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General Energy Transport Equation
(microscopic energy balance)

V
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As for the derivation of the microscopic momentum 
balance, the microscopic energy balance is derived on 
an arbitrary volume, V, enclosed by a surface, S. 
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Gibbs notation:

see handout for 
component notation
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General Energy Transport Equation
(microscopic energy balance)

see handout for 
component notation

rate of change

convection

conduction 
(all directions)

source

velocity must satisfy 
equation of motion, 
equation of continuity

(energy 
generated 
per unit 

volume per 
time)

STkTv
t

T
Cp +∇=






 ∇⋅+

∂
∂ 2ˆρ

© Faith A. Morrison, Michigan Tech U.



2

Note:  this 
handout is 
on the web

Equation of energy for Newtonian fluids of constant density, ρ, and
thermal conductivity, k, with source term (source could be viscous dissipation, electrical
energy, chemical energy, etc., with units of energy/(volume time)).

CM310 Fall 1999 Faith Morrison

Source:  R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Processes, Wiley, NY,
1960, page 319.
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Cartesian (xyz) coordinates:
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Cylindrical (rθz) coordinates:
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Spherical (rθφ) coordinates:
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Example 6:  Wall heating of 
laminar flow. What is the steady 
state temperature profile in a 
flowing fluid in a tube if the walls 
are heated (constant flux, q1 /A) and 
if the fluid is a Newtonian fluid in 
laminar flow?
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** Revisit from lecture 9 ** Revisit from lecture 9 **

It’s easy to arrive at 
correct PDE using 

micro-E-balance eqn
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Tricky step:

solving for T field; this can be mathematically difficult

•partial differential equation in up to three variables
•boundaries may be complex
•multiple materials, multiple phases present
•may not be separable from mass and momentum balances

Strategy:  solve using numerical methods

© Faith A. Morrison, Michigan Tech U.

Microscopic Energy Balance – is the 
correct physics for all problems!

(e.g. Comsol) 
**** Or ****

Develop correlations on                    
complex systems by using 
Dimensional Analysis
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Type 1:  Standardized Correlations for Simple Geometries 
(you can look them up), e.g. heat exchanger design

TUAQ ∆=
these are 
easy to sort 
outbut what about this?

For design purposes, where 
do we get U?

1T ′
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1T 2T
cold less cold

less hot

hot

1T ′
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1T 2T
cold less cold

less hot

hot

There are two types of data correlations you will encounter:

1. Standardized correlations you can look up (e.g. for h
to use in heat exchangers)

2. In-house correlations you develop yourself (e.g. for 
scale-up)

H
ea

t 
ex

ch
an

ge
r 

de
si

gn

Begin at the beginning:  how 
did we define (develop) U?

ANSWER:
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Example 4:  Heat flux in a cylindrical shell

Assumptions:
•long pipe
•steady state
•k = thermal conductivity of wall
•h1, h2 = heat transfer coefficients

What is the steady state 
temperature profile in a 
cylindrical shell (pipe) if the fluid 
on the inside is at Tb1 and the 
fluid on the outside is at Tb2? 
(Tb1>Tb2)

Cooler 
fluid at Tb2

Hot fluid at 
Tb1

R2

rθ
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** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **
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Example 4:  Heat flux in a cylindrical shell
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Boundary conditions?

Not constant

** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **
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4 equations

4 unknowns;

SOLVE

Example 4:  Heat flux in a cylindrical shell
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Example 4:  Heat flux in a cylindrical shell
** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **
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Example 4:  Heat flux in a cylindrical shell
** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **

H
ea

t 
ex

ch
an

ge
r 

de
si

gn

© Faith A. Morrison, Michigan Tech U.

** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **
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TAUQ ∆= 22

© Faith A. Morrison, Michigan Tech U.

TAUQ ∆= 11

** REVIEW OF LECTURE 4 ** REVIEW OF LECTURE 4 **

In Lecture 4 we derived a design
equation for heat exchangers based on 
a constant bulk temperature difference –

(driving force for heat transfer)
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FINAL RESULT:

lmT∆≡
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2T ′

1T 2T
cold less cold

less hot

hot

1T ′
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1T 2T
cold less cold

less hot

hot

** REVIEW OF LECTURE 7 ** REVIEW OF LECTURE 7 **

In Lecture 7 we showed that for constant U
(independent of temperature difference) we could 
expand the use of the design equation for heat
exchangers to double-pipe heat exchangers with 

the appropriate new driving force ∆Tlm

forcedrivingT∆
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TAUQ ∆= 22
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TAUQ ∆= 11

U depends on geometry (R1, R2), materials 
of construction (k), and . . . h1, h2.
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gn The design equation for heat 
exchangers indicates that,

Individual “side” heat 
transfer coefficients

forcedrivingT∆
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To design a heat exchanger, we need to specify 
geometry and materials of construction; we also 

need data to know the h’s

We will (soon) show how one 
develops a data correlation for hH
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We need data 
correlations
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Type 2: Home-made correlations for 
complex geometries
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Bench 
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Process 
scale

•Bench-scale 
expts yield data 
correlations for 
Qin, Ws,on

•Will match 
performance of 
full-sized process 
unit if scaled 
properly
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The other type of data correlations are,

Consider:  Heat-transfer to fluid inside of a heated tube –
forced-convection heat transfer plus radial conduction

T1= core temperature
To= wall temperature
T(r,θ,z) = fluid temp 

distribution

© Faith A. Morrison, Michigan Tech U.
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In principle, with the right 
math/computer tools, we could 

calculate the complete temperature 
and velocity profiles.

Now:  How do we use Dimensional Analysis to develop correlations for h?

(we already figured out what the energy 
equation would simplify to in Lecture 9)
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How: From the microscopic mass, momentum, and energy balances, 
calculate velocity field, temperature field, and calculate the total amount 
of heat transferred.  Finally, determine h from its definition.
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In principle, with the right math/computer tools, we could 
calculate the complete temperature and velocity profiles.

From the complete solution, we could then calculate h:

Therefore, the equations we need for the complete solution, and the 
equation we use to define h contain all the physics of h; dimensional 

analysis on these equations will tell us what h is a function of

Now:  How do we use Dimensional Analysis to develop correlations for h?

Integrate heat flux across the 
total surface area; heat flux 
comes from Fourier’s law; 
Fourier’s law needs T field

© Faith A. Morrison, Michigan Tech U.

Therefore, the equations we need for the complete solution, and the 
equation we use to define h contain all the physics of h; dimensional 

analysis on these equations will tell us what h is a function of

Once we know what h is a function of, 
we can conduct experiments, measure h
as a function of its variables, and report 
these data correlations in the literature 

for others to use.

Now:  How do we use Dimensional Analysis to develop correlations for h?
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Dimensional Analysis

principle:  even in complex systems, the same 
equations still apply:

continuity equation (mass conservation)
equation of motion (momentum conservation)
equation of energy (energy conservation)

strategy:  render the governing equations (and 
boundary conditions) dimensionless to identify the 
important parameters that apply in every situation.

governing 
equations

rely on experiments and data correlations⇒

© Faith A. Morrison, Michigan Tech U.

3. scale all variables in the governing equations; yields 
dimensionless equation as a function of dimensionless groups
The values of the dimensionless groups determine the properties of 
the differential equations.
4.  design scaled-down experiments to develop data correlations
for the system of interest
5. use data correlations to design and evaluate systems

Dimensional Analysis Procedure:

1. select appropriate differential equations and boundary conditions
2. select characteristic quantities with which to scale the variables, 
e.g. v, x, P,T-To

• characteristic quantities must be constant
• must be representative of the system

OR
4. perform experiments on an existing system and correlate results 
using dimensionless groups

© Faith A. Morrison, Michigan Tech U.
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Energy equation in Cartesian Coordinates:
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Next step:  choose scale factors 
and scale each variable.

V
v

v x
x ≡*

non-dimensional variables:
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Energy equation in Cartesian Coordinates:

we substitute the non-dimensional variables. e.g.
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after carrying out this change of variable for each term 
we get the non-dimensional energy equation
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Dimensionless Groups:
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We can conclude from the energy equation that 
dimensionless temperature T* is a function of:

),Pe,,,,,,,( ********** SvvvzyxtTT zyx=
We know that dimensionless velocities are a function of:

)FrRe,,,,,( ****** zyxtvv ii =

),FrPr,Re,,,,,( ******* SzyxtTT =⇒

RePrPe =

the equations governing temperature distributions 
depend on only three dimensionless groups

© Faith A. Morrison, Michigan Tech U.
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Now:  How do we use Dimensional Analysis to develop correlations for h?

This part is now done.  From the 
microscopic mass, momentum, and 

energy balances we know that h 
will depend on at most Re, Pr, Fr.

Now we need to check the equation 
that defines h for more 
dimensionless groups

Therefore, the equations we need for the complete solution, and the 
equation we use to define h contain all the physics of h; dimensional 

analysis on these equations will tell us what h is a function of


