

Example: Flow through a packed bed of soluble spherical pellets.

Two-centimeter diameter spheres of benzoic acid (soluble in water) are packed into a bed as shown. The spheres have $23 cm^2$ of surface area per cm^3 volume of bed. What is the mass transfer coefficient when pure water flowing in ("superficial velocity"= 5.0 cm/s) exits 62% saturated with benzoic acid?

C.V. the liquid in this slice.

- · Source = Pellets of benzoic acid
- · Sink = 1: juid (water becoming acid solution)
- · to capture the vaniable driving force for mass xfn, choose a slice of the column

We con re-draw, sepanating the sink and the source. $S_{i} = (C_{A} - C_{A}) = -i V_{A}$ $S_{i} = ($ surface are for mass xfer

3

NA= flux out to C.V. -NA=flux in to C. V. CA = interface conc = Satid S = x-section of brd Sould LIOUID CA = bulk -NA - Ke (C+-CA) Si mols A ance time t ch² of tronsfer into c.v. vol 9 bid (the liquid)

accumulation = net flow in + production + introduction

 V_{svs} = system volume

 N_{A_i} = molar flux of A out through the i^{th} C.S.

C.V. by reaction, per unit volume

$$S_{sys} = \sum_i S_i$$

 Δ is "out"- "in"
C.S. = control surface
C.V. = control volume

© Faith A. Morrison, Michigan Tech U.

 $\frac{V^{2}S\left(\frac{C_{1}}{2} + \frac{C_{2}}{2} - \frac{C_{1}}{2}\right)}{\Delta z} = kz\left(\frac{C_{1}^{+} - C_{1}}{2}\right) =$ $\frac{dc_A}{dz} = \frac{(k_c a)}{Vo} (c_A^* - c_A)$ CA is constant sina bad is at unst Arrsmus: $k_c = 2.1 \times 10^{-3} \frac{\text{cm}}{5}$ T, P. .: we can intornak our the entire bod.