

	Radiation Heat Transfer Between Two Infinite
Radiation energy going from surface <mark>1</mark> to surface <mark>2:</mark>	$\frac{q_{1-2}}{A} = \frac{\sigma T_1^4}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$ Plates
Radiation energy going from surface 2 to surface 1:	$\frac{q_{2-1}}{A} = \frac{\sigma T_{2}^{4}}{\frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 1}$
NET Radiation energy going from surface 1 to surface 2:	$\frac{q_{1-2} - q_{2-1}}{A} = \frac{\sigma(T_1^4 - T_2^4)}{\left(\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1\right)}$
	© Faith A. Morrison, Michigan Tech U.

Ana 1 Heat Shield	lysis of Radiation Shields $\frac{q}{A} = \left(\frac{1}{2}\right) \frac{\sigma(T_1^4 - T_3^4)}{(2/\varepsilon - 1)}$ With one heat shield present, <i>q</i> falls by half compared to no heat shield.	Radiation Shield T_1 T_2 T_3
by the same analysis,		
N Heat Shields	$\frac{q}{A} = \left(\frac{1}{N+1}\right) \frac{\sigma\left(T_1^4 - T_3^4\right)}{\left(2/\varepsilon - 1\right)}$	With N heat shields present, <i>q</i> falls by a factor of <i>1/N</i> compared
		to no heat shield.
© Faith A. Morrison, Michigan Tech U.		