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We used unsteady state
heat transfer modeling to ==
solve one practical
problem.

Answer:
t = 480 hours ~ 20 days

CM3120 TransportiUnit Operations 2

More complex Systems:
Unsteady State Heat Transfer
(Analytical Solutions)

What can we do to extend
these methods to a wider

e class of problems? ‘
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Heat Transfer

Complex Heat Transfer — Dimensional Analysis CM3110
i REVIEW

(Answer: Use the same techniques we
have been using in fluid mechanics) 4

s,on

Engineering Modeling (complex systems)

*Choose an idealized problem and solve it Process

scale

*From insight obtained from ideal problem, identify
governing equations of real problem

*Nondimensionalize the governing equations; deduce
dimensionless scale factors (e.g. Re, Fr for fluids)

*Design experiments to test modeling thus far

*Revise modeling (structure of dimensional analysis,
identity of scale factors, e.g. add roughness length scale)

*Design additional experiments

e|terate until useful correlations result
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Heat Transfer: Steady vs Unsteady

|
o What are the various cases that are seen? &=, |
Back to this: ) : '/

If b is large, the wall temp
is justthe bulk temp {fast
convection)

+ If k is large, the temp profile

What iS Our Usual is straight (quasi-steady

state in the slab) and the

strategy for complex Sk Yempun
phenomena?

conduction in slab)

+ If neither mechanism H
dominates, it's complicated! 5 ¥

Answer: Dimensional o .
Engineering Modeling (complexsystems)

Ana |ySIS V| «Choose an idealized problem and solve it

\//-From insight obtained from ideal problem, identify
governing equations of real problem

‘ * Nondimensionalize the governing equations; deduce
dimensionless scale factors (e.g. Re, Fr for fluids)

\/ Let's nondimenSionalize *Design experiments to test modeling thus far
. *Revise modeling (structure of dimensional analysis,
the governing identity of scale factors, e.g. add roughness lengthscale)
equations and BCs. +Design additional experiments
\/ Let’s Sort Out the «lterate until useful correlations result

various unsteady cases.
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Heat Transfer

1D Heat Transfer: Unsteady State

Let’s nondimensionalize the governing equations and BCs.
Let’s sort out the various cases.

(Review:

1D Heat Transfer: Unsteady State

Unsteady State Heat
Conduction in a Semi-Infinite
Slab

oT k aZT aZT thermal
= —A<_Z> =« (_2> diffusivity
at  pC,\0x dax w
Plp
Initial condition: t=0 T=T, Vx
Boundary conditions:
x=0 L 4% _pr-1) t>0
A dx !
X =00 T=T, vt

How did we do this before?)
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Method:
+ Identify the governing
equation(s)

* Choose “typical” values
(scale factors)
* Use them to scale the

We’ll modify our solution for

CM3110
REVIEW

Convective Heat Transfer

equations
Pipe flow Energy
non-dimensional variables:
non-dimensional variables:
driving oy
time: position: velocity: force: pOSItIOﬂZ temperature: source:
t‘z% r‘z% V:ELV': P'= [Ijz r*;: T*= T_YZ) S*:i
P D - ( ) -

«_Zz v «_ g 4 Zi B TO So

z=—||ly=2_ g. =% zt=—

D Vv g D

Y
Vv, = 7‘}
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Heat Transfer

We’ll modify our solution for

Convective Heat Transfer

~( b

Pipe flow

Energy

non-dimensional variables:

driving

non-dimensional variables:

Psition: | | velocity: force: position: temperature: source:
r*E% v:EV—V: P'= !};z r*EL T*= T_Ta S*Zi
P D - ( ) -
. z PERY g z Ti - ]:) SO
z =— vy =L ggiz zt=—
D "y g D
* Vy
V) =—+
D Ty
t =—
char %
(convection)

Slight problem: We need to no
the unsteady case also, but the
velocity in thermal conduction

ndimensionalize t for
re is no characteristic

in a solid.
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1D Heat Transfer: Unsteady State

Choice:

For the unsteady
case we’ll choose a
characteristic time
based on the thermal
diffusivity, a.

Unsteady State Heat
Conduction in a Semi-Infinite

Slab
oT k [9%T 92T thermal
— = —)=al— diffusivity
at  pC,\ox* Ox? k

Initial condition: t=0 T=T, Vx

Boundary conditions:

_ Qe _ X ar _ h
x=0 = k= (T,-T) t>0
at x =00 T=T, vt
P —
t" = D2
thermal
\ diffusivity
This dimensionless time is L=k (Appearsinthe
called Fourier number Fo. pC, energy balance)
. D? . . . D%pCy,
D? D?%*pC, — = thermal diffusion time = ——=
t =0 =
char a k
e ,
(thermal diffusion) © Faith A. Morrison, Michigan Tech U.
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Heat Transfer

1D Heat Transfer: Unsteady State

: i k
> = thermal diffusion rate = YT

Energy is diffusing
| | down the
Example: When will my pipes freeze?
1D Heat Transfer: Unsteady State Heat Conductionin te m pe ratu re
T(x, t) 20 »aSeml-InflnlteSlab gradlent
(°F) 3 1
204
N increasing .
10 I time, t —
L ¢ ] —s
[ —10
0T Direction of 0
[ heat fl _
h =202 10 I gi L:)X' _igo thermal
~ e : WS diffusivity
a=00185- r —200
=052t fcF 50 Lol ] T aEkA
2 0 2 4 6 8 10 PGy
X, ft a

pCp
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Dimensional Analysis, Unsteady State Convection

Non-dimensionalize (eqns, BCs)

non-dimensional variables:

0T 021 a1
= = i = —k— = hA(T; — 1T
ot a<8x2> O ox S )

Fo — Fourier Number = D2

position: temperature: time:
x*=£ y_T*=u ,_at
~D “(-T) b Fp2
This dimensionless time is
at called Fourier number Fo.
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Heat Transfer

1D Heat Transfer: Unsteady State

Let’s
do it.

Dimensional Analysis, Unsteady State Convection

ar
at

Non-dimensionalize (egns, BCs)

_ (oT
=\ oxz

non-dimensional variables:

oT
4x =~k =hA(T, = T)

position: temperature: time:
P X _(m-7n at
X =—= Y e —— t* = —
D (Ty — Ty) D2
—

. at
Fo — Fourier Number = —

This dimensionless time is
called Fourier number Fo.

D2
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1D Heat Transfer: Unsteady State

Unsteady State Heat
Conduction in a Semi-Infinite

Slab

aY
ot*

Initial condition:

Boundary conditions:

. hD
Bi — Biot Number = a

0%Y temperature:
(T, =T)
0x*? Y =-——— =
(Ty = Ty)
t*=0 Y=1 Vvx*
o Y=1 Vt*
=0 =BiY t*>0
dx* X
Bi hD
Tk
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Heat Transfer

I d . . I f 1D Heat Transfer: Unsteady State - —
n dimensionless form, e — -+,
. Conduction in a Semi-Infinite o =
we see that this Siab 2
aT  k (9°T 92T thermal
problem reduces to Tk (0T)-o(lD)
pC, \0x dx ai%
0
Initial condition: £=0 T=Tp v
_ X . Boundary conditions:
Y =Y (=, Fo,Bi i
D x=0 %:—ka=h(Tl—T) t>0
x=00 T=T, vt

Dimensionless quantities:

y = -1 Y (dimensionless temperature interval)
(T1—Tp)
t*=Fo=2% Fourier number (dimensionless time

x b? based on thermal diffusion)
D Biot number (pronounced BEE-OH)
Bi = kD Ratio of heat transfer resistance at the
k boundary to resistance in the solid. Thisisa

transport issue.
13
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Because we can solve this problem analytically, we can confirm that
the dimensional analysis is correct:

Solution:

Unsteady State Heat Conduction
in a Semi-Infinite Slab

Solution:

-7 _ erfc{ — ePZ+P erfe({ + B)
. . =T,
this: )
pulet et
hD ) at
+ Bi — Biot Number = - Fo — Fourier Number = D2

x1 1 Bi(—x)+Bi2F0 ox 1
—-Y = _—] = D -
1-Y erfc( 2\/%) e erfc| VFo| Bi + o

14
© Faith A. Morrison, Michigan Tech U.

2/3/2020
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Heat Transfer

Because we can solve this problem analytically, we can confirm that
the dimensional analysis is correct:

1 Bi(—)+BiZFO . x 1
1- = erfc< \/_> —e D erfc VFo|Bi +—=—

This is like laminar flow,
where we can solve the
problem all the way to the

end and we find f = g

And we don’t need
correlations

The dimensional analysis
provides, however, the
“lay of the land” for these
types of problems.

Complex Heat Transfer — Di ional Analysis

(Answer: Use the same iq we i —
have been using in fluid hani A= U == Weon

P
Engineering Modeling (complexsystems) 'Z

*Choose an idealized problem and solve it Process

*From insight obtained from ideal problem, identify
governing equations of real problem

alize the governing equ
nsionless scale factors (e.g. Re, Fr for fluids)

/ *Design experiments to test modeling thus far

*Revise modeling (structure of dimensional analysis,
identity of scale factors, e.g. add roughness lengthscale)

*Design additional experiments

«Iterate until useful correlations result /

v
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Unsteady State Heat Transfer in a Body

Two Additional
Dimensionless
Numbers

Bi — Biot Number =

I
!

Quantifies the tradeoffs
between the rate of internal
heat flux (by conduction, k) and
the rate of heat delivery to the
boundary (by convection, h)

Fo — Fourier Number = —

‘momentum

energy Dimensionless Numbers

mass

Re = Reynolds W T These numbers from the governing

equations tell us about the relative
importance of the terms they precede
in the microscopic balances

Fr — Froude = —

Pe — Pecleth—RePr pVD b

Pe — Péclet,, = ReSc =~ (scenario properties).

Pr — Prandtl = EL" These numbers compare the
Sc — Schmidt = LePr — magnitudes of the diffusive
transport coefficients v, a, D4p
(material properties).

DAE -
Le — Lewis = —

These numbers are defined to help
us build transport data correlations
based on the fewest number of
grouped (dimensionless) variables
(scenario properties).

¥
f — Friction Factor = ;4%
sz Ac

Nu — Nusselt = —~
D

Sh— Sherwood =
AB

|
!

Scales the time evolution of the temperature profile relative to the
material’s thermal properties, & = k/pép (thermal diffusion time).
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Heat Transfer

Dimensional Analysis in Unsteady State Heat Transfer

Note Two Different Numbers

Warning!

with completely different purposes and meanings
but confusingly similar definitions

hD _ hDpoay

Bi — Biot Number = g =

in contact with a moving fluid.

Nu — Nusselt Number =

Dimensionless heat transfer coefficient in convection. Quantifies the physics in
the moving fluid and how this results in a resistance to heat transfer, captured

in the heat transfer coefficient.

kbody

Quantifies the tradeoffs between the rate of internal heat flux (by conduction,
k) and the rate of heat delivery to the boundary (by convection, h) for a body

hD _ hDglow

k

kfiuia
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Dimensional Analysis in Heat Transfer

Note also:

D
tchar,l = V

(forced convection) q

D* D?pC,

tehar2 = 3 = %
(thermal diffusion)

convectiverate 1/tcpgrq
dif fusiverate ~ 1/tchara

momentum

energy Dimensionless Numbers

mass

Re — Reynolds = e

Pe — Péclet, = RePr = 2872 = 2

Pe — Peclet, =
Cou

Pr — Prandtl =J,’(— =

Sc — Schmidt = LePr

. a
Le — Lewis = —
Dap

. _ _Fara
f — Friction Factor = m
Nu — Nusselt = *
Sh — Sherwood = "=

pvD _ VD
These numbers from the governing
equations tell us about the relative

importance of the terms they precede

in the microscopic balances
(scenario properties).

vz
9D

These numbers compare the
u v magnitudes of the diffusive
PDas Dap transport coefficients v, a, Dp
(material properties).

v
a

These numbers are defined to help
us build transport data correlations
hb based on the fewest number of
kmD grouped (dimensionless) variables
Dap (scenario properties).

_V/D _pVDC,
~ k/D?pC,  k

Pe

Non-dimensional Energy Equation

Pe — Péclet;, = RePr
Pr — Prandtl

The Peclet number is the ratio

energy

ac ¢ -

of convective and diffusive heat

vr2T* s*
) + tra nsport rates
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Heat Transfer

Bi — Biot Number = hTD

Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the

rate of heat delivery to the boundary (by

convection, h)

At high Bi, the surface temperature
equals the bulk temperature; heat
transfer is limited by conduction in
the body.

At moderate Bi, heat transfer is
affected by both conduction in the
body and the rate of heat transfer to
the surface.

At low Bi, the temperature is
uniform in a finite body; heat
transfer is limited by rate of heat
transfer to the surface (h).

High Bi:
low k,
high h

Moderate Bi:
nether process

dominates

Low Bi:
high k,
low h

19
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Bi — Biot Number = hTD

Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the

rate of heat delivery to the boundary (by

convection, h)

At high Bi, the surface temperature

When the temperature is uniform in the

body, we can do a macroscopic energy
balance to solve many problems of interest.

bod
the surface.

Qi This is called a “lumped parameter analysis.”

dominates

ow Bi, the temperature is
uniform in a finite body; heat
transfer is limited by rate of heat
transfer to the surface (h).

———T=T()
Low Bi:
high k,

low h
/
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Heat Transfer

Bi — Biot Number = hTD

Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the
rate of heat delivery to the boundary (by
convection, h)

T=T(,y,zt),

At high Bi, the surface temperature

—__T-
High Bi: easy BC

equals the bulk temperature; heat |OW k
transfer is limited by conduction in 4

the surface

At low Bi, t

transfer is limited by rate o
transfer to the surface (h).

When the wall temperature and the bulk
temperature are equal, the microscopic
energy balance is easier to carry out

uniform in (temperature boundary conditions).

21
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Bi — Biot Number = hTD

When both processes affect the outcomes, the full
solution may be necessary. For uniform starting
temperatures, the solutions are published.

Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the
rate of heat delivery to the boundary (by
convection, h)

e pouy. T =T(xy,2t) | g |
hard BC e
At moderate Bi, heat transfer is Moderate Bi:
affected by both conduction in the
body and the rate of heat transfer to nether process
the surface. dominates
/
At low Bi, the temperature is L B..
uniform in a finite body; heat Oow bl:
transfer is limited by rate of heat h|gh k,
transfer to the surface (h). |OW h
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Heat Transfer

N EXT: Talk about the three cases

Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the
rate of heat delivery to the boundary (by
convection, h)

iot Number

At high Bi, the surface temperature High Bi:
equalsthe bulk temperature; heat

transfer is limited by conduction in low k,
the body. high h

At moderate Bi, heat transfer is Moderate Bi:

affected by both conductionin the
body and the rate of heat transfer to nether process
the surface. dominates

At low Bi, the temperature s

uniform in a finite body; heat Low Bi:
transfer is limited by rate of heat h]gh k,
transfer to the surface (h).

low h
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