CM3110 Transport I

Part II: Heat Transfer

One-Dimensional Heat Transfer (continued)

MichiganTech

Professor Faith Morrison

Department of Chemical Engineering Michigan Technological University

© Faith A. Morrison, Michigan Tech U.

General Energy Transport Equation

(microscopic energy balance)

As for the derivation of the microscopic momentum balance, the microscopic energy balance is derived on an arbitrary volume, *V*, enclosed by a surface, *S*.

S n n

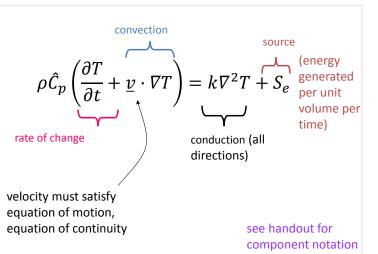
Gibbs notation:

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T \right) = k \nabla^2 T + S_e$$

see handout for component notation

General Energy Transport Equation

(microscopic energy balance)



© Faith A. Morrison, Michigan Tech U.

Note: this handout is

also on the

web

The Equation of Energy for systems with constant k

Microscopic energy balance, constant thermal conductivity; Gibbs notation

$$\rho \hat{C}_{\nu} \left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T \right) = k \nabla^2 T + S$$

 ${\bf Microscopic\ energy\ balance,\ constant\ thermal\ conductivity;\ Cartesian\ coordinates}$

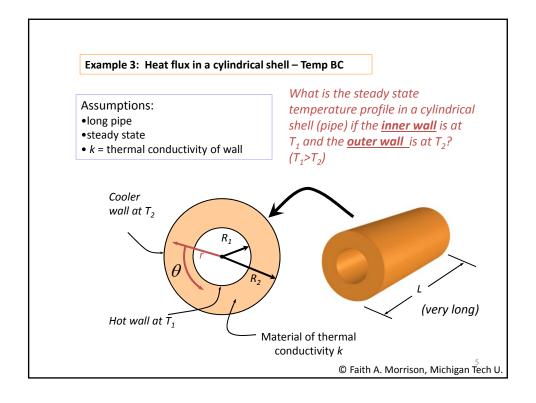
$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + S$$

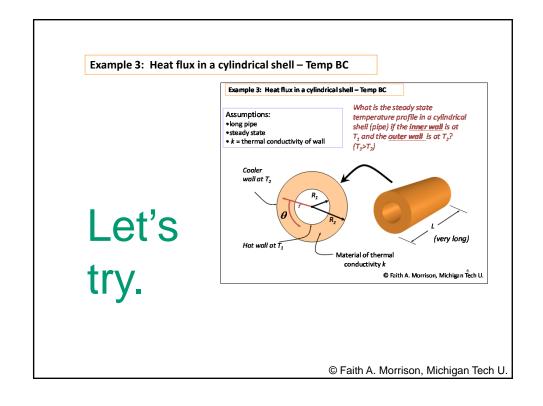
Microscopic energy balance, constant thermal conductivity; cylindrical coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) + S$$

Microscopic energy balance, constant thermal conductivity; spherical coordinates

$$\begin{split} \rho \hat{\mathcal{C}}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial T}{\partial \phi} \right) \\ &= k \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2} \right) + \mathcal{S} \end{split}$$





Example 3: Heat flux in a cylindrical shell - Temp BC Solution: $\frac{q_r}{A} = \frac{c_1}{r}$ $T = -\frac{c_1}{k} \ln r + c_2$ **Boundary conditions?** © Faith A. Morrison, Michigan Tech U.

Solution for Cylindrical Shell:

constant

$$\frac{q_r}{A} = \frac{T_1 - T_2}{\ln \frac{R_2}{R_1}} \left(\frac{k}{r}\right)$$

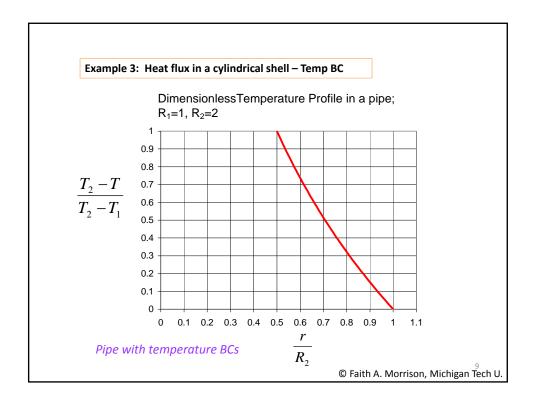
 $\frac{q_r}{A} = \frac{T_1 - T_2}{\ln \frac{R_2}{R_1}} \left(\frac{k}{r}\right)$ The heat flux $\frac{q_r}{A}$ **DOES** depend on, k; also $\frac{q_r}{A}$ decreases as 1/r

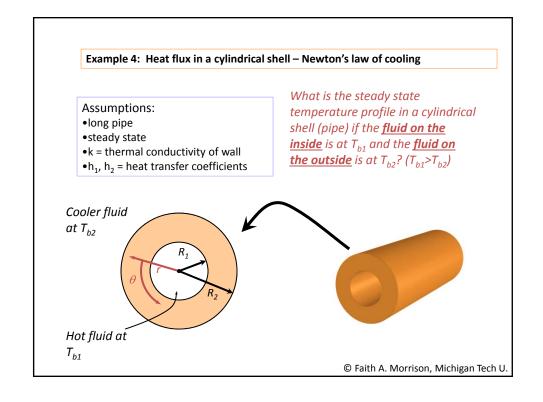
NOT

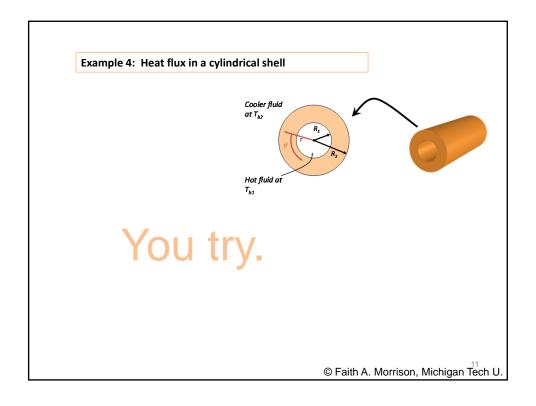
$$\frac{T_2 - T}{T_2 - T_1} = \frac{\ln \frac{R_2}{r}}{\ln \frac{R_2}{R_1}}$$

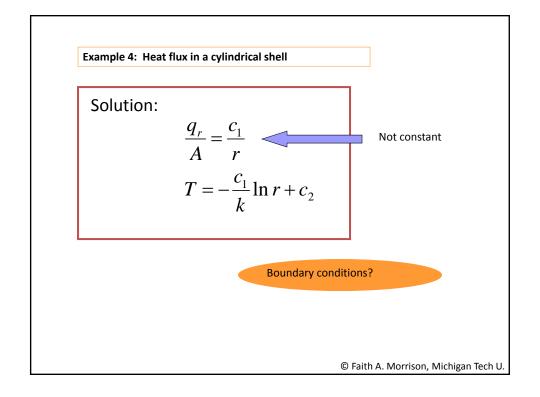
Note that *T(r)* does not depend on the thermal conductivity, *k* (steady state)

Pipe with temperature BCs









Example 4: Heat flux in a cylindrical shell

$$\frac{c_1}{R_1} = h_1 (T_{b1} - T_{w1})$$

$$\frac{c_1}{R_2} = h_2 (T_{w2} - T_{b2})$$

$$T_{w1} = \frac{c_1}{k} \ln R_1 + c_2$$

$$T_{w2} = -\frac{c_1}{k} \ln R_2 + c_2$$

4 equations

4 unknowns;

 c_1, T_{w1}, c_2, T_{w2}

SOLVE

© Faith A. Morrison, Michigan Tech U.

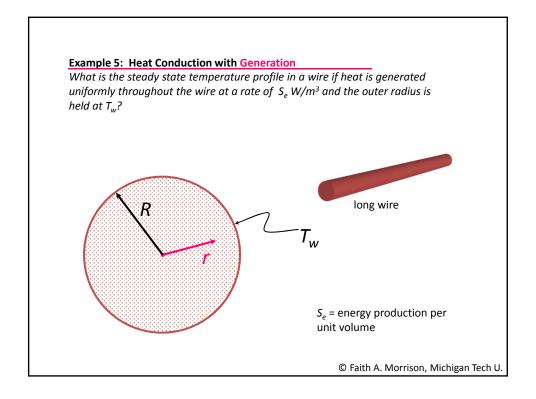
Example 4: Heat flux in a cylindrical shell

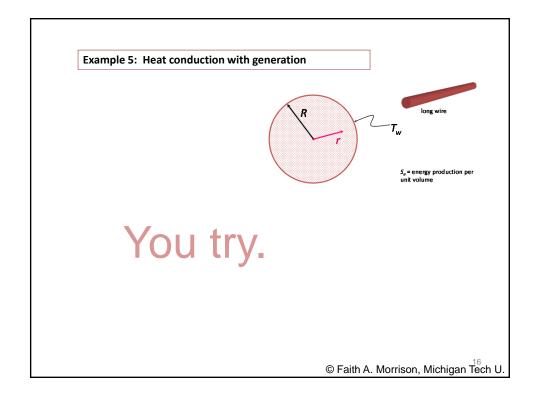
Newton's law of cooling boundary conditions

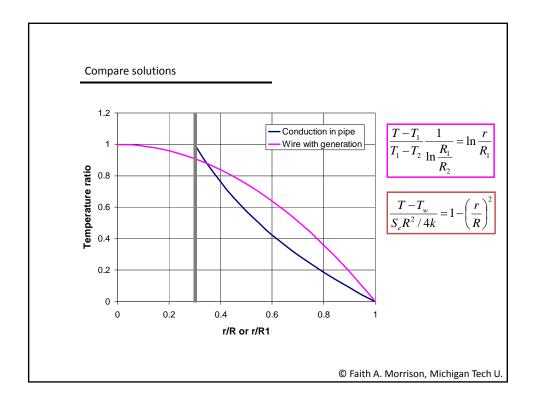
Solution: Radial Heat Flux in an Annulus

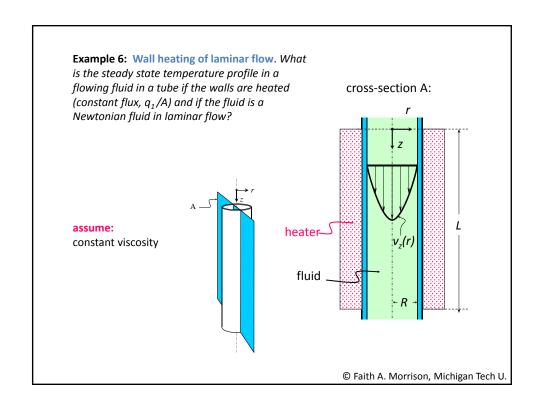
$$T - T_{b2} = \frac{(T_{b1} - T_{b2}) \left(\ln \left(\frac{R_2}{r} \right) + \frac{k}{h_2 R_2} \right)}{\frac{k}{h_2 R_2} + \ln \left(\frac{R_2}{R_1} \right) + \frac{k}{h_1 R_1}}$$

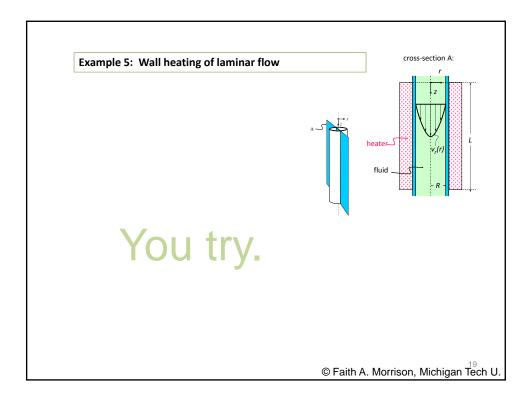
$$\frac{q_r}{A} = \frac{(T_{b1} - T_{b2})}{\frac{1}{h_2 R_2} + \frac{1}{k} \ln\left(\frac{R_2}{R_1}\right) + \frac{1}{h_1 R_1}} \left(\frac{1}{r}\right)$$

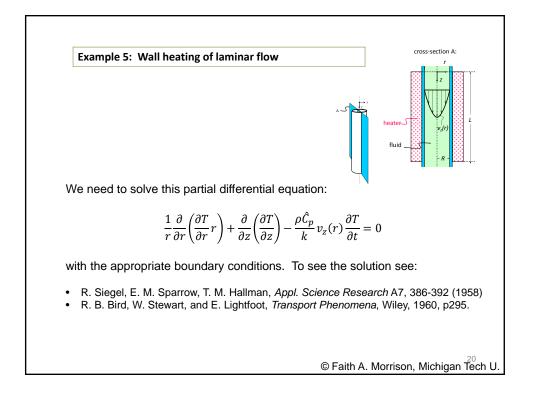












SUMMARY

Steady State Heat Transfer

Example 1: Heat flux in a rectangular solid – Temperature BC

Example 2: Heat flux in a rectangular solid - Newton's law of cooling

Example 3: Heat flux in a cylindrical shell - Temperature BC

Example 4: Heat flux in a cylindrical shell – Newton's law of cooling

Example 5: Heat conduction with generation

Example 6: Wall heating of laminar flow

© Faith A. Morrison, Michigan Tech U.

SUMMARY

Steady State Heat Transfer

Example 1: Heat flux in a rectangular solid - Temperature BC

Example 2: Heat flux in a rectangular solid - Newton's law of cooling

Example 3: Heat flux in a cylindrical shell – Temperature BC

Example 4: Heat flux in a cylindrical shell – Newton's law of cooling

Example 5: Heat conduction with generation

Example 6: Wall heating of laminar flow

Conclusion: When we can simplify geometry, assume steady state, assume symmetry, the solutions are easily obtained

SUMMARY

Steady State Heat Transfer

Example 1: Heat flux in a rectangular solid – Temperature BC

Example 2: Heat flux in a rectangular solid - Newton's law of cooling

Example 3: Heat flux in a cylindrical shell – Temperature BC

Example 4: Heat flux in a cylindrical shell – Newton's law of cooling

Example 5: Heat conduction with generation

Example 6: Wall heating of laminar flow

Unsteady State Heat Transfer

???

