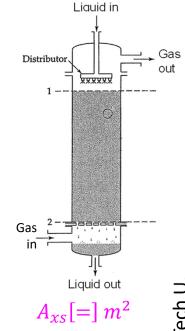
## **Example 6 Solution:**

"rate" equation (gas-side, species A mass balance)

$$\frac{dy}{dz} = \frac{K_y a}{G} (y - Hx)$$

"operating line" equation (overall, species A mass balance)


$$y = \frac{L}{G}(x - x_1) + y_1$$

"equilibrium line" equation (thermodynamic equilibrium, dilute mixtures)

$$y^* = Hx^*$$

Column height, **B** (result)

$$\boldsymbol{B} = \frac{G}{K_y a} \left( \frac{1}{1 - \frac{G}{L}H} \right) \ln \left( \frac{y_2 - y_2^*}{y_1 - y_1^*} \right)$$



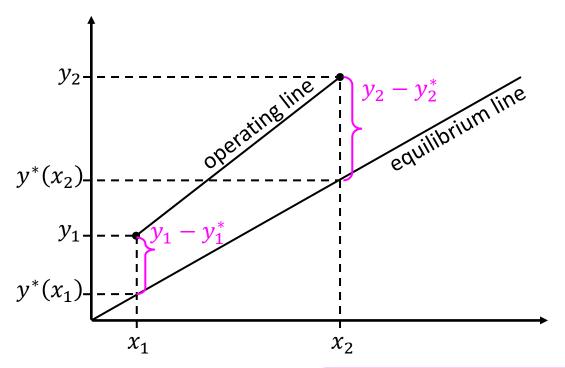
$$y_2^* = y^*(x_2) y_1^* = y^*(x_1)$$

**See Handnotes** 

$$G[=]\frac{mol}{m^2s}$$

$$L[=]\frac{mol}{m^2s}$$

HW 4.16


## **Mass Transfer in an Absorption Column:**

Species A from gas to liquid = Gas <u>scrubbing</u>

operating line is <u>above</u> the equilibrium line

Species A from liquid to gas = Liquid stripping

operating line is <u>below</u> the equilibrium line



Distributor

Gas

out

Liquid out

$$G[=] \frac{mol}{m^2 s}$$

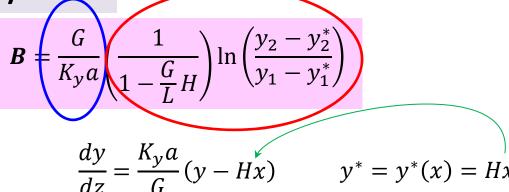
$$L[=] \frac{mol}{m^2 s}$$

$$A_{\chi_S}[=] m^2$$

$$B = \frac{G}{K_y a} \left( \frac{1}{1 - \frac{G}{L}H} \right) \ln \left( \frac{y_2 - y_2^*}{y_1 - y_1^*} \right)$$

**Column Performance: HTU/NTU** 

Column height, B


"rate" equation (gas-side, species A mass balance)

HTU =
height of a
transfer unit

 $G[=]\frac{mot}{m^2s}$   $L[=]\frac{mol}{m^2s}$ 

 $A_{xs}[=]m^2$ 

A measure of the efficiency of the equipment



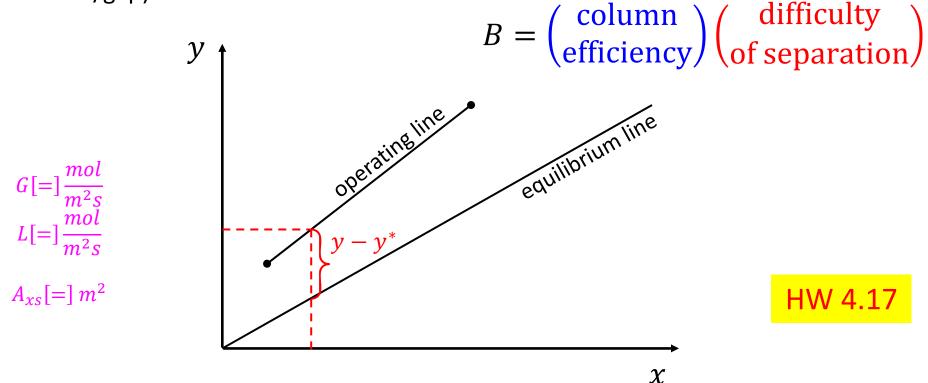
$$\frac{dy}{dz} = \frac{K_y a}{G} (y - y^*)$$

$$\int_{y_1}^{y^2} \frac{dy}{(y - y^*)} = \int_0^B \frac{K_y a}{G} dz$$

$$B = \frac{G}{K_{y}a} \int_{y_{1}}^{y^{2}} \frac{dy}{(y - y^{*})}$$

$$B = \left(\frac{G}{K_{y}a}\right) \left(\int_{y_{1}}^{y^{2}} \frac{dy}{(y - y^{*})}\right)$$

$$B = HTII \cdot NTII$$


NTU = number of transfer units

A measure of difficulty of separation

 As the gap between the operating line and the equilibrium line narrows, NTU increases (B 

integral of 1/gap)

$$B = \left(\frac{G}{K_y a}\right) \left(\int_{y_1}^{y^2} \frac{dy}{(y - y^*)}\right)$$
$$B = HTU \cdot NTU$$



 Both operating and equilibrium lines are straight for dilute systems; When not dilute, both lines may be curved; integration then is done numerically (Excel)

73