General Energy Transport Equation
(microscopic energy balance)

As for the derivation of the microscopic momentum
balance, the microscopic energy balance is derived on
an arbitrary volume, V, enclosed by a surface, S.

dsS A

Gibbs notation:

~ (0T )
pCp(—+y-VT)=kV T+S

see handout for
component notation

ot

© Faith A. Morrison, Michigan Tech U.

General Energy Transport Equation
(microscopic energy balance)

convection
—A source

3T (energy
A ted

pC | Sy VT |=kVPT 4§ e

P ¢ - per unit
\_Y_] volume per

time)
rate of change conduction

(all directions)

velocity must satisfy

equation of motion,

equation of continuity see handout for
component notation

© Faith A. Morrison, Michigan Tech U.




Equation of €NErgy for Newtonian fluids of constant density, p, and

thermal conductivity, k, with source term (source could be viscous dissipation, electrical
energy, chemical energy, etc., with units of energy/(volume time)).

CM310 Fall 1999 Faith Morrison

Source: R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Processes, Wiley, NY,
1960, page 319.

Gibbs notation (vector notation)

(LTW_VTJ: k gop, S Note: th{s
o PCy PG, handout is
on the web

Cartesian (xyz) coordinates:

Ves—+V. — | =+t +—|+—
X pCp

or  or 9T AT _ k (9T T &T), S
o Yoy T pC, o 9F o?

Cylindrical (r8z) coordinates:

"o

v+ —| == o [+
a " ror PC,

T, T vpdT T _ k (19( 9T\, 1T 9T S
o r 06 Zaz_pCp 2967 3

Spherical (r6¢) coordinates:

)

or

AT | T  vydT . vy T _ k [1%(rzaT) 1 i(sineal) L

o or a0 rsin60  pC, " Zine00°""%060) 2
© Faith A. Morrison, Michigan Tech U.

** Revisit from lecture 9 ** Revisit from lecture 9 **

Example 6: Wall heating of
laminar flow. What is the steady
State temperature profile in a
Sflowing fluid in a tube if the walls
are heated (constant flux, q,/A) and
if the fluid is a Newtonian fluid in
laminar flow? ‘

cross-section A:

heater-r

fluid __|

It’s easy to arrive at
correct PDE using
micro-E-balance eqn

© Faith A. Morrison, Michigan Tech U.




. Microscopic Energy Balance — is the
correct physics for all problems!

Tricky step:
solving for T field; this can be mathematically difficult

epartial differential equation in up to three variables
*boundaries may be complex

emultiple materials, multiple phases present

*may not be separable from mass and momentum balances

Strategy: solve using numerical methods
(e.g. Comsol)
dkkd Or fkkk
Develop correlations on
complex systems by using
Dimensional Analysis

© Faith A. Morrison, Michigan Tech U.

Heat exchanger design

There are two types of data correlations you will encounter:

1. Standardized correlations you can look up (e.g. for &
to use in heat exchangers)

2. In-house correlations you develop yourself (e.g. for
scale-up)

Type 1: Standardized Correlations for Simple Geometries
(you can look them up), e.g. heat exchanger design

0 /:,UAép

these are T less hot

easy to sort
but what about this? out T T,
For design purposes, where cold Jess cold
do we get U?
I

ANSWER: Begin at the beginning: how
did we define (develop) U?

hot

© Faith A. Morrison, Michigan Tech U.




Heat exchanger design

** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **

Example 4: Heat flux in a cylindrical shell

What is the steady state

Assumptions: temperature profile in a
°longdp1pe cylindrical shell (pipe) if the fluid
steady state . on the inside is at T, and the
k = thermal conductivity of wall wid on the outside is at T..?
*h,, h, = heat transfer coefficients [luid on the outside b2
(Ty,>T,)
Cooler
fluid at T, :’ ¢
Hot fluid at
T,

© Faith A. Morrison, Michigan Tech U.

Heat exchanger design

** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **
Example 4: Heat flux in a cylindrical shell

Solution:
C
4. =1 <m==== Not constant
A r
C
T=- ;1 Inr+c,

© Faith A. Morrison, Michigan Tech U.




Heat exchanger design

** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **

Example 4: Heat flux in a cylindrical shell

\

c
El = hl(Tbl _Twl)
1
c 4 equations
—= h, (Tw2 sz) 1
R, > 4 unknowns; ¢, 7T,

SOLVE

© Faith A. Morrison, Michigan Tech U.

Heat exchanger design

** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **

Example 4: Heat flux in a cylindrical shell

Results: Radial Heat flux in an Annulus

(?:5;1 —sz{ln(&]—ki]
r ) hR,
-7, =
k {Rz] k
——+In| == |[+—
h2‘R2 ‘Rl thl
gr — (Tbl _sz) [ ]
A 1 1, [ R, 1
——+=In| =% |+ —
h2R2 k ‘Rl thl

© Faith A. Morrison, Michigan Tech U.
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** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **
Example 4: Heat flux in a cylindrical shell

Flux:
4 _ (Tm_sz) [lj
A 11, (R} 1 \r
——t—In| 22 |+ —
mR, k \R | hR,
Total Heat flow:
=
%‘3 0= Q'_rwsz note that tf)tal
= A, heat flow is
1 1 :
3 _ (Tm -1, proportloglsilto
=
% L—i— lln R_2 + 1 (almost) area of
5 hR, k | R AR, | heat transfer
g
=
© Faith A. Morrison, Michigan Tech U.
** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **
Owerall Heat Transfer Coefficient, U
this equation
Q =UAAT gerves as the
=UA(T, T, 2) definition of U
AT driving force

=
o0
3
=
}
D
on
=
[}
-]
(5]
5
3
=
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** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **

overall heat xfer coeffs in pipe Area must be

Q = UlAlAT specified when
U is reported

- 1 1 IR 1 (27ﬂ1LXTb1 _sz)
4 ln 2Ry — | S
WR, ko R1]+kR

AT,

riving force

=
=
< In Lecture 4 we derived a design
S equation for heat exchangers based on
g a constant bulk temperature difference —
§ (driving force for heat transfer)
5]
&
==
© Faith A. Morrison, Michigan Tech U.
** REVIEW OF LECTURE 7 ** REVIEW OF LECTURE 7 **
T} less hot
FINAL RESULT: L
T'-T)-(T)-T.
0= U(27[RL)( 1 1()T,E ;) )
—— In %
(T 2 Tz )
Q — UAAT AT'afriving force
Im

5
; In Lecture 7 we showed that for constant U
g0 (independent of temperature difference) we could
% expand the use of the design equation for heat
§ exchangers to double-pipe heat exchangers with
E the appropriate new driving force A7),

© Faith A. Morrison, Michigan Tech U.




overall heat xfer coeffs in pipe

Q=U,AAT ‘

1
‘Rl

(2RL)AT),

riving force

1 1. (R} 1
——+—In| =% |+ —
h2R2 k Rl klRl ‘

= The design equation for heat
S exchangers indicates that,
ot
éc’n U depends on geometry (R;, R,), materials
= of construction (k), and . . . &, h,.
= ;Y_J
i Individual “side” heat
= transfer coefficients
© Faith A. Morrison, Michigan Tech U.
To design a heat exchanger, we need to specify
geometry and materials of construction; we also
need data to know the /’s
Q=U4AT
We need data 1
_ correlations R
— 1
'%D - 1 1 R L 1 (27[RIL )(AT driving force )
s +—1In| =2 |4
e RN O
_—
(>}
!
g We will (soon) show how one
= develops a data correlation for /4

© Faith A. Morrison, Michigan Tech U.




The other type of data correlations are,

Type 2: Home-made correlations for
complex geometries 14

*Bench-scale W
expts yield data Q,-n s.on '/L'\ ‘

correlations for

Qin’ Ws,on M
*Will match
performance of
full-sized process

unit if scaled
properly

Bench Process
scale scale

© Faith A. Morrison, Michigan Tech U.

Now: How do we use Dimensional Analysis to develop correlations for 4?

Consider: Heat-transfer to fluid inside of a heated tube —
forced-convection heat transfer plus radial conduction

1 d,
T = core temperature

T = wall temperature
T(r,8,z) = fluid temp
distribution

In principle, with the right
math/computer tools, we could
calculate the complete temperature
and velocity profiles.

la
A

(we already figured out what the energy
equation would simplify to in Lecture 9) © Faith A. Morrison, Michigan Tech U.




Now: How do we use Dimensional Analysis to develop correlations for A4?

In principle, with the right math/computer tools, we could
calculate the complete temperature and velocity profiles.

How: From the microscopic mass, momentum, and energy balances,
calculate velocity field, temperature field, and calculate the total amount
of heat transferred. Finally, determine / from its definition.

From the complete solution, we could then calculate A:

Integrate heat flux across the

q total surface area; heat flux

- A(T T ) comes from Fourier’s law;
pulk — Lwall Fourier’s law needs T field

Therefore, the equations we need for the complete solution, and the
equation we use to define 4 contain all the physics of 4; dimensional
analysis on these equations will tell us what /4 is a function of

© Faith A. Morrison, Michigan Tech U.

Now: How do we use Dimensional Analysis to develop correlations for 4?

Therefore, the equations we need for the complete solution, and the
equation we use to define 4 contain all the ph s of 4; dimensional
analysis on these equatiogs will tell us What h is a function of

Once we know what / is a function of,
we can conduct experiments, measure /
as a function of its variables, and report
these data correlations in the literature
for others to use.

© Faith A. Morrison, Michigan Tech U.
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Dimensional Analysis

principle: even in complex systems, the same
equations still apply:

woverning | cOntinuity equation (mass conservation)
canaons 4 equation of motion (momentum conservation)
equation of energy (energy conservation)

strategy: render the governing equations (and
boundary conditions) dimensionless to identify the
important parameters that apply in every situation.

—> rely on experiments and data correlations

© Faith A. Morrison, Michigan Tech U.

Dimensional Analysis Procedure:

1. select appropriate differential equations and boundary conditions
2. select characteristic quantities with which to scale the variables,
eg v,x, PT-T,

» characteristic quantities must be constant

* must be representative of the system

3. scale all variables in the governing equations; yields
dimensionless equation as a function of |dimensionless groups‘

The values of the dimensionless groups determine the properties of
the differential equations.

4. design scaled-down experiments to develop|data correlations ‘
for the system of interest

5. use data correlations to design and evaluate systems

OR

4. perform experiments on an existing system andresults
using dimensionless groups

© Faith A. Morrison, Michigan Tech U.
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Energy equation in Cartesian Coordinates:

a—T+v a—T+v a—T+va—T= k 82T+82T+82T + S
a  Tox Ty Faz pC,la’ 9P o) pC,

Next step: choose scale factors
and scale each variable.

© Faith A. Morrison, Michigan Tech U.

non-dimensional variables:

velocity: driving force:
=X pr= il
x = - 2
4 pV
* 1% * gz
v, = 73’ g = .
* VZ
v, =—
4

© Faith A. Morrison, Michigan Tech U.
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Energy equation in Cartesian Coordinates:

a—T+v a—T+v a—T+va—T— K 82T+82T+82T S
a  Tox Ty Faz pC,la’ 9P o) pC,

we substitute the non-dimensional variables. e.g.

ar _ al(Tl—To)T*H;J:{(TI—To)V]aT*
ot {t*D} D or
a =
E

after carrying out this change of variable for each term

we get the non-dimensional energy equation

© Faith A. Morrison, Michigan Tech U.

Non-dimensional Energy Equation

oT"
= TV
ot

0T  + 9T  «oT
R A

ox dy 0z

SR NPT T T

~

X

dimensionless
energy generation

© Faith A. Morrison, Michigan Tech U.
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) ) Reynolds number
Dimensionless Groups:

Re
A A I_H
Po — pC VD _ C,u (pVDj
Peclet number k k U
H_/
Pr

Prandtl number

Pe = PrRe

© Faith A. Morrison, Michigan Tech U.

We can conclude from the energy equation that @

dimensionless temperature T* is a function of:

v, v, Pes)

* % %k ok ok ok
T =T(,x,y,z,V

We know that|dimensionless velocities are a function of:

%k k% %k %k %k
v, =v(t,x,y,z,Re, Fr)

—T =T(,x,y,z,Re,Pr,Fr,S")
H_J

the equations governing temperature distributions
depend on only three dimensionless groups

© Faith A. Morrison, Michigan Tech U.
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Now: How do we use Dimensional Analysis to develop correlations for 4?

T) hereﬁ)rem need for the complete solution.ahd the

equation we use to define 4 contain'all the physics df /#; dimensional
analysis on these equations will tell us what 4 is ja function of

This part is now done. From the
microscopic mass, momentum, and
energy balances we know that h
will depend on at most Re, Pr, Fr.

Now we need to check the equation
that defines / for more
dimensionless groups

© Faith A. Morrison, Michigan Tech U.
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