General Energy Transport Equation

(microscopic energy balance)

As for the derivation of the microscopic momentum balance, the microscopic energy balance is derived on an arbitrary volume, V, enclosed by a surface, S.

Gibbs notation:

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T \right) = k \nabla^2 T + S$$

see handout for component notation

© Faith A. Morrison, Michigan Tech U.

General Energy Transport Equation

(microscopic energy balance)

velocity must satisfy equation of motion, equation of continuity

see handout for component notation

Equation of energy for Newtonian fluids of constant density, ρ , and thermal conductivity, k, with source term (source could be viscous dissipation, electrical energy, chemical energy, etc., with units of energy/(volume time)).

CM310 Fall 1999 Faith Morrison

Source: R. B. Bird, W. E. Stewart, and E. N. Lightfoot, *Transport Processes*, Wiley, NY, 1960, page 319.

Gibbs notation (vector notation)

$$\left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T\right) = \frac{k}{\rho \hat{C}_p} \nabla^2 T + \frac{S}{\rho \hat{C}_p}$$

Note: this handout is on the web

Cartesian (xyz) coordinates:

$$\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} = \frac{k}{\rho \hat{C}_p} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{S}{\rho \hat{C}_p}$$

Cylindrical ($r\theta z$) coordinates:

$$\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} = \frac{k}{\rho \hat{C}_p} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{S}{\rho \hat{C}_p}$$

Spherical (rθφ) coordinates:

$$\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial T}{\partial \phi} = \frac{k}{\rho \hat{C}_p} \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) +$$

Microscopic Energy Balance – is the correct physics for all problems!

Tricky step:

solving for *T* field; this can be mathematically difficult

- •partial differential equation in up to three variables
- •boundaries may be complex
- •multiple materials, multiple phases present
- •may not be separable from mass and momentum balances

Strategy: solve using numerical methods

(e.g. Comsol)

**** Or ****

Develop correlations on complex systems by using

Dimensional Analysis

© Faith A. Morrison, Michigan Tech U.

There are two types of data correlations you will encounter:

- 1. Standardized correlations you can look up (e.g. for *h* to use in heat exchangers)
- 2. In-house correlations you develop yourself (e.g. for scale-up)

Type 1: Standardized Correlations for Simple Geometries (you can look them up), e.g. heat exchanger design

out

 $Q = UA\Delta T$ these are easy to sort

but what about this? For design purposes, where

do we get U?

ANSWER: Begin at the beginning: how did we <u>define</u> (develop) *U*?

 T_1' less hot T_2' hot

© Faith A. Morrison, Michigan Tech U.

eat exchanger design

** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **

Example 4: Heat flux in a cylindrical shell

$$\frac{c_{1}}{R_{1}} = h_{1}(T_{b1} - T_{w1})$$

$$\frac{c_{1}}{R_{2}} = h_{2}(T_{w2} - T_{b2})$$

$$4 equations 4 unknown$$

$$T_{w1} = -\frac{c_{1}}{k} \ln R_{1} + c_{2}$$

$$T_{w2} = -\frac{c_{1}}{k} \ln R_{2} + c_{2}$$

4 equations

4 unknowns; c_1, T_{w1}, c_2, T_{w2}

© Faith A. Morrison, Michigan Tech U.

** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **

Example 4: Heat flux in a cylindrical shell

Results: Radial Heat flux in an Annulus

$$T - T_{b2} = \frac{\left(T_{b1} - T_{b2}\right) \left(\ln\left(\frac{R_2}{r}\right) + \frac{k}{h_2 R_2}\right)}{\frac{k}{h_2 R_2} + \ln\left(\frac{R_2}{R_1}\right) + \frac{k}{h_1 R_1}}$$

$$\frac{q_r}{A} = \left(\frac{\left(T_{b1} - T_{b2}\right)}{\frac{1}{h_2 R_2} + \frac{1}{k} \ln\left(\frac{R_2}{R_1}\right) + \frac{1}{h_1 R_1}}\right) \left(\frac{1}{r}\right)$$

© Faith A. Morrison, Michigan Tech U.

5

Example 4: Heat flux in a cylindrical shell

Flux:
$$\frac{q_r}{A} = \frac{\left(T_{b1} - T_{b2}\right)}{\frac{1}{h_2 R_2} + \frac{1}{k} \ln \left(\frac{R_2}{R_1}\right) + \frac{1}{h_1 R_1}} \left(\frac{1}{r}\right)$$
Total Heat flow:
$$Q = \left(\frac{q_r}{A}\right) 2\pi L \qquad \text{note that total heat flow is proportional to bulk AT and (almost) area of heat transfer}$$
© Faith A. Morrison, Michigan Tech U.

overall heat xfer coeffs in pipe
$$Q = U_1 A_1 \Delta T$$

$$= \left(\frac{\frac{1}{R_1}}{\frac{1}{h_2 R_2} + \frac{1}{k} \ln \left(\frac{R_2}{R_1}\right) + \frac{1}{h_1 R_1}}\right) (2\pi R_1 L) \Delta T_{driving \ force}$$
The design equation for heat exchangers indicates that,
$$U \text{ depends on geometry } (R_1, R_2), \text{ materials of construction } (k), \text{ and } \dots h_1, h_2.$$
Individual "side" heat transfer coefficients
$$\text{© Faith A. Morrison, Michigan Tech U.}$$

Now: How do we use Dimensional Analysis to develop correlations for *h*?

In principle, with the right math/computer tools, we could calculate the complete temperature and velocity profiles.

How: From the microscopic mass, momentum, and energy balances, calculate velocity field, temperature field, and calculate the total amount of heat transferred. Finally, determine h from its definition.

From the complete solution, we could then calculate *h*:

$$h = \frac{q_r}{A(T_{bulk} - T_{wall})}$$

Integrate heat flux across the total surface area; heat flux comes from Fourier's law; Fourier's law needs T field

Therefore, the equations we need for the complete solution, and the equation we use to define h contain all the physics of h; dimensional analysis on these equations will tell us what h is a function of

© Faith A. Morrison, Michigan Tech U.

Now: How do we use Dimensional Analysis to develop correlations for *h*?

Therefore, the equations we need for the complete solution, and the equation we use to define h contain all the physics of h; dimensional analysis on these equations will tell us what h is a function of

Once we know what *h* is a function of, we can conduct experiments, measure *h* as a function of its variables, and report these data correlations in the literature for others to use.

Dimensional Analysis

governing equations

continuity equation (mass conservation)
equation of motion (momentum conservation)
equation of energy (energy conservation)

strategy: render the governing equations (and boundary conditions) dimensionless to identify the important parameters that apply in every situation.

rely on experiments and data correlations

© Faith A. Morrison, Michigan Tech U.

Dimensional Analysis Procedure:

- 1. select appropriate differential equations and boundary conditions
- 2. select characteristic quantities with which to scale the variables, e.g. \underline{v} , x, P, T- T_o
 - characteristic quantities must be constant
 - must be representative of the system
- 3. scale all variables in the governing equations; yields dimensionless equation as a function of *dimensionless groups*The values of the dimensionless groups determine the properties of the differential equations.
- 4. design scaled-down experiments to develop *data correlations* for the system of interest
- 5. use data correlations to design and evaluate systems

OR

4. perform experiments on an existing system and *correlate* results using dimensionless groups

Energy equation in Cartesian Coordinates:

$$\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} = \frac{k}{\rho \hat{C}_p} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{S}{\rho \hat{C}_p}$$

Next step: choose scale factors and scale each variable.

© Faith A. Morrison, Michigan Tech U.

non-dimensional variables:

$$t^* \equiv \frac{tV}{D}$$

temperature:
$$velocity.$$

$$v^* \equiv \frac{tV}{D}$$

$$v^* \equiv \frac{y}{D}$$

$$v^* \equiv \frac{v_x}{V}$$

$$v^*_x \equiv \frac{v_x}{V}$$

$$v^*_y \equiv \frac{v_y}{V}$$

$$v^*_z \equiv \frac{v_z}{V}$$

$$v^*_z \equiv \frac{v_z}{V}$$

$$v_{x}^{*} \equiv \frac{v_{x}}{V}$$

$$* \quad v_{y}$$

$$v_y^* \equiv \frac{v_y}{V}$$

$$v_z^* \equiv \frac{v_z}{V}$$

driving force:

$$P^* \equiv \frac{P}{\rho V^2}$$
$$g_z^* \equiv \frac{g_z}{\sigma}$$

temperature:

$$T^* \equiv \frac{T - T_o}{(T_1 - T_o)}$$

Energy equation in Cartesian Coordinates:

$$\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} = \frac{k}{\rho \hat{C}_p} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{S}{\rho \hat{C}_p}$$

we substitute the non-dimensional variables. e.g.

$$\frac{\partial T}{\partial t} = \frac{\partial \left[(T_1 - T_o)T^* + T_o \right]}{\partial \left[\frac{t^* D}{V} \right]} = \left[\frac{(T_1 - T_o)V}{D} \right] \frac{\partial T^*}{\partial t^*}$$

after carrying out this change of variable for each term we get the non-dimensional energy equation

© Faith A. Morrison, Michigan Tech U.

© Faith A. Morrison, Michigan Tech U.

Non-dimensional Energy Equation

Reynolds number Dimensionless Groups:

Re

$$Pe = \frac{\rho \hat{C}_p VD}{k} = \left(\frac{\hat{C}_p \mu}{k}\right) \left(\frac{\rho VD}{\mu}\right)$$
Peclet number

Prandtl number

$$Pe = Pr Re$$

© Faith A. Morrison, Michigan Tech U.

We can conclude from the energy equation that

Pe = Pr Re

dimensionless temperature T* is a function of:
$$T^* = T^*(t^*, x^*, y^*, z^*, v_x^*, v_y^*, v_z^*, \text{Pe}, S^*)$$

We know that dimensionless velocities are a function of:

$$v_i^* = v_i^*(t^*, x^*, y^*, z^*, \text{Re, Fr})$$

$$\Rightarrow T^* = T^*(t^*, x^*, y^*, z^*, \text{Re}, \text{Pr}, \text{Fr}, S^*)$$

the equations governing temperature distributions depend on only three dimensionless groups

Now: How do we use Dimensional Analysis to develop correlations for h?

Therefore, the equations we need for the complete solution, and the equation we use to define h contain all the physics of h; dimensional analysis on these equations will tell us what h is a function of

This part is now done. From the microscopic mass, momentum, and energy balances we know that h will depend on at most Re, Pr, Fr.

Now we need to check the equation that defines *h* for more dimensionless groups