

Dimensional Analysis
For Unsteady State Heat
Transfer





Professor Faith A. Morrison

Department of Chemical Engineering Michigan Technological University

www.chem.mtu.edu/~fmorriso/cm3120/cm3120.html

© Faith A. Morrison, Michigan Tech U.

We used unsteady state heat transfer modeling to solve one practical problem.





What can we do to extend these methods to a wider class of problems?





















# In dimensionless form, we see that this problem reduces to

$$Y = Y\left(\frac{x}{D}, \text{Fo, Bi}\right)$$



### **Dimensionless quantities:**

$$Y = \frac{(T_1 - T)}{(T_1 - T_0)}$$

$$t^* = \text{Fo} = \frac{\alpha t}{D^2}$$

$$x^* = \frac{x}{D}$$

$$Bi = \frac{hD}{k}$$

Y (dimensionless temperature interval)

**Fourier number** (dimensionless time based on thermal diffusion)

**Biot number** (pronounced BEE-OH) Ratio of heat transfer resistance at the boundary to resistance in the solid. This is a *transport* issue.

© Faith A. Morrison, Michigan Tech U.

Because we can solve this problem analytically, we can confirm that the dimensional analysis is correct:

#### Solution:

Unsteady State Heat Conduction in a Semi-Infinite Slab Solution: 
$$\frac{T-T_0}{T_1-T_0}=\mathrm{erfc}\,\zeta-e^{\beta(2\zeta+\beta)}\,\mathrm{erfc}(\zeta+\beta)$$
 
$$\beta\equiv\frac{h\sqrt{\alpha}\,t}{t}\qquad \zeta\equiv\frac{x}{2\sqrt{\alpha}\,t}$$
 
$$\gamma=\frac{(\tau_1-\tau_1)}{(\tau_1-\tau_0)}$$
 
$$\gamma=\frac{(\tau_1-\tau_1)}{(\tau_1-\tau_0)}$$
 
$$\gamma=\frac{(\tau_1-\tau_1)}{(\tau_1-\tau_0)}$$
 
$$\gamma=\frac{(\tau_1-\tau_1)}{(\tau_1-\tau_0)}$$

**+** Bi – Biot Number = 
$$\frac{hD}{k}$$

Fo – Fourier Number = 
$$\frac{\alpha t}{D^2}$$

=

$$1 - Y = \operatorname{erfc}\left(\frac{x}{D} \frac{1}{2} \frac{1}{\sqrt{\operatorname{Fo}}}\right) - e^{\operatorname{Bi}\left(\frac{x}{D}\right) + \operatorname{Bi}^2\operatorname{Fo}} \operatorname{erfc}\left(\sqrt{\operatorname{Fo}}\left(\operatorname{Bi} + \frac{x}{D} \frac{1}{\operatorname{Fo}}\right)\right)$$

Because we can solve this problem analytically, we can confirm that the dimensional analysis is correct:

$$1 - Y = \operatorname{erfc}\left(\frac{x}{D} \frac{1}{2} \frac{1}{\sqrt{Fo}}\right) - e^{\operatorname{Bi}\left(\frac{x}{D}\right) + \operatorname{Bi}^2 Fo} \operatorname{erfc}\left(\sqrt{Fo}\left(\operatorname{Bi} + \frac{x}{D} \frac{1}{Fo}\right)\right)$$

This is like laminar flow, where we can solve the problem all the way to the end and we find  $f = \frac{16}{P_B}$ 

And we don't need correlations

The dimensional analysis provides, however, the "lay of the land" for these types of problems.



© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer in a Body

## Two Additional Dimensionless Numbers

## $\mathbf{Bi}$ – Biot Number = $\frac{hD}{\nu}$

Quantifies the tradeoffs between the rate of internal heat flux (by conduction, k) and the rate of heat delivery to the boundary (by convection, h)



## Fo – Fourier Number = $\frac{\alpha t}{D^2}$

Scales the time evolution of the temperature profile relative to the material's thermal properties,  $\alpha = k/\rho \hat{C}_p$  (thermal diffusion time).

Dimensional Analysis in Unsteady State Heat Transfer

### **Note Two Different Numbers**

Warning!

with completely different purposes and meanings but confusingly similar definitions

$$\mathbf{Bi} - \mathbf{Biot \, Number} = \frac{hD}{k} = \frac{hD_{\text{body}}}{k_{\text{body}}}$$

Quantifies the tradeoffs between the rate of internal heat flux (by conduction, k) and the rate of heat delivery to the boundary (by convection, h) for a body in contact with a moving fluid.

$$Nu - Nusselt Number = \frac{hD}{k} = \frac{hD_{flow}}{k_{fluid}}$$

Dimensionless heat transfer coefficient in convection. Quantifies the physics in the moving fluid and how this results in a resistance to heat transfer, captured in the heat transfer coefficient.











