Module 1: Intro and Prerequisite Material

Steady Heat Transfer Review

Professor Faith A. MorrisonDepartment of Chemical Engineering
Michigan Technological University

www.chem.mtu.edu/~fmorriso/cm3120/cm3120.html

© Faith A. Morrison, Michigan Tech U.

CM3120: Module 1

Introduction and Prereq Material

- I. Introduction
- II. Review of Prerequisite Material
 - a. Microscopic energy balances
 - b. Fourier's law of heat conduction (k, homogeneous)
 - c. Newton's law of cooling (h, at a boundary)
 - d. Resistances due to k and h
 - e. Solving for the steady temperature field T(x,y,z)
 - f. Dimensional analysis in heat transfer for h
 - g. h Data correlations for forced and free convection
 - h. *h* For radiation heat transfer

Microscopic Energy Balance Review

CM3110 **REVIEW**

What *physics*

determines how rapidly (the rate) the heat transfers from one location to another?

Energy **Transport law**

Fourier's Law of Heat Conduction

$$\frac{q_x}{A} = -k \frac{dT}{dx}$$

(for a homogeneous phase)

 $\frac{q_x}{4}$ -heat flux=energy/area time)

 $\frac{d}{k}$ - thermal conductivity $\frac{dT}{dx}$ -temperature gradient

(the driving physics of Fourier's law is Brownian motion: energy transports down ∇T due to Brownian motion)

© Faith A. Morrison, Michigan Tech U.

Microscopic Energy Balance Review

Heat Transfer Rate law:

CM3110 **REVIEW**

Fourier's law of Heat Conduction

Makes reference to a coordinate system

Allows you to solve for temperature profiles (also known as temperature distributions or fields)

 $\frac{\underline{q}}{A} = -k\nabla T$ Gibbs notation:

Fourier's law in three

dimensions

$$\tilde{q} = \frac{q}{A} = \begin{pmatrix} -k \frac{\partial T}{\partial x} \\ -k \frac{\partial T}{\partial y} \\ -k \frac{\partial T}{\partial z} \end{pmatrix}_{xyz}$$

- •Heat flows down a temperature gradient
- •Flux is proportional to the magnitude of temperature gradient

Microscopic Energy Balance

CM3110 **REVIEW**

The Equation of Energy for systems with constant $m{k}$

Microscopic energy balance, constant thermal conductivity; Gibbs notation

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T \right) = k \nabla^2 T + S$$

Microscopic energy balance, constant thermal conductivity; Cartesian coordinates

$$\rho \hat{\mathcal{C}}_p \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + S$$

Microscopic energy balance, constant thermal conductivity; cylindrical coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) + S$$

Microscopic energy balance, constant thermal conductivity; spherical coordinates

$$\begin{split} \rho \hat{\mathcal{C}}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial T}{\partial \phi} \right) \\ &= k \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2} \right) + \mathcal{S} \end{split}$$

http://pages.mtu.edu/~fmorriso/cm310/energy_equation.html

© Faith A. Morrison, Michigan Tech U.

Fourier's Law of Heat Conduction

CM3110 **REVIEW**

Fourier's law of heat conduction, Gibbs notation: $\tilde{q} = q/A = -k\nabla T$

Fourier's law of heat conduction, Cartesian coordinates: $\begin{pmatrix} \tilde{q}_x \\ \tilde{q}_y \\ \tilde{q}_z \end{pmatrix}_{xyz} = \begin{pmatrix} q_x/A \\ q_y/A \\ q_z/A \end{pmatrix}_{xyz} = \begin{pmatrix} -k \frac{\partial T}{\partial x} \\ -k \frac{\partial T}{\partial y} \\ -k \frac{\partial T}{\partial y} \\ -k \frac{\partial T}{\partial z} \end{pmatrix}_{xyz}$ Fourier's law of heat conduction, cylindrical coordinates: $\begin{pmatrix} \tilde{q}_r \\ \tilde{q}_\theta \\ \tilde{q}_z \end{pmatrix}_{r\theta z} = \begin{pmatrix} q_r/A \\ q_\theta/A \\ q_z/A \end{pmatrix}_{r\theta z} = \begin{pmatrix} -k \frac{\partial T}{\partial r} \\ -k \frac{\partial T}{\partial r} \\ -k \frac{\partial T}{\partial z} \end{pmatrix}_{r\theta z}$ (constant thermal conductivity k)

Fourier's law of heat conduction, spherical coordinates: $\begin{pmatrix} \tilde{q}_r \\ \tilde{q}_\theta \\ \tilde{q}_\phi \end{pmatrix}_{r\theta\phi} = \begin{pmatrix} q_r/A \\ q_\theta/A \\ q_\phi/A \end{pmatrix}_{r\theta\phi} = \begin{pmatrix} -k\frac{\partial T}{\partial r} \\ -\frac{k}{r}\frac{\partial T}{\partial \theta} \\ -\frac{k}{r\sin\theta}\frac{\partial T}{\partial \phi} \end{pmatrix}$

https://pages.mtu.edu/~fmorriso/cm310/energy.pdf

Microscopic Energy Balance Review—Resistance to Heat Transfer

$\mathcal{R} =$ Resistance to Heat Transfer

The language of *resistance* to describe the physics of heat transfer will be handy in our study of unsteady state temperature profiles. We encountered this language in CM3110, and we review and summarize now.

Two limitations create resistance:

- 1. Limited conductivity within the
- homogeneous phase (k)2. Limited heat transfer between phases at a boundary (h)

Also, resistances:

- 1. Are affected by geometry (rectangular versus radial)
- 2. Can be stacked (that is, added together like electrical resistances)

Note: Geankoplis uses a slightly different definition of resistance; we follow Bird et al. 2002.

22

1D Heat Transfer - Resistance

Thermal conductivity k and heat transfer coefficient h may be thought of as sources of **resistance** \mathcal{R} to heat transfer.

These resistances \mathcal{R} <u>stack up</u> in a logical way, allowing us to quickly and accurately determine the effect of adding insulating layers, encountering pipe fouling, and other applications.

Using the microscopic energy balance on a test problem, we can solve for the temperature profile and then the heat flux, which is the driving force/resistance.

We can then identify the resistances for each test case considered.

$$\frac{q_x}{A} = \frac{\text{driving force}}{\sum \text{resistances}}$$

23

1D Heat Transfer - Resistance

Let:
$$\mathcal{R} \equiv \frac{B}{\nu}$$

1D Rectangular

Note: Geankoplis uses a different resistance. For rectangular heat flux: $R_{Geankoplis} = \mathcal{R}/LW$

Let:
$$\mathcal{R} \equiv \frac{1}{k} \ln \frac{R_2}{R_1}$$

1D Radial

Temperature Boundary Conditions

Newton's Law of Cooling Boundary Conditions

Note: Geankoplis uses a different resistance. For radial heat flux: $R_{Geankoplis} = \mathcal{R}/2\pi L$

© Faith A. Morrison, Michigan Tech U.

1D Heat Transfer - Resistance

1D Rectangular

$$\mathcal{R}_i \equiv \frac{1}{h_i}$$
 for $i = 1,2$

$$\mathcal{R}_3 \equiv \frac{B}{k}$$

$$\frac{q_x}{A} = \frac{(T_{b1} - T_{b2})}{\mathcal{R}_1 + \mathcal{R}_2 + \mathcal{R}_3} = \frac{\text{driving force}}{\text{resistance}}$$

1D Radial

$$\mathcal{R}_i \equiv \frac{1}{R_i h_i}$$
 for $i = 1,2$
 $\mathcal{R}_3 \equiv \frac{1}{k} \ln \frac{R_2}{R_1}$

$$\mathcal{R}_3 \equiv \frac{1}{k} \ln \frac{R_2}{R}$$

$$h_1 = \text{inside}$$

 $h_2 = \text{outside}$

Unsteady State Heat Transfer

CM3110 **REVIEW**

Steady Heat-Transfer Review Summary (thus far):

- Microscopic energy balance
- Fourier's law of heat conduction (k, homogeneous)
- Newton's law of cooling (h, at the boundary between two phases)
- **Resistances** due to k and h; vary with boundary conditions (BC) and geometry

	T BC	h BC
1D rectangular	$\frac{B}{k}$	$\frac{1}{h}$
1D radial	$\frac{1}{k} \ln \frac{R_2}{R_1}$	$\frac{1}{Rh}$

Solving for the steady temperature field T(x, y, z), a.k.a. "Slash and Burn"

© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer

CM3110 **REVIEW**

Steady Heat-Transfer Review Summary (thus far):

- Microscopic energy balance
- Fourier's law of heat conduction (k, homogeneous)
- Newton's law of cooling (h, at the boundary between two phases)
- **Resistances** due to k and h; vary with boundary conditions (BC) and geometry

Sneak peak: The ratio of T (internal) and h(external) resistances is the **Biot** number:

$$\boldsymbol{Bi} = \frac{B/k}{1/h} = \frac{\boldsymbol{hB}}{\boldsymbol{k}}$$

This is important in unsteady heat transfer.

Solving for the *steady* temperature field T(x, y, z), a.k.a. "Slash and Burn"

How does Dimensional Analysis work in Heat Transfer?

CM3110 REVIEW

First try: Forced Convection

Complex Heat Transfer – Dimensional Analysis

Chosen problem: Forced Convection Heat Transfer **Solution:** Dimensional Analysis

Following procedure familiar from pipe flow,

- · What are governing equations?
- · Scale factors (dimensionless numbers)?
- · Quantity of interest?

Answer: Heat flux at the wall

© Faith A. Morrison, Michigan Tech U.

Dimensional Analysis in Forced Convection Heat Transfer

Pipe flow

z-component of the Navier-Stokes Equation:

CM3110 **REVIEW**

$$\rho \left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \right) \\
= -\frac{\partial P}{\partial z} + \mu \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} \right) + \rho g_z$$

Choose:

- Choose "typical" values (scale factors)
- D =characteristic length
- V = characteristic velocity
- D/V = characteristic time
- ρV^2 = characteristic pressure
- Use them to scale the equations
- Deduce which terms dominate

Dimensional Analysis in Forced Convection Heat Transfer

Pipe flow

non-dimensional variables:

CM3110 **REVIEW**

time:

position:

$$\begin{bmatrix} t^* \equiv \frac{tV}{D} \\ \end{bmatrix} \quad r^* \equiv \frac{r}{D} \quad v_z^* \equiv \frac{v_z}{V} \quad P^* \equiv \frac{P}{\rho V^2}$$
$$z^* \equiv \frac{z}{D} \quad v_r^* \equiv \frac{v_r}{V} \quad g_z^* \equiv \frac{g_z}{g}$$

$$z^* \equiv \frac{z}{D}$$

velocity:

$$v_z^* \equiv \frac{v_z}{V}$$

$$v_r^* \equiv \frac{v_r}{V}$$

$$v_{\theta}^* \equiv \frac{v_{\theta}}{V}$$

driving force:

$$P^* \equiv \frac{P}{\rho V^2}$$

$$g_z^* \equiv \frac{g_z}{g}$$

- Choose "typical" values (scale factors)
- Use them to scale the equations
- Deduce which terms dominate

© Faith A. Morrison, Michigan Tech U.

Dimensional Analysis in Forced Convection Heat Transfer

Energy

Microscopic energy balance:

$$\rho \hat{C}_{p} \left(\frac{\partial T}{\partial t} + v_{r} \frac{\partial T}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial T}{\partial \theta} + v_{z} \frac{\partial T}{\partial z} \right) = k \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \theta^{2}} + \frac{\partial^{2} T}{\partial z^{2}} \right) + S$$

non-dimensional variables:

$$r^* \equiv \frac{r}{D}$$
$$z^* \equiv \frac{z}{D}$$

temperature:

$$T^* \equiv \frac{T - T_o}{\left(T_1 - T_o\right)}$$

$$S^* \equiv \frac{S}{S_0}$$

Choose:

T -use a characteristic $r^* \equiv \frac{r}{D}$ $T^* \equiv \frac{T - T_o}{\left(T_1 - T_o\right)}$ $S^* \equiv \frac{S}{S_0}$ interval (since distance from absolute zero is not part of this physics) S – use a reference interval (since

source, S_0

urface
$$S_0 \equiv \frac{(T_1 - T_0)V\rho G}{D}$$

© Faith A. Morrison, Michigan Tech U.

 $T_0 = \text{surface}$ $T_1 = \text{bulk}$

Complex Heat Transfer - Dimensional Analysis

CM3110 **REVIEW**

Non-dimensionalize

non-dimensional variables:

position:

$$r^* \equiv \frac{r}{D}$$

temperature:

$$r^* \equiv \frac{r}{D}$$

$$z^* \equiv \frac{z}{D}$$

$$T^* \equiv \frac{T - T_o}{(T_1 - T_o)}$$

$$T_0 = \text{surface}$$

 $T_1 = \text{bulk}$

CM3110

© Faith A. Morrison, Michigan Tech U.

REVIEW $h(\pi QL)(T_1 - T_o) = \int_{0}^{2\pi} \int_{0}^{L/D} -k \frac{\partial T^*}{\partial r^*}\Big|_{r^* = 1/2} \frac{(T_1 - T_o)}{T_o}$ $2\pi \left(\frac{hD}{k}\right)\left(\frac{L}{D}\right) = \int_{0}^{2\pi} \int_{0}^{L/D} -\frac{\partial T^{*}}{\partial r^{*}}\bigg|_{r^{*}=1/2} dz^{*} d\theta$

Nusselt number, Nu (dimensionless heattransfer coefficient; dimensionless amount of heat transferred)

Complex Heat Transfer - Dimensional Analysis

$$Nu = Nu\left(T^*, \frac{L}{D}\right)$$

NATURAL () () () (CONVECTION

NATURAL(FREE) CONVECTION

Non-dimensional Energy Equation

$$\left(\frac{\partial T^*}{\partial t^*} + v_x^* \frac{\partial T^*}{\partial x^*} + v_y^* \frac{\partial T^*}{\partial y^*} + v_z^* \frac{\partial T^*}{\partial z^*}\right) = \Pr\left(\frac{\partial^2 T^*}{\partial x^{*2}} + \frac{\partial^2 T^*}{\partial y^{*2}} + \frac{\partial^2 T^*}{\partial z^{*2}}\right)$$

NATURAL(FREE) CONVECTION

Non-dimensional Navier-Stokes Equation

$$\frac{Dv_z^*}{Dt} = (\nabla^2 v_z)^* + \left[\frac{gL^3 \bar{\rho}^2 \bar{\beta} (T_2 - \bar{T})}{\mu^2}\right] T^*$$

$$Gr \equiv \frac{gL^3\bar{\rho}^2\bar{\beta}(T_2 - \bar{T})}{\mu^2}$$

$$\equiv Grashof number$$

Non-dimensional Continuity Equation

$$\frac{\partial v_x^*}{\partial x^*} + \frac{\partial v_y^*}{\partial y^*} + \frac{\partial v_z^*}{\partial z^*} + = 0$$

Quantity of interest

57

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer - Dimensional Analysis

CM3110 REVIEW

According to our **natural convection dimensional analysis** calculations, the dimensionless heat transfer coefficient should be found to be a function of <u>two</u> dimensionless groups:

Grashof number

$$Gr \equiv \frac{gL^3\bar{\rho}^2\bar{\beta}(T_2 - \bar{T})}{\mu^2}$$

Prandtl number

$$\Pr \equiv \frac{\hat{c}_{p}\mu}{k} \qquad \text{(fluid properties)}$$

$$Nu = Nu(Gr, Pr)$$

NATURAL(FREE) CONVECTION

Now, do the experiments.

58

Complex Heat Transfer – Dimensional Analysis—Free Convection

Experimental Results:

$$Gr \equiv \frac{gD^3 \bar{\rho}^2 \bar{\beta} \Delta T}{\mu^2}$$

Example: Natural convection from vertical planes and cylinders

$$Nu = \frac{hL}{k} = aGr^m Pr^m$$

- •a,m are given in Table 4.7-1, page 278 Geankoplis for several cases
- •L is the height of the plate
- •all physical properties evaluated at the film temperature, T_f

$$T_f = \frac{T_w + T_b}{2}$$

Free convection correlations use the film temperature for calculating the physical properties

59

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis—Free Convection

Exam 1 Handout, Natural Convection Data Correlations

60

RadiationSummary:

CM3110 REVIEW

General properties:

• Absorptivity, α

•gray body: $\alpha = \text{constant}$ •black body: $\alpha = 1$

• Emissivity, ε

 $q_{emit} = \varepsilon q_{emit,blackbody}$

- Kirchoff's law: $\alpha = \epsilon$
- Stefan-Boltzman law

$$\frac{q_{emit,blackbody}}{A} = \sigma T^4$$

NET Radiation energy going from surface 1 to surface 2:

$$\frac{q_{1-2} - q_{2-1}}{A} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$$

Heat shields:

$$\frac{q}{A} = \left(\frac{1}{N+1}\right) \frac{\sigma(T_1^4 - T_3^4)}{\left(\frac{2}{\varepsilon} - 1\right)}$$

Net heat transfer to a body:

$$\frac{q}{A} = \varepsilon \Big|_{T_S} \sigma \big(T_S^4 - T_{body}^4 \big)$$

Heat transfer coefficient:

$$h_{rad} = \frac{\varepsilon|_{T_s} \sigma \left(T_s^4 - T_{body}^4\right)}{\left(T_s - T_{body}\right)}$$

Geankoplis 4th ed., eqn 4.10-10 p304

Stefan-Boltzman constant:

$$\sigma = 5.676 \times 10^{-8} \frac{W}{m^2 K^4}$$

© Faith A. Morrison, Michigan Tech U.

RadiationSummary:

CM3110 REVIEW

General properties:

Absorptivity, α

•gray body: $\alpha = \text{constant}$ •black body: $\alpha = 1$

Emissivity, ε

 $q_{emit} = \varepsilon q_{emit,blackbody}$

- Kirchoff's law: $\alpha = \varepsilon$
- Stefan-Boltzman law

 $\frac{q_{emit,blackbody}}{A} = \sigma T^4$

NET Radiation energy going from surface 1 to surface 2:

$$\frac{q_{1-2} - q_{2-1}}{A} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$$

Heat shields

$$\frac{q}{A} = \left(\frac{1}{N+1}\right) \frac{\sigma(T_1^4 - T_3^4)}{\left(\frac{2}{\varepsilon} - 1\right)}$$

Net heat transfer to a body:

$$\frac{q}{A} = \varepsilon \Big|_{T_S} \sigma \big(T_S^4 - T_{body}^4 \big)$$

 $T_{\rm s}$

Geankoplis 4th ed., eqn 4.10-10 p304

Heat transfer coefficient:

Stefan-Boltzman constant:

$$\sigma = 5.676 \times 10^{-8} \frac{W}{m^2 K^4}$$

