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Unsteady State Mass Transport

Example: A very long, very large tank of water is suddenly exposed to
oxygen atmosphere. Oxygen diffuses into the water. What is the
concentration profile of the oxygen in the water as a function of time?
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e Equation of Species Mass Balance, constant pD 4. or binary

systems, and Fick’s law has been incorporated. Good for dilute liquid solutions at constant temperature and
pressure.

Microscopic species mass balance, constant thermal conductivity; Gibbs notation

@8} N
bm E +c va = pDypVew, + 1,

Microscopic species mass balance, constant thermal conductivity; Cartesian coordinates
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Microscopic species mass balance, constant thermal condu
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Ja = mass flux of species A relative to a mixture’s mass average velocity, v (units: j4[=] gv
= pa(va —v)

Jat+ g = 0, i.e. these fluxes are measured relative to the mixture’s center of mass

= Ja + p4v = combined mass flux relative to stationary coordinates
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ng +ng = py

v4 = velocity of species A in a mixture, i.e. average velocity of all molecules of species 4 within a small volume
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waV4 + wpVp = mass average velocity; same velocity as in the microscopic momentum and energy balances

Reference: R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2™ edition, Wiley, 2002.
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e Equation of Species Mass Balance, constant pD 4. for binary

systems, and Fick’s law has been incorporated. Good for dilute liquid solutions at constant temperature and
pressure.

Microscopic species mass balance, constant thermal conductivity; Gibbs notation
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Microscopic species mass balance, constant thermal conductivity; Cartesian coordinates
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Microscopic species mass _um_ano:mﬁmsﬂ thermal conductivity; spherical nonﬁ_:mﬁmm
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Ja = mass flux of species A4 relative to a mixture’s mass average velocity, v (units: Ja [=] ﬂ.:ﬁb

pa(vy —v)

Ja+ g = 0, i.e. these fluxes are measured relative to the mixture’s center of mass

PaVa = ]a T p4v = combined mass flux relative to stationary coordinates
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ng +ng = py

vy = velocity of species 4 in a mixture, i.e. average velocity of all molecules of species A within a small volume

<

= waV4 + wpVp = mass average velocity; same velocity as in the microscopic momentum and energy balances
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Reference: R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2™ edition, Wiley, 2002.






Unsteady State Mass Transport
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] Unsteady State Mass Transport

0 2 D iffu S i O n Unsteady State Diffusion in a

Semi-Infinite Slab — =
Solution:
° dcy B d%c,
=0 (57
The oxygen concentration as a function of y y
Initial condition: t=0 cy=cy Vz

time and depth into the water is given by:

Boundary conditions:

x=0 c=c¢s t>0
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Unsteady State Mass Transport

0, Diffusion
Solution:

The oxygen concentration as a function of
time and depth into the water is given by:
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| Unsteady State Mass Transport

Unsteady State Diffusion in a —
ST T

Semi-Infinite Slab

Initial condition:

ey
0
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t=0
Boundary conditions:
x=0
X = o0

CA=CA0 VY z

CA=CAS t>0

CA= CAO vVt

Cas — Ca0 2+/Dypt

Z

This solution was a resource in the
Danckwertz model for mass transfer; the
short penetration time meant that the
diffusion direction looked “infinite.”
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Mass Transport “Laws”

bulk
gas

Cas
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Ttexp

Another physical picture associated with penetration theory is
“surface renewal” (Danckwerts)

» Turbulent flow
« Diffusing species only penetrates a

short distance

* Due to chem rxn or short time of

contact, ¢,

+ Model as unsteady state molecular

transport

» Danckwerts: bulk motion brings fresh

liquid eddies from interior to the
surface

» Atthesurface A is transferred as

though B were stagnant and infinitely
de

ep
« Works for falling fim
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