied identically.
. C
The integral of (22) is g==+ C'r.

If a is the radius of the inner, and & that of the outer cylinder, and if ¢, ¢, are the
velocities of points close to these cylinders respectively, we must have ¢ =¢q, when 7 =@, and
g = ¢, when r =&, whence

1 ab
q =m{ (g, — agqs) - + (bgy —aq))r } PR 1) ]

If the fluid is infinitely extended, b = ¢, and

q IR

g
q

These cases of motion were considered by Newton, (Principia, Lib. 11. Prop. 51.) The
hypothesis which I have made agrees in this case with his, but he arrives at the result that
the velocity is constant, not, that it varies inversely as the distance. This arises from his having
taken, as the condition of there being no acceleration or retardation of the motion of an annulus,
that the force tending to turn it in one direction must be equal to that tending to turn it in
the opposite, whereas the true condition is that the moment of the force tending to turn it
one way must be equal to the moment of the force tending to turn it the other. Of course,
making this alteration, it is easy to arrive at the above result by Newton’s reasoning. The
erfor just mentioned vitiates the result of Prop. 52. It may be shown from the general equations
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that in this case a permanent motion in annuli is impossible, and that, whatever may be the
law of friction between the solid sphere and the fluid. Hence it appears that it is necessary to
suppose that the particles move in planes passing through the axis of rotation, while they at
the same time move round it. In fact, it is easy to see that from the excess of centrifugal
force in the neighbourhood of the equator of the revolving sphere the particles in that part
will recede from the sphere, and approach it again in the peighbourhood of the poles, and this
circulating motion will be combined with a motion about the axis. If however we leave the
centrifugal force out of consideration, as Newton has done, the motion in annuli becomes
possible, but the solution is different from Newton’s, as might have been expected.

The case of motion considered in this article may perhaps admit of being compared with
experiment, without knowing the conditions which must be satisfied at the surface of a solid.
A hollow, and a solid cylinder might be so mounted as to admit of being turned with different
uniform angular velocities round their common axis, which is supposed to be vertical. If both
cylinders are turned, they ought to be turned in opposite directions, if only one, it ought to
be the outer one; for if the inner were made to revolve too fast, the fluid near it would have
a tendency to fly outwards in consequence of the centrifugal force, and eddies would be produced.
As long as the angular velocities are not great, so that the surface of the liquid is very nearly
plane, it is not of much importance that the fluid is there terminated; for the conditions which
must be satisfied at a free surface are satisfied for any section of the fluid made by a horizontal
plane, so long as the motion about that section is supposed to be the same as it would be
if the cylinders were infinite. The principal difficulty would probably be to measure accurately
the time of revolution, and distance from the axis, of the different annuli. This would probably
be best done by observing motes in the fluid. It might be possible also to discover in this
way the conditions to be satisfied at the surface of the cylinders; or at least a law might be
suggested, which could be afterwards compared more accurately with experiment by means of
the discharge of pipes and canals.

If the rotations of the cylinders are in opposite directions, there will be a certain distance from
the axis at which the fluid will not revolve at all. Writing - ¢, for ¢, in equation (23), we have

b(b
for this distance \/g_(_(]:a_tzzz .
bq, + aq,

9. Although the discharge of a liquid through a long straight pipe or canal, under given
circumstances, cannot be calculated without knowing the conditions to be satisfied at the surface of
contact of the fluid and solid, it may be well to go a certain way towards the solution.

Let the axis of # be parallel to the generating lines of the pipe or canal, and inclined at
an angle a to the horizon ; let the plane yx be vertical, and let y and & be measured downwards.
The motion being uniform, we shall have u=0, v=0, w = f(x,y), and we have from equations (13}

dp dp dp

g, =Epcosa -

—0 d’w d‘w)
de  dy )

=gpsina4—;u.(a;2+ @z

d
In the case of a canal ZP = 0; and the calculation of the motion in a pipe may always be reduced
F

s . dp .
to that of the motion in the same pipe when dP is supposed to be zero, as may be shown by
g
reasoning similar to Dubuat’s. Moreover the motion in a canal is a particular case of the motion

d
in a pipe. For consider a pipe for which d—z = 0, and which is divided symmetrically by the

L dw
plane zx. From the symmetry of the motion, it is clear that we must have dy = 0 when 2 =0;
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but this is precisely the condition which would have to be satisfied if the fluid had a free surface
coinciding with the plane #%; hence we may- suppose the upper half of the fluid removed, without
affecting the motion of the rest, and thus we pass to the case of a canal. Hence it is the same
thing to determine the motion in a canal, as to determine that in the pipe formed by completing the
canal symmetrically with respect to the surface of the fluid.

We have then, to determine the motion, the equation
d*w d'w sin
Lgesina_
da*  dy’ "

In the case of a rectangular pipe, it would not be difficult to express the value of w at any point
in terms of its values at the several points of the perimeter of a section of the pipe. In the case
of a cylindrical pipe the solution is extremely easy: for if we take the axis of the pipe for that of

¥, and take polar co-ordinates 7, 8 in a plane parallel to 2y, and observe that 10 = 0, since the
motion is supposed to be symmetrical with respect to the axis, the above equation becomes

dw 1dw gpsina

dr " r dr "

Let a be the radius of the pipe, and U the velocity of the fluid close to the surface; then,
integrating the above equation, and determining the abitrary constants by the conditions that w
shall he finite when # = 0, and w = I7 when » = a, we have

w=5PS %y, T
4u

SECTION IIL

Objections to Lagrange's proof of the theorem that if udx +vdy +wdz is an exact
differential at any ome instant it ‘is always so, the pressure being supposed equal
in all directions. Principles of M. Cauchy’s proof. A new proof of the theorem.
A physical interpretation of the circumstance of the above expression being an
exact differential. o ‘

10. Tue proof of this theorem given by Lagrange depends on the legitimacy of supposing
%, v and w capable of expansion according to positive integral powers of ¢, for a sufficiently
small finite value of £ It is clear that the expansion cannot contain negative powers of ¢, since
u, v and w are supposed to be finite when ¢ =0; but it may be objected to Lagrange's proof
that there are functions of #of which the expansion contains fractional powers of #, and that we do
not know but that %, v and w may be such functions. This objection has been considered by
Mr. Power*, who has shown that the theorem is true if we suppose %, v and w capable of
expansion according to any powers of £.  Still the proof remains unsatisfactory, in fact inconclusive,

1

for these are functions of ¢, (for instance e, t log t,) which do not admit of expansion according

* Cambridge Philosophical Transactions, Vol. vir. Part 3.

Vor. VIII. Paxrr IIL Rz




