

Can we meet our objective?

To determine *h*:

- Measure center-point temperature as a function of time
- Compare with model predictions, accounting for uncertainty in measurements
- Deduce *h*

Unsteady State Heat Transfer: Intermediate Biot Number

Microscopic Energy Balance

Microscopic energy balance, constant thermal conductivity; Gibbs notation

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T \right) = k \nabla^2 T + S$$

Microscopic energy balance, constant thermal conductivity; Cartesian coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + S$$

Microscopic energy balance, constant thermal conductivity; cylindrical coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) + S \left(\frac{\partial T}{\partial r} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} \right)$$

Microscopic energy balance, constant thermal conductivity; spherical coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial T}{\partial \phi} \right) = k \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2} \right) + S \left(\frac{\partial T}{\partial \theta} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial T}{\partial \phi} = k \left(\frac{1}{r^2} \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial T}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial T}{\partial \phi} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial T}{\partial \phi} \right)$$

www.chem.mtu.edu/~fmorriso/cm310/energy2013.pdf

Unsteady State Heat Transfer to a Sphere

Microscopic energy balance in the sphere:

$$\frac{\partial T}{\partial t} = \frac{\alpha}{\left(\frac{k}{\rho \hat{C}_p}\right)} \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r}\right)\right)$$

- In Early: Suddenly: $t < t_0$ $T = T_0$ T = T(t)
- Unsteady
- Solid ($\underline{v} = 0$)
- θ, ϕ symmetry
- No current, no rxn

Boundary conditions:

$$r = R$$
, $\frac{q_r}{A} = -k \frac{\partial T}{\partial r} = h(T(r) - T_{bulk})$ $t > 0$

$$r=0, \qquad \qquad \frac{q_r}{A}=-k\frac{\partial T}{\partial r}=0 \qquad \qquad \forall t$$

Initial condition:

$$t = 0,$$
 $T = T_{initial}$ $\forall r$

1

© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer to a Sphere

Microscopic energy balance in the sphere:

$$\frac{\partial T}{\partial t} = \frac{\alpha}{\left(\frac{k}{\rho \hat{C}_p}\right)} \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r}\right)\right)$$

- Unsteady
- Solid ($\underline{v} = 0$)
- θ , ϕ symmetry
- No current, no rxn

Boundary conditions:

$$r = R$$
, $\frac{q_r}{A} = -k\frac{\partial T}{\partial r} = h(T(r) - T_{bulk})$ $t > 0$

r = 0, $\frac{q_r}{A} = -k \frac{\partial T}{\partial r} = 0$

Initial condition:

$$t=0,$$
 $T=T_{initial}$ $\forall r$ ("\forall")

18

If we choose a fixed Bi, then ξ only varies with Fo

$$Bi \equiv \frac{hR}{k} \qquad Fo \equiv \frac{\alpha t}{R^2}$$

$$\mathbf{Fo} \equiv \frac{\alpha t}{R^2}$$

For a **fixed Bi**:

$$\xi(0, \text{Fo}) = \frac{T - T_b}{T_i - T_b} = 2\text{Bi} \sum_{n=1}^{\infty} e^{-Fo(\lambda_n R)^2} \left(\frac{\sin R\lambda_n}{R\lambda_n} \right) \left(\frac{(R\lambda_n)^2 + (\text{Bi} - 1)^2}{(R\lambda_n)^2 + \text{Bi}(\text{Bi} - 1)} \right)$$

$$\xi(0, \text{Fo}) = \frac{T - T_b}{T_i - T_b} = 2 \text{Bi} \sum_{n=1}^{\infty} e^{-(Fo)(\lambda_n R)^2} \begin{pmatrix} \text{bunch of terms} \\ \text{that vary with Bi and } \lambda_n(\text{Bi}) \end{pmatrix}$$

An infinite sum of decaying exponentials

- whose *argument* is Fourier number scaled by something that depends on Biot number and n
- with a prefactor that also depends on Biot number and n

© Faith A. Morrison, Michigan Tech U.

If we choose a fixed Bi, then ξ only varies with Fo

$$Bi \equiv \frac{hR}{k} \qquad Fo \equiv \frac{\alpha t}{R^2}$$

For a fixed Bi:

$$\xi(0, \text{Fo}) = \sum_{n=1}^{\infty} \tilde{C}_n e^{-\lambda_n^2 R^2 F_0}$$

An infinite sum of decaying exponentials

- $ilde{\mathcal{C}}_n$ depends on n through λ_n
- λ_n are calculated (numerically) from the roots of this equation:

$$f(R\lambda) = \frac{R\lambda}{\tan R\lambda} + \text{Bi} - 1 = 0$$

Let's plot $\xi(0, Fo)$

What were we trying to do?

Example: Measure the convective heat-transfer coefficient for heat being transferred between a fluid and a sphere.

Where are we in the process?

✓ We have the model

© Faith A. Morrison, Michigan Tech U.

- We need the measured center-point temperature as a function of time
- We need to compare the two to deduce h.

Can we meet our objective?

To determine h:

- · Measure center-point temperature as a function of time
- Compare with model predictions, accounting for uncertainty in measurements
- Deduce h

© Faith A. Morrison, Michigan Tech U.

44

The solution $\xi(0, \text{Fo}) = \sum_{n=1}^{\infty} \tilde{C}_n e^{-\lambda_n^2 R^2 F_0}$ of the model: $Bi \equiv \frac{hR}{l}$ Use to interpret data. For a fixed Bi, $F_0 > 0.2$: From the model solution... $\xi(0, \text{Fo}) \approx \tilde{C}_1 e^{-\lambda_1^2 R^2 Fo}$ Characteristic Equation: $\ln \xi(0, \text{Fo}) = \ln(\tilde{C}_1) - \lambda_1^2 R^2 \text{Fo}$ 10.0 RYn 0.8 From experiments... 6.0 Plot: $\ln \xi = \ln \left(\frac{T - T_b}{T_i - T_b} \right)$ vs Fo \Rightarrow slope $= -\lambda_1^2 R^2$ 0.01 1000 0.001 Once we know Bi, we can calculate h from Bi

