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General Energy Transport Equation
(microscopic energy balance)

As for the derivation of the microscopic momentum balance, the
microscopic energy balance is derived on an arbitrary volume, V,
enclosed by a surface, S.

Gibbs notation:

Jt

. (T ,
pCy|—=+v VT ) =kVT +S5,

see handout for
component notation
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General Energy Transport Equation
(microscopic energy balance)

convection
source

. (0T

(energy

pCp —+4+v-VT | = kV2T + S, generated

dt

per unit

\ ) volume per
Y time)

rate of change conduction (all
directions)

velocity must satisfy
equation of motion,

equation of continuity see handout for
component notation

© Faith A. Morrison, Michigan Tech U.

e Equation of Energy for systems with constant k

Microscopic energy balance, constant thermal conductivity; Gibbs notation Note: this
. (0T handout is
pC,(Sr+v-VT) = kv?T +5
at also on the
Microscopic energy balance, constant thermal conductivity; Cartesian coordinates web
2 (dr+ WL e d’T+ﬁzT+da?' s
Plp at Vi dx Uy dy Ixr}z) dx?  dy?  dz? .
Microscopic energy balance, constant thermal conductivity; cylindrical coordinates
e (90, , 9T  vedl ar 18 dTy 18°T #°T §
P ”(:}! ¥ ar f r a@ f r"'r?z ) - r ()ll'(r r'ir) ! r2a@? j az? f
Microscopic energy balance, constant thermal conductivity; spherical coordinates
P d'!" ar }l'ﬂ ar vy dT
”‘F’(ar "ar T r a0 Ii'sil1ﬂﬂ¢)
K 1 (}( ZHT) 1 d ( ; 9(’}?‘) 1 aiT 5
| | 1S | e | SN e | s eees | -
(:-2 ar\" ar) T7Zsmeos \"""38) T Zsn? g0g?
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Example 3: Heat flux in a cylindrical shell - Temp BC

What is the steady state

Assumptions:
elong pipe
esteady state

¢ k = thermal conductivity of wall

temperature profile in a cylindrical
shell (pipe) if the inner wall is at
T, and the outer wall is at T,?

Cooler
wallat T,

Hot wall at T,

(T,>T,)

>~

L /
\/ (very long)

Material of thermal
conductivity k
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Example 3: Heat flux in a cylindrical shell - Temp BC

Bxample 3: Heat flux in a cylindrical shell - Temp BC

- What is the steady state
Assumptlons: ternperature profile in o cylindricaf
+long pipe shell {pipe) if the inner wall is at

wsteady state

i e
 k = thermal conductivity of wall T, end the outer wall is ot 77

127

Coaler
wallgt T,

P

L /
\/ {very long)

Hot wallat T,
Material of thermal
conductivity k
@ Faith A. Marrison, Michigan Tech U,
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Example 3: Heat flux in a cylindrical shell - Temp BC

Solution:
4 _G

<:j Not constant
A r

C
T=-2Inr+c,

Boundary conditions?
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Example 3: Heat flux in a cylindrical shell - Temp BC

Solution for Cylindrical Shell:

NOT i _ T1 _T2 5 The heat flux % DOES depend
constant A In R2 r on, k; also % decreases as 1/r
Rl
|n &
T =T r Note that T{(r) does not
NOT 2 = depend on the thermal
e T2 - Tl In & conductivity, k (steady state)
Rl

Pipe with temperature BCs
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Example 3: Heat flux in a cylindrical shell - Temp BC

DimensionlessTemperature Profile in a pipe;

R;=1, Ry=2
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Pipe with temperature BCs

r

R,
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Assumptions:

elong pipe
esteady state

Cooler flui
atT,,

Hot fluid at
Th1

ek = thermal conductivity of wall
*h,, h, = heat transfer coefficients

/\

Example 4: Heat flux in a cylindrical shell - Newton’s law of cooling

What is the steady state
temperature profile in a cylindrical
shell (pipe) if the fluid on the
inside is at Ty, and the fluid on
the outside is at T,,? (T,,>T,,)

>
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Example 4: Heat flux in a cylindrical shell

Cooler fluid
atT,,

Hot fluid at
Tbl

i
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Example 4: Heat flux in a cylindrical shell

Solution:
4 _G

<:j Not constant
A r

C
T=-2Inr+c
k 2

Boundary conditions?
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Example 4: Heat flux in a cylindrical shell
S _hroT.) )
s h1( bl wl)
1
C 4 equations
- = hz(Twz _sz)
R 4 unknowns; cT. e T
2 >_ 1 twir ©20 T
C SOLVE
=_1
Ty = InR, +c,
= _1
T, = InR, +c,
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Newton’s law of
Example 4: Heat flux in a cylindrical shell cooling boundary
conditions

Solution: Radial Heat Flux in an Annulus

(Tp1 — Tp2) (ln (%) + %)

T =Ty =
o+ () + 75
hy R, Ry hiRy
qr _ (Tp1 — Th2) 1
1 \r

A 1 1 (R
R, TN (Rl) R,
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Example 5: Heat Conduction with Generation

What is the steady state temperature profile in a wire if heat is generated
uniformly throughout the wire at a rate of S, W/m?3 and the outer radius is
held at T,,?

long wire

S, = energy production per
unit volume

© Faith A. Morrison, Michigan Tech U.

Example 5: Heat conduction with generation ‘

lang wire

$,=energy praduction per
unit volume
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Compare solutions

1.2
\ \

— Conduction in pipe T _T1 1 r
1 — Wire with generation —

i
RZ
058 \
06 \ N T-T, [ r jz
w1 | =
\ \ S.R%/ 4k R
0.4 N
0.2 \

0 0.2 04 0.6 0.8 1
r/R or r/R1

Temperature ratio
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Example 6: Wall heating of laminar flow. What

is the steady state temperature profile in a

flowing fluid in a tube if the walls are heated cross-section A:
(constant flux, q,/A) and if the fluid is a
Newtonian fluid in laminar flow?

assume:
constant viscosity

© Faith A. Morrison, Michigan Tech U.
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cross-section A:

Example 5: Wall heating of laminar flow

r

19
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cross-section A:

Example 5: Wall heating of laminar flow

r

We need to solve this partial differential equation:

10 (or \ 0 (or pCp ar_,
ror\or' | T 9z\0z k v2(r) at

with the appropriate boundary conditions. To see the solution see:

* R. Siegel, E. M. Sparrow, T. M. Hallman, Appl. Science Research A7, 386-392 (1958)
* R. B. Bird, W. Stewart, and E. Lightfoot, Transport Phenomena, Wiley, 1960, p295.
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SUMMARY

Steady State Heat Transfer

Example 1: Heat flux in a rectangular solid — Temperature BC
Example 2: Heat flux in a rectangular solid — Newton’s law of cooling
Example 3: Heat flux in a cylindrical shell — Temperature BC

Example 4: Heat flux in a cylindrical shell — Newton’s law of cooling

Example 5: Heat conduction with generation

Example 6: Wall heating of laminar flow
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SUMMARY

Steady State Heat Transfer

Example 1: Heat flux in a rectangular solid — Temperature BC
Example 2: Heat flux in a rectangular solid — Newton’s law of cooling
Example 3: Heat flux in a cylindrical shell — Temperature BC

Example 4: Heat flux in a cylindrical shell — Newton’s law of cooling

Example 5: Heat conduction with generation

Example 6: Wall heating of laminar flow

Conclusion: When we can simplify
geometry, assume steady state, assume
symmetry, the solutions are easily obtained
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SUMMARY

Steady State Heat Transfer

Example 1: Heat flux in a rectangular solid — Temperature BC
Example 2: Heat flux in a rectangular solid — Newton’s law of cooling
Example 3: Heat flux in a cylindrical shell — Temperature BC
Example 4: Heat flux in a cylindrical shell — Newton’s law of cooling
Example 5: Heat conduction with generation

Example 6: Wall heating of laminar flow

Unsteady State Heat Transfer

?7??
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