

One-Dimensional Heat Transfer - Unsteady

Professor Faith Morrison

Department of Chemical Engineering Michigan Technological University

Example 1: Unsteady Heat Conduction in a Semi-infinite solid A very long, very wide, very tall slab is initially at a temperature T_o . At time t=0, the left face of the slab is exposed to an environment at temperature T_I . What is the time-dependent temperature profile in the slab? The slab is a homogeneous material of thermal conductivity, k, density, ρ , and heat capacity, C_ρ .

© Faith A. Morrison, Michigan Tech U.

1D Heat Transfer: Unsteady State

Initial Condition:

$$t < 0$$

$$T = T_o$$

$$t < 0$$
$$T = T_o$$

$$t \ge 0$$

$$T = T_1$$

$$t > 0$$
$$T = T(x, t)$$

© Faith A. Morrison, Michigan Tech U.

1D Heat Transfer: Unsteady State

General Energy Transport Equation

(microscopic energy balance)

As for the derivation of the microscopic momentum balance, the microscopic energy balance is derived on an arbitrary volume, *V*, enclosed by a surface, *S*.

Gibbs notation:

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T \right) = k \nabla^2 T + S$$

see handout for component notation

Equation of energy for Newtonian fluids of constant density, ρ, and thermal conductivity, k, with source term (source could be viscous dissipation, electrical energy, chemical energy, etc., with units of energy/(volume time)).

CM310 Fall 1999 Faith Morrison

Source: R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Processes, Wiley, NY, 1960, page 319.

Note: this handout is on the web:

Gibbs notation (vector notation)

www.chem.mtu.edu/~fmorriso/cm310/energy2013.pdf

$$\left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T\right) = \frac{k}{\rho \hat{C}_p} \nabla^2 T + \frac{S}{\rho \hat{C}_p}$$

Cartesian (xyz) coordinates:

$$\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} = \frac{k}{\rho \hat{C}_p} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{S}{\rho \hat{C}_p}$$

$$\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} = \frac{k}{\rho \hat{C}_p} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{S}{\rho \hat{C}_p}$$

Spherical $(r\theta\phi)$ coordinates:

$$\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial T}{\partial \phi} = \frac{k}{\rho \hat{C}_p} \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \right)$$

1D Heat Transfer: Unsteady State

Microscopic Energy Equation in Cartesian Coordinates

$$\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} = \frac{k}{\rho \hat{C}_p} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{S}{\rho \hat{C}_p}$$

$$\alpha \equiv \frac{k}{\rho \; \hat{C}_p} =$$
 thermal diffusivity

what are the boundary conditions? initial conditions?

Unsteady State Heat Conduction in a Semi-Infinite Slab $\frac{\partial T}{\partial t} = \frac{k}{\rho \, \hat{C}_p} \left(\frac{\partial^2 T}{\partial x^2} \right) = \alpha \left(\frac{\partial^2 T}{\partial x^2} \right)$ Initial condition: $t = 0, \, T = T_o \, \forall \, x$ Boundary conditions: $x = 0, \quad q_x = hA(T - T_1) \quad \forall \, t > 0$ $x = \infty, \quad T = T_o \, \forall \, t$ "for all t"

In Heat Transfer: Unsteady State

Unsteady State Heat Conduction in a Semi-Infinite Slab

Solution:

$$\frac{T-T_0}{T_1-T_0} = \operatorname{erfc} \zeta - e^{\beta(2\zeta+\beta)} \operatorname{erfc}(\zeta+\beta)$$

$$\beta \equiv \frac{h\sqrt{\alpha}\,t}{k} \qquad \zeta \equiv \frac{x}{2\sqrt{\alpha}\,t} \qquad \text{Geankoplis 4th ed., eqn 5.3-7, page 363}$$

$$\operatorname{complementary error function of } y \qquad \operatorname{erfc}(y) \equiv 1 - \operatorname{erf}(y)$$

$$\operatorname{error function of } y \qquad \operatorname{erf}(y) \equiv \frac{2}{\sqrt{\pi}} \int\limits_0^y e^{-(y')^2} \, dy'$$
© Faith A. Morrison, Michigan Tech U.

Solution:
$$\frac{T-T_0}{T_1-T_0}=\mathrm{erfc}\,\zeta-e^{\beta(2\zeta+\beta)}\,\mathrm{erfc}(\zeta+\beta)$$

$$\beta\equiv\frac{h\sqrt{\alpha}\,t}{k}\qquad \zeta\equiv\frac{x}{2\sqrt{\alpha}\,t}$$
 Geankoplis 4th ed., eqn 5.3-7, page 363 To make this solution easier to use, we can plot it.
$$\mathrm{error}\,\mathrm{function}\,\mathrm{of}\,y$$

$$\mathrm{error}\,\mathrm{function}\,\mathrm{of}\,y$$

$$\mathrm{erf}(y)\equiv\frac{2}{\sqrt{\pi}}\int\limits_0^y e^{-(y\prime)^2}\,dy\prime$$
 © Faith A. Morrison, Michigan Tech U.

1D Heat Transfer: Unsteady State Heat Conduction in a Semi-Infinite Slab

How could we use this solution?

Example: Will my pipes freeze?

The temperature has been $35^{\circ}F$ for a while now, sufficient to chill the ground to this temperature for many tens of feet below the surface. Suddenly the temperature drops to $-20^{\circ}F$. How long will it take for freezing temperatures ($32^{\circ}F$) to reach my pipes, which are $8\,ft$ under ground? Use the following physical properties:

$$h = 2.0 \frac{BTU}{h ft^2 {}^{o}F}$$

$$\alpha_{soil} = 0.018 \, \frac{ft^2}{h}$$

$$k_{soil} = 0.5 \frac{BTU}{h \ ft \ ^{o}F}$$

Unsteady State Heat Transfer

Use same microscopic energy balance eqn as before.

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T \right) = k \nabla^2 T + S \text{ generated per unit volume per time)}$$
 rate of change
$$\text{directions}$$

© Faith A. Morrison, Michigan Tech U.

1D Heat Transfer: Unsteady Heat Conduction in a Finite Solid

Microscopic Energy Equation in Cartesian Coordinates

$$\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} = \frac{k}{\rho \hat{C}_p} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{S}{\rho \hat{C}_p}$$

$$\alpha \equiv \frac{k}{\rho \ \hat{C}_p} = \text{thermal diffusivity}$$

what are the boundary conditions? initial conditions?

Example 8: Unsteady Heat Conduction in a Finite-sized solid

You try.

© Faith A. Morrison, Michigan Tech U.

1D Heat Transfer: Unsteady Heat Conduction in a Finite Solid

Unsteady State Heat Conduction in a Finite Slab

$$\frac{\partial T}{\partial t} = \frac{k}{\rho \, \hat{C}_p} \left(\frac{\partial^2 T}{\partial x^2} \right) = \alpha \left(\frac{\partial^2 T}{\partial x^2} \right)$$

Initial condition:

$$t = 0, T = T_o \forall x$$

Boundary conditions:

$$\begin{cases}
x = 0, & T = T_1 \\
x = 2H, & T = T_1
\end{cases} \quad \forall t > 0$$

Unsteady State Heat Conduction in a Finite Slab

$$\frac{\partial T}{\partial t} = \frac{k}{\rho \, \hat{C}_p} \left(\frac{\partial^2 T}{\partial x^2} \right) = \alpha \left(\frac{\partial^2 T}{\partial x^2} \right)$$

The solution is obtained by separation of variables.

Initial condition: $t = 0, T = T_0 \ \forall \ x$

Boundary conditions:

Unsteady State Heat Conduction in a Finite Slab: solution by separation of variables

Let
$$Y \equiv \left(\frac{T_1 - T}{T_1 - T_o}\right)$$
 $\frac{\partial Y}{\partial t} = \alpha \left(\frac{\partial^2 Y}{\partial x^2}\right)$

Guess: $Y = X(x)\Theta(t)$

Initial condition:

$$t = 0, T = T_0 \ \forall \ x \Longrightarrow Y = 1$$

Boundary conditions:

© Faith A. Morrison, Michigan Tech U.

1D Heat Transfer: Unsteady Heat Conduction in a Finite Solid

Unsteady State Heat Conduction in a Finite Slab: soln by separation of variables

$$Y = X(x)\Theta(t)$$

$$\frac{\partial Y}{\partial t} = \alpha \left(\frac{\partial^2 Y}{\partial x^2} \right)$$

$$\frac{\partial Y}{\partial t} = \frac{\partial}{\partial t} \left(X(x)\Theta(t) \right) = \frac{X(x)}{dt} \frac{d\Theta(t)}{dt}$$

$$\frac{\partial Y}{\partial x} = \frac{\partial}{\partial x} (X(x)\Theta(t)) = \frac{dX(x)}{dx} \Theta(t)$$

$$\frac{\partial^2 Y}{\partial x^2} = \frac{d^2 X(x)}{dx^2} \Theta(t)$$

$$\frac{\partial Y}{\partial t} = \alpha \left(\frac{\partial^2 Y}{\partial x^2} \right)$$
 Substituting:
$$X(x) \frac{d\Theta(t)}{dt} = \alpha \frac{d^2 X(x)}{dx^2} \Theta(t)$$
 The function of two variables is separable into two functions of one variable.
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d^2 X(x)}{dx^2} \Rightarrow 0$$
 constant
$$\frac{1}{\Delta t} \frac{d\Theta(t)}{dt} = \alpha \frac{1}{\Delta t} \frac{d\Phi(t)}{dt} = \alpha$$

Temperature Profile for Unsteady State
Heat Conduction in a Finite Slab

$$\left(\frac{T_1 - T}{T_1 - T_o}\right) = \frac{4}{\pi} \left\{ e^{\frac{-\pi^2 \alpha t}{4H^2}} \sin \frac{\pi x}{2H} + \frac{1}{3} e^{\frac{-3^2 \pi^2 \alpha t}{4H^2}} \sin \frac{3\pi x}{2H} + \frac{1}{5} e^{\frac{-5^2 \pi^2 \alpha t}{4H^2}} \sin \frac{5\pi x}{2H} + \cdots \right\}$$

Geankoplis 4th ed., eqn 5.3-6, p363

1D Heat Transfer: Unsteady State

Microscopic Energy Balance – is the correct physics for many problems!

Tricky step:

solving for *T* field; this can be mathematically difficult

- partial differential equation in up to three variables
- •boundaries may be complex
- •multiple materials, multiple phases present
- •may not be separable from mass and momentum balances

Strategy:

- · Look up solution in literature
- solve using numerical methods (e.g. *Comsol*)

**** Or ****

 Develop correlations on complex systems by using *Dimensional Analysis*

© Faith A. Morrison, Michigan Tech U.

Fluid Mechanics: What did we do?

- Turbulent tube flow
- Noncircular conduits
- Drag on obstacles
- 1. Find a simple problem that allows us to identify the physics
- 2. Nondimensionalize
- 3. Explore that problem
- 4. Take data and correlate
- 5. Solve real problems

Solve. Real. Problems.

Powerful.

Works on heat transfer too.

0

