

Last time...

The average speed of *A* molecules in a region of space has a *bulk motion* contribution and a *diffusion* contribution.

"Flux" of Species A in a Mixture with Species B

Describing Binary Diffusion

A mixture of two species: What goes where and why

- ullet There are many molecules of species A in some region of interest
- In the region of interest, \underline{v}_A is the <code>average velocity</code> (speed and direction) of the A molecules:

 $\underline{v}_A = \frac{1}{n_T} \sum_{i=1}^{n_T} \underline{v}_{A,i}$ (a regular average)

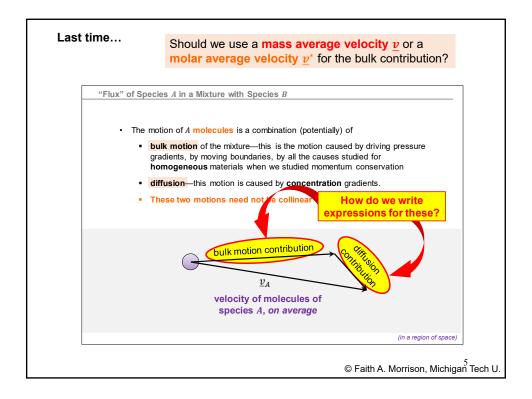
- The motion of A molecules is a combination (potentially) of
 - bulk motion—this is the motion caused by driving pressure gradients, by moving boundaries, by all the causes studied for homogeneous materials when we studied momentum conservation with the continuum approach
 - Diffusion—this motion is caused primarily by concentration gradients.
 - These two motions need not be collinear

© Faith A. Morrison, Michigan Tech U.

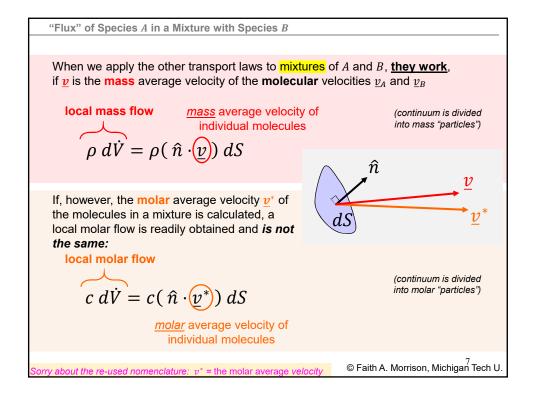
(in a region of space)

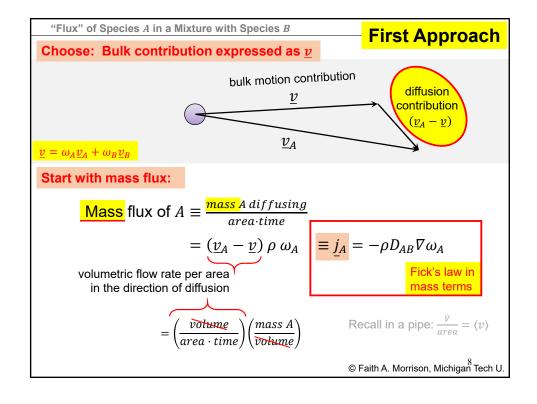
Last time...

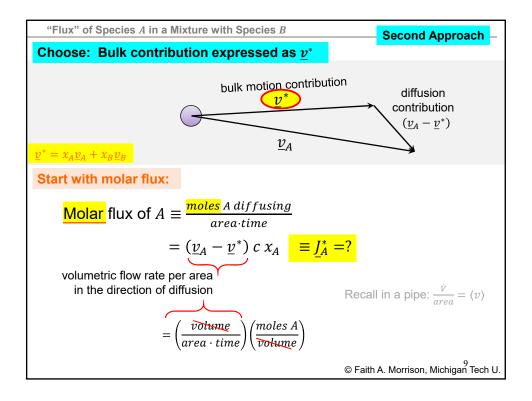
These two contributions need not be *colinear*.

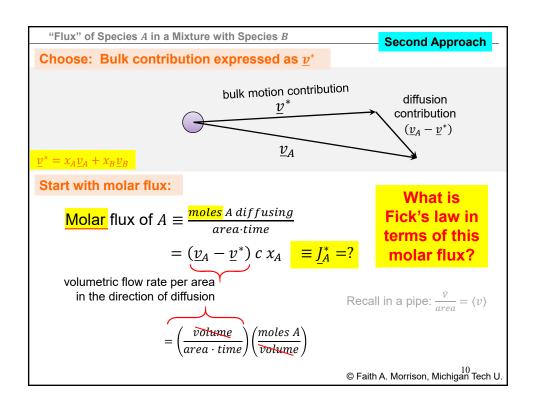

"Flux" of Species A in a Mixture with Species B

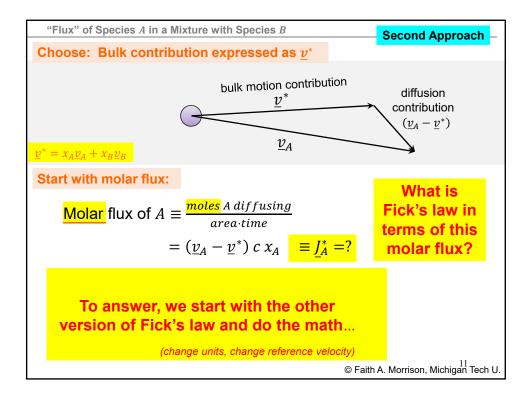
- The motion of A molecules is a combination (potentially) of
 - bulk motion of the mixture—this is the motion caused by driving pressure gradients, by moving boundaries, by all the causes studied for homogeneous materials when we studied momentum conservation
 - diffusion—this motion is caused by concentration gradients.
 - These two motions need not be collinear

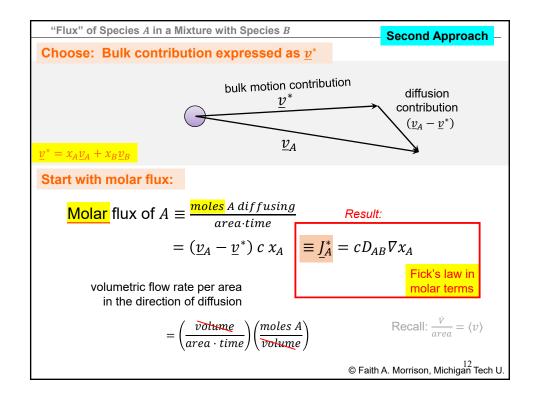

bulk motion contribution v_A velocity of molecules of species A, on average


© Faith A. Morrison, Michigan Tech U.


(in a region of space)







Various forms of Fick's Law

Summary:

Possible fluxes so far:

$$\underline{J}_A^* = (\underline{v}_A - \underline{v}^*) cx_A = \underline{\text{molar}}$$
 flux relative to $\underline{\text{molar}}$ average velocity \underline{v}^* $\underline{j}_A = (\underline{v}_A - \underline{v}) \rho \omega_A = \underline{\text{mass}}$ flux relative to $\underline{\text{mass}}$ average velocity \underline{v}

Combined fluxes are also in use:

 $\underline{N}_A = cx_A\underline{v}_A = \text{combined molar flux relative to}$ stationary coordinates $\underline{n}_A = \rho\omega_A\underline{v}_A = \text{combined mass flux relative to}$ stationary coordinates

Mass

$\underline{j}_A = \rho \omega_A (\underline{v}_A - \underline{v})$ $= \rho \omega_A \underline{v}_A - \rho \omega_A \underline{v}$

 $\underline{n}_A \equiv j_A + \rho \omega_A \underline{v} = \rho \omega_A \underline{v}_A$

Moles

$$\underline{J}_{A}^{*} = cx_{A}(\underline{v}_{A} - \underline{v}^{*})$$

$$= cx_{A}\underline{v}_{A} - cx_{A}\underline{v}^{*}$$

$$V_{A} \equiv J_{A}^{*} + cx_{A}v^{*} = cx_{A}v_{A}$$

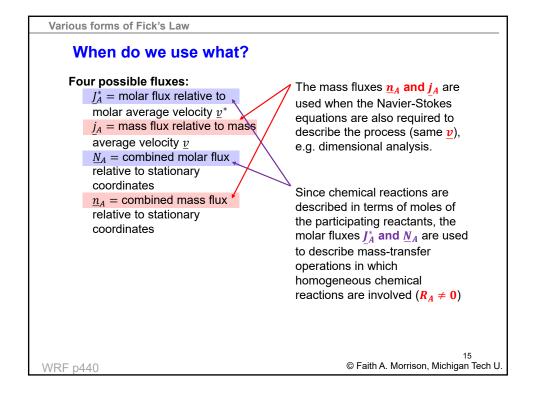
All our previous flux expressions (momentum and energy) have been with respect to stationary coordinates. In diffusion, this points to the use of combined fluxes.

© Faith A. Morrison, Michigan Tech U.

Various forms of Fick's Law

When do we use what?

Four possible fluxes:


 $J_A^* =$ molar flux relative to molar average velocity \underline{v}^* $\underline{j}_A =$ mass flux relative to mass average velocity \underline{v} $\underline{N}_A =$ combined molar flux relative to stationary coordinates $\underline{n}_A =$ combined mass flux relative to stationary coordinates

The fluxes \underline{J}_A^* and \underline{J}_A are used to describe the mass transfer in diffusion cells used for measuring the diffusion coefficient.

The fluxes relative to coordinates fixed in space \underline{n}_A and \underline{N}_A are often used to describe engineering operations within process equipment.

14

WRF p440

Various forms of Fick's Law

When do we use what?

Four possible fluxes:

 $J_A^* = \text{molar flux relative to molar average velocity } \underline{v}^*$

 j_A = mass flux relative to mass average velocity \underline{v}

 \underline{N}_A = combined molar flux relative to stationary coordinates

 $\underline{n}_{A}=$ combined mass flux relative to stationary coordinates

- 1. The mass fluxes \underline{n}_A and \underline{j}_A are used when the Navier-Stokes equations are also required to describe the process since they use v.
- 2. Since chemical reactions are described in terms of moles of the participating reactants, the molar fluxes \underline{J}_A^* and \underline{N}_A are used to describe mass-transfer operations in which homogeneous chemical reactions are involved.
- 3. The fluxes relative to coordinates fixed in space \underline{n}_A and \underline{N}_A are often used to describe engineering operations within process equipment
- 4. The fluxes \underline{J}_A^* and \underline{J}_A are used to describe the mass transfer in diffusion cells used for measuring the diffusion coefficient

16

© Faith A. Morrison, Michigan Tech U.

WRF p440

Various forms of Fick's Law

What now?

Four Fluxes.
Four Microscopic Species A Balances.

17 © Faith A. Morrison, Michigan Tech U.

Various forms of Fick's Law

What now?

Four Fluxes.

Four Microscopic Species A Balances.
Three

(We do not often use the combined mass flux version, \underline{n}_A).

Next?

Derive (indicate derivation of)

Microscopic Species A Balances.

8

Derivation of Microscopic Species A Mass balance (Quick tour)

Mass Balance: Body versus Control Volume

Law of Mass

Conservation:

(on a body)

$$\frac{dM_{B}}{dt} = 0$$

Law of Mass

Conservation:

(on a control volume)

$$\frac{dM_{CV}}{dt} = \iint_{CS} -(\hat{n} \cdot \underline{v})\rho dS$$

the *usual* convective term: net mass convected *in*

WRF, p467

© Faith A. Morrison, Michigan Tech U.

Various forms of the Microscopic Species A Mass Balance

Species *A* **Mass Balance:**

Law of **Species A**

Mass Conservation: (on a body, with homogeneous

reaction)

Law of **Species A**

Mass Conservation: (on a control volume, with homogeneous reaction)

$$\frac{dM_{A,B}}{dt} = r_A$$

$$\frac{dM_{A,CV}}{dt} = \iint_{CS} -(\hat{n} \cdot \underline{v})\rho dS + r_A$$

the *usual* convective term: net mass *in* from all sources

bulk flow PLUS mass of species

A that **diffuses** into CV

Species *A* **Mass Balance:**

Law of **Species A**

Mass Conservation:

(on a body, with homogeneous reaction)

Law of **Species A**

Mass Conservation: (on a control volume, with homogeneous reaction)

Diffusion is the study of species motion in mixtures.

$$\frac{dM_{A,CV}}{dt} = \iint -(\hat{n} \cdot \underline{v})\rho dS + r_A$$

the *usual* convective term: net mass in from all sources

bulk flow PLUS mass of species A that **diffuses** into CV

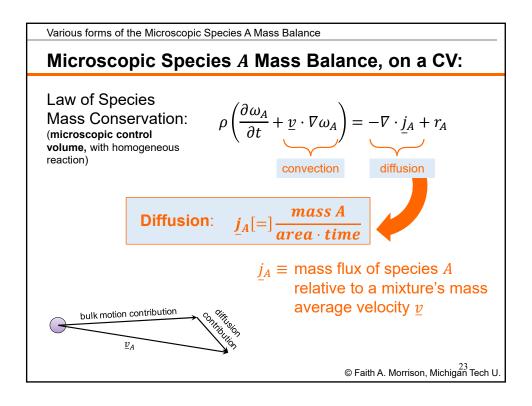
© Faith A. Morrison, Michigan Tech U.

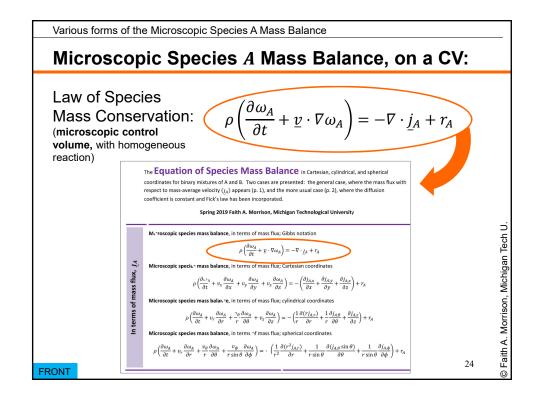
Various forms of the Microscopic Species A Mass Balance

Species A Mass Balance, on a CV:

Law of Species

Mass Conservation: (on a control volume, with


homogeneous reaction)


Law of Species

Mass Conservation: (microscopic control

volume, with homogeneous reaction)

convection

What is this mass conservation equation in terms of molar quantities?

Law of Species Mass Conservation: (microscopic control volume, with homogeneous reaction)

$$\rho\left(\frac{\partial \omega_A}{\partial t} + \underline{v} \cdot \nabla \omega_A\right) = -\nabla \cdot \underline{j}_A + r_A$$

 $\frac{\text{Molar flux of } A \equiv \frac{\text{moles } A \text{ diffusing}}{\text{area} \cdot \text{time}}$ $= (\underline{v}_A - \underline{v}^*) c x_A \equiv \underline{J}_A^*$

To answer, we (*change* units, *convert* ω_A to x_A , change reference velocity) and do the math...

© Faith A. Morrison, Michigan Tech U.

Various forms of the Microscopic Species A Mass Balance

What is this mass conservation equation in terms of molar quantities?

Law of Species Mass Conservation: (microscopic control volume, with homogeneous reaction)

$$\rho\left(\frac{\partial\omega_A}{\partial t} + \underline{v}\cdot\nabla\omega_A\right) = -\nabla\cdot\underline{j}_A + r_A$$

concentrations

And, likewise, we can reformulate in terms of combined molar flux.

Microscopic species A mass balance—Six forms

concentrations

In terms of mass flux and mass concentrations
$$\rho\left(\frac{\partial\omega_A}{\partial t} + \underline{v}\cdot\nabla\omega_A\right) = -\nabla\cdot\underline{j}_A + r_A$$

$$= \rho D_{AB}\nabla^2\omega_A + r_A$$

In terms of combined concentrations

In terms of combined molar flux and molar appropriations
$$\frac{\partial c_A}{\partial t} = -\nabla \cdot \underline{N_A} + R_A$$

© Faith A. Morrison, Michigan Tech U.

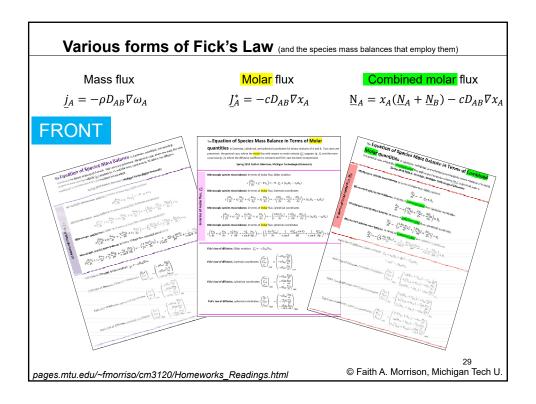
Various forms of the Microscopic Species A Mass Balance

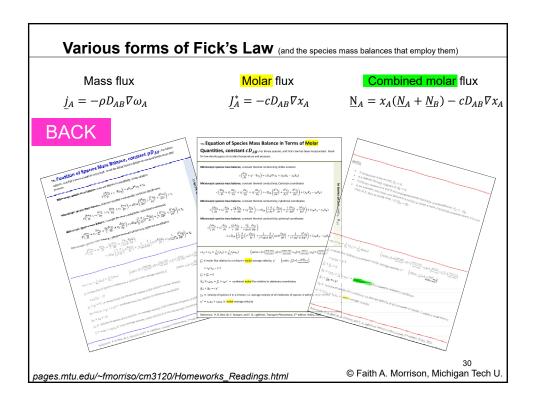
Microscopic species A mass balance—Six forms

concentrations

In terms of mass flux and mass concentrations
$$\rho\left(\frac{\partial\omega_A}{\partial t} + \underline{v}\cdot\nabla\omega_A\right) = -\nabla\cdot\underline{j}_A + r_A$$

$$= \rho D_{AB}\nabla^2\omega_A + r_A$$


In terms of molar flux concentrations


and molar
$$c$$
 $\left(\frac{\partial x_A}{\partial t} + \underline{v}^* \cdot \nabla x_A\right) = -\nabla \cdot \underline{J}_A^* + (x_B R_A - x_A R_B)$ centrations $= cD_{AB}\nabla^2 x_A + (x_B R_A - x_A R_B)$

In terms of combined molar flux and molar concentrations

$$\frac{\partial c_A}{\partial t} = -\nabla \cdot \underline{N_A} + R_A$$

(The combined molar flux version cannot easily have Fick's law substituted in.)

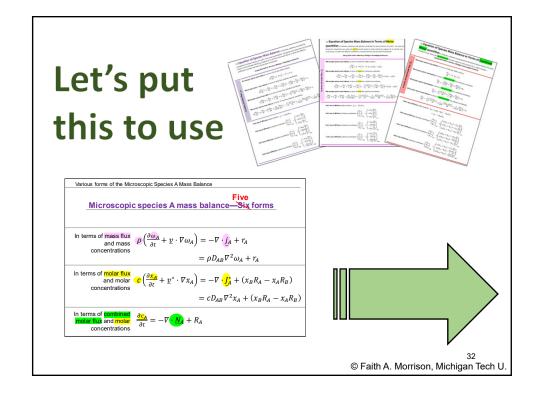
SUMMARY: Various quantities in diffusion and mass transfer

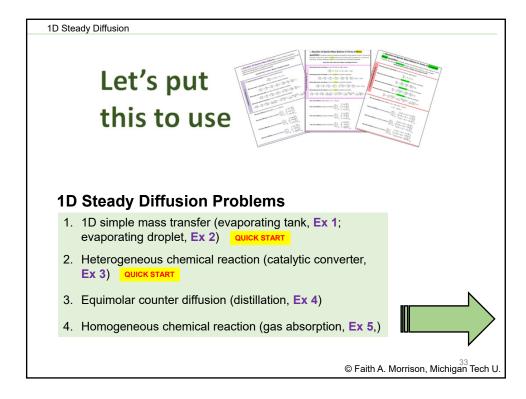
How much is present: $cx_A = c_A = \frac{1}{M_A}(\rho_A) = \frac{1}{M_A}(\rho\omega_A)$

 $\underline{j}_A \equiv$ mass flux of species A relative to a mixture's mass average velocity, $\underline{v} = \rho_A(\underline{v}_A - \underline{v})$

 $j_A + j_B = 0$, i.e. these fluxes are measured relative to the mixture's center of mass

 $\underline{n}_A \equiv \rho_A \underline{v}_A = \underline{j}_A + \rho_A \underline{v} =$ **combined mass** flux relative to **stationary coordinates** $\underline{n}_A + \underline{n}_B = \rho \underline{v}$


 $\underline{J}_A^*\equiv$ molar flux relative to a mixture's molar average velocity, $\underline{v}^*=c_A(\underline{v}_A-\underline{v}^*)$ $J_A^*+J_B^*=0$


 $\underline{N}_A \equiv c_A \underline{v}_A = \underline{J}_A^* + c_A \underline{v}^* =$ combined molar flux relative to stationary coordinates $\underline{N}_A + \underline{N}_B = c\underline{v}^*$

 $\underline{v}_A \equiv \text{velocity of species } A$ in a mixture, i.e. average velocity of all molecules of species A within a small volume

 $\underline{v}=\omega_A\underline{v}_A+\omega_B\underline{v}_B\equiv$ mass average velocity; same velocity as in the microscopic momentum and energy balances

 $\underline{v}^* = x_A \underline{v}_A + x_B \underline{v}_B \equiv \textit{molar}$ average velocity

