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CM3120: Module 1

Introduction and Prereq Material

I.  Introduction

Il. Review of Prerequisite Material

Microscopic energy balances

Fourier’s law of heat conduction (k, homogeneous)
Newton’s law of cooling (h, at a boundary)
Resistances due to k and h

Solving for the steady temperature field T(x,y,z)
Dimensional analysis in heat transfer for h

h Data correlations for forced and free convection
h For radiation heat transfer
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CM3120 Module 1 Lecture 2 1/20/2021

Why study transport/unit ops?

Where are we in

AL StUdy of How far along did we get in CM3110
transport/0.U.? and other prerequisite courses?

Michigan Tech|
CM3110

Transport Processes and Unit Operations |

Professor Faith Morrison

Department of Chemical Engineering
Michigan Technological University

CM3110 - Momentum dpd Heat Transport
CM3120 - Heat and Mas: nsport
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CM3120: Unsteady State Heat Transfer/Mass Transfer/Unit Operations

Module 1: Intro and Prerequisite Material

CM3120 builds on
these topics from the
prerequisites.

CM3110
We begin with a review: REVIEW

* Microscopic energy balance

* Fourier’s law of heat conduction (k, homogeneous)
* Newton’s law of cooling (h, at a boundary)

* Resistances due to k and h

* Solving for the steady temperature field T (x, y, z)

* Dimensional analysis in heat transfer for h

* h Data correlations for forced and free convection
* h For radiation heat transfer

Steady Heat Transfer
Review

4
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CM3120 Module 1 Lecture 2

Microscopic Energy Balance Review

CM3110
REVIEW

We begin our
prereq review

Unsteady State Heat Transfer

here We begin with a Review:

Module 1: Intro and Prerequisite Material

Steady Heat Transfer
Review

:‘:>

* Microscopic energy balance

* Fourier's law of heat conduction (k, homogeneous)
+ Newton’s law of cooling (h, at a boundary)

* Resistances dueto k and h

*+ Solving for the steady temperature field T'(x, y, 2)

+ Dimensional analysis in heat transfer

+ Data correlations for forced and free convection

+ Radiation heat transfer

© Faith A. Morrison, Michigan Tech U.

The microscopic
energy balance is
an expression of
the law of
conservation of
energy.

It includes
consideration of
unsteady energy
flows.

Microscopic Energy Balance Review

CM3110

Microscopic Energy Balance:

REVIEW

(

Equation of Thermal Energy Microscopic energy balance

written on an arbitrarily
shaped volume, V, enclosed
by a surface, S

http://pages.mtu.edu/~fmorriso/cm310/energy_equation.html

Gibbs notation: P<at \, . VE) =-V-g+S. general )
conduction
o 2 ly Fouri
Gibbs notation: Plp\G¢fr L VT ) =kV7T +S, Only Fourier
conduction
(incompressibleﬂuiM\stant
pressure, neglect £, £,,, viscous
dissipation )
6
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CM3120 Module 1 Lecture 2

Microscopic Energy Balance Review

What physics
determines how rapidly
(the rate) the heat
transfers from one
location to another?

Energy
Transport law

CM3110
REVIEW

Fourier’s Law of Heat Conduction

s _
A

dT
dx

(for a homogeneous
phase)

qf —heat flux=energy/area time)

k — thermal conductivity
dr .
- —temperature gradient

(the driving physics of Fourier’s law is Brownian motion:
energy transports down VT due to Brownian motion)

© Faith A. Morrison, Michigan Tech U.

Microscopic Energy Balance Review

Heat Transfer Rate law:

Fourier’s law of Heat Conduction

Makes reference to a
coordinate system

—_—

7
©_ _
Y k

)
&)

CM3110
REVIEW

Allows you to solve for
temperature profiles (also
known as temperature
distributions or fields)

. . q
Gibbs notation: j = —kVT
*Heat flows down a
aT temperature gradient
—k ox *Flux is proportional
Fourier’s law o q_ —ka—T Eo the m'talgnitudedpf t
in three q= 1= 3y emperature gradien
dimensions oT
_k_
02/ xyz

8
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CM3120 Module 1 Lecture 2 1/20/2021

Microscopic Energy Balance Review

CM3110

Equation of Energy REVIEW

(microscopic energy balance)

convection

A source

) (energy
+ VT ) =kV2T 45, encrates
= per unit

kV:T
volume per
Y time)
rate of change conduction
(all directions)

Plp

>
Q|
2|3

1

Due to:
electrical current;
chemical reaction

velocity must satisfy
equation of motion,

equation of continuity see handout for
component notation

http://pages.mtu.edu/~fmorriso/cm310/energy_equation.html

© Faith A. Morrison, Michigan Tech U.

e Equation of ENErgy in cartesian, cyiindrical, and spherical coordinates for
Newtonian fluids of constant density, with source term S. Source could be electrical energy due to e Equation of Energy for systems with constant k
current flow, chemical energy, etc. Two cases are presented: the general case where thermal

conductivity may be a function of temperature (vector flux 7 = q/A appearsin the equations); and the

more usual case, where thermal conductivity s constant. Microscopic energy balance, constant thermal conductivity; Gibbs notation
Fall 2013 Faith A. Morrison, Michigan Technological University o6, (g+ q.vr) —kVT 4§
Microscopic energy balance, in terms of lux; Gibbs notation Microscopic energy balance, constant thermal conductivity; Cartesian coordinates
OO LL P c‘(dT+ ar o aT)*k LAY
””(E” )" a+s Pl \Ge gy t gy T ) T ety Y e

Microscopic energy balance, in terms of flux; Cartesian coordinates Microscopic energy balance, constant thermal conductivity; cylindrical coordinates.

_ (% 93y  0q; L (T 9T vgdT ar 19 8T\ 13T 9T
(Gt T es P s ) k() e i+ 5E) s

or ar)
at e tvee T ror\"ar) " 2067 T 922

g +
”"(az Vrox Ty Ve

Microscopic energy balance, in terms of flux; cylindrical coordinates Microscopic energy balance, constant thermal conductivity; spherical coordinates

4 (9T aT | vgdT ar 13(rg,) | 104, 9g; . (0T ar ar vy AT
/'C,,(Ew, s ):-(— ;——5+—)+S P[;( ] 3 )

+E oy — ARV R L
o For troe 'z " ar ¥ 08 Frsin0 e

o T8
2
Microscopic energy balance, in terms of flux; spherical coordinates & (1 ﬁ(rsz) 1 ﬂ( dT) 19 T>+S

7or\" or) *rrsmoos "0 36) * a0,

aT aT ar vy AT 1 d(r2g, 1 3(Ggsing 1 9
v CSLy R R 3 @osind) aw)”

”Lv(ﬁ*VvE*Tﬁ*mnm 7 or Trsng a0 rsng 0,

Fourier’s law of heat conduction, Gibbs notation: § = —kVT'

o
(8 o
: : Y i B o
Fourier’s law of heat conduction, Cartesian coordinates: ( 4y | = | —k #
. o
oz \ okl
k 92/ xyz
o
@ o
Fourier’s law of heat conduction, cylindrical coordinates: (qs> =| -t
2/ & ar
e\
k5e/ o
o
a ~ar
. 5 % Kot
Fourier's law of heat conduction, spherical coordinates: | 4s | = —%20
(73 - k_ar Reference: F.A. Morrison, “Web Appendix to An Introduction to Fluid Mechanics,” Cambridge University
rsin0 09/ rgg Press, New York, 2013. On the web at hem.mtu.edu, D2013.pdf
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he EQuUation of ENergy in cartesian, cylingrical, and spherical coordinates for
Newtonian fluids of constant density, with source term S. Source could be electrical energy due to
current flow, chemical energy, etc. Two cases are presented: the general case where thermal
conductivity may be a function of temperature (vector flux 7 = q/A appearsin the equations); and the
more usual case, where thermal conductvity is constant.

Fall 2013 Faith A. Morrison, Michigan Technological University

e Equation of Energy for systems with constant k

Microscopic energy balance, in terms of lux; Gibbs notation
¢, (6T+ VT)* V- G+S
0y (G +2 7)==V +S
Microscopic energy balance, in terms of flux; Cartesian coordinates
or  or  or _ ar\_ (04, 04, 03
”f"(az Tty “”az)’ ’(ax oyt a)tS

Microscopic ener~

Front side:
* Micro E-balance

terms of flux g=
» Fourier’s law, g= —kVT

>R 5

Fourier’s law of heat conduction, cyiiu.

LA
Fourier's law of heat conduction, spherical coordinates: (q;,) =| -2
s,
vz

T rsin0 08/ g4

Microscopic energy balance, constant thermal conductivity; Gibbs notation

aT
o6y (E +v VT) =kVPT 45

Microscopic energy balance, constant thermal conductivity; Cartesian coordinates

(O BT AT ATy (0T T 8T
""(m”’ax”’ay*‘"az)’ 27

Microscopic energy balance, constant thermal conductivity; cylindrical coordinates

& aT aT vy adT ﬂT) k 10 ( ﬁT) 10°T %1 s
ol (Gt g + e e ror\"or) * 72087 A

Microscopic energy balance, constant thermal conductivity; spherical coordinates

L (9T 9T  vgaT
”(m ar " oe

(A2
e

EdT) 1 2T s
(’"‘ 36) *rsnzoagz) t

Reference: F. A. Morrison, “Web Appendix to An Introduction to Fluid Mechanics,” Cambridge University
Press, New York, 2013. On the web at hem.mtu.edy D2013.pdf

http://pages.mtu.edu/~fmorriso/cm310/energy_equation.html

"

© Faith A. Morrison, Michigan Tech U.

he EQuUation of ENergy in cartesian, cylingrical, and spherical coordinates for
Newtonian fluids of constant density, with source term S. Source could be electrical energy due to
current flow, chemical energy, etc. Two cases are presented: the general case where thermal
conductivity may be a function of temperature (vector flux 7 = q/A appearsin the equations); and the
more usual case, where thermal conductvity is constant.

Fall 2013 Faith A. Morrison, Michigan Technological University

e Equation of Energy for systems with constant k

Microscopic energy balance, in terms of flux; Gibbs notation

pCy (ﬁa—r +v VT)

Microscopic energy balance, in terms of flux; Cartesian coordinates

or ar _or _ ar\_ (0G93, 0d,
”b"(az”’ax“’yav”’h)”(ax*ay*az +s

Microscopic ener~

Front side:
* Micro E-balance

terms of flux § =

* Fourier’s law, g= —kVT

in
1
A

Fourier’s law of heat conduction, cyiiu.

LA
Fourier's law of heat conduction, spherical coordinates: (q;,) =
s,
vz

T rsin0 08/ g4

Microscopic energy balance, constant thermal conductivity; Gibbs notation
(i 27 4 5
pzf,,(—w VT) =KVPT +§
a
Microscopic energy balance, constant thermal conductivity; Cartesian coordinates

L L A
""(m”’ax”’ay*‘"az)’

Microscopic energy balance, constant thermal conductivity; cylindrical coordinates

& aT aT vy adT ﬂT) 14 ( ﬁT) 10°T %1 s
ol (Gt g + e e ror\"ar. A

Microscopic energy balance, constant thermal conductivity; spherical coordinates

1 9%
in260¢?

i

Back side:

* Micro E-balance in terms
of temperature (Fourier’s
law incorporated)

Reference: F. A. Morris.. ~,” Cambridge University
Press, New York, 2013. On the web a ... or130/IEM D2013.pdf

http://pages.mtu.edu/~fmorriso/cm310/energy_equation.html
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CM3120 Module 1 Lecture 2

Microscopic Energy Balance

e EQuation of Energy forsystems with constant k

CM3110
REVIEW

Microscopic energy balance, constant thermal conductivity; Gibbs notation
. (0T )
pcp(5+y~w):kv T+S

Microscopic energy balance, constant thermal conductivity; Cartesian coordinates

A(aT ar ar 6T)7 a’r  o°r a°T ’
ot ¥ox ~ o

C,l=—+ U, — v, — + +— |+
Pto Yoy foz dy? 9z
Microscopic energy balance, constant thermal conductivity; cylindrical coordinates

(19, 0T

. (0T T v dT ar :
( ) “\ror (’ 61‘) + r? 86?2 + 8z?

pCy E‘FU,.E + 30 +"z£

Microscopic energy balance, constant thermal conductivity; spherical coordinates

. (0T dT vy dT
pcp(EJrv,.E +)—% st

vy dT )
rsinfd dg

e 0(_26T)+ gt a(_ BaT)+ 19T i
e\ o TZsngoa\" " 28 r2sin? 0 d¢?

1 9%T azr)
+5

http://pages.mtu.edu/~fmorriso/cm310/energy_equation.html

© Faith A. Morrison, Michigan Tech U.

Fourier’s Law of Heat Conduction

Fourier’s law of heat conduction, cibbs notation: g = g/4

aT
—k dox

aT
_kﬁ

oT
—lete

0z/ xyz

ar

—k;

k oT

T 06

T

k<
9z/ 16z

Gx qx/A
Fourier’s law of heat conduction, Cartesian coordinates: | §y =|qy/A =
(constant thermal conductivity k) 42/ vy q:/A xyz

Gy = 9x
* A

qr qr/A
Fourier’s law of heat conduction, cylindrical coordinates: | gp = [ qg/A =
(constant thermal conductivity k) qz/ 1o, q:/4A 02

r 4 /A
Fourier’s law of heat conduction, spherical coordinates: | dg =|(qs/A =
(constant thermal conductivity k) de 00 qp/A 6

https://pages.mtu.edu/~fmorriso/cm310/energy.pdf

CM3110
REVIEW

o
ar
k oT
r a0
__k_ar
rsinf dg, r0¢

© Faith A. Morrison, Michigan Tech U.
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Microscopic Energy Balance Review CM3110
REVIEW

Unsteady State Heat Transfer

Module 1: Intro and Prerequisite Material

Steady Heat Transfer
Review

Now, Boundary
Conditions and _ ,

. Microscopic energy balance
Resistances V¥ Fourier’s law of heat conduction (k, homogeneous)

C + Newton’s law of cooling (h, at a boundary)
* Resistances due to k and h
*+ Solving for the steady temperature field T'(x, y, 2)

+ Dimensional analysis in heat transfer
+ Data correlations for forced and free convection

We begin with a Review:

+ Radiation heat transfer

© Faith A. Morrison, Michigan Tech U.

Microscopic Energy Balance Review—Boundary Conditions CM3110
We will need Example 1: Heat fluxin a REVIEW
boundary conditions rectangular solid — Temperature BC

’?hn ter.nperaturfe to solve What is the steady state temperature
€ microscopic profile in a rectangular slab if one side is

balances forthe held at T, and the other side is held at T,?
temperature distribution.

Assumptions:
*wide, tall slab
ssteady state

We may know the temperature
at the boundary.

© Faith A. Morrison, Michigan Tech U.
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CM3120 Module 1 Lecture 2 1/20/2021

Microscopic Energy Balance Review—Boundary Conditions CM3110
We will need Example 1: Heat fluxin a REVIEW
boundary conditions rectangular solid — Temperature BC

’?hn ter.nperaturfa to solve What is the steady state temperature
€ microscopic profile in a rectangular slab if one side is

balances forthe held at T, and the other side is held at T,?
temperature distribution.

Assumptions:

weearee — \What if we don’t
know the wall
temperature?

/

© Faith A. Morrison, Michigan Tech U.

17
Microscopic Energy Balance Review—Boundary Conditions CM3110
The interface between the solid and the fluid REVIEW

calls for a new type of boundary condition,
Newton’s Law of Cooling.

1
bulk fluid | solid wall
1

T (x) ‘ »
Thuik

K‘" Tyuie — Twan

Temperature offset is i
N I W .
evidence of heat-transfer :\\ T (x) in solid

resistance at the wall

Xwall X

There may exist a resistance to heat transfer

18
at the boundary, due to fluid characteristics

© Faith A. Morrison, Michigan Tech U.
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Microscopic Energy Balance Review—Boundary Conditions CM3110
The interface between the solid and the fluid REVIEW

calls for a new type of boundary condition,
Newton’s Law of Cooling.

I
bulkflud 1 solidwall
1

Thuik

K‘" Tyue — Twan

Temperature offset is i
evidence of heat-transfer \ By ; i
resistance at the wall '\ T(x) in R

Xwall X

The temperature difference at the fluid-wall interface
is caused by complex fluid phenomena that are

lumped together into the heat transfer coefficient, h "

© Faith A. Morrison, Michigan Tech U.

Microscopic Energy Balance Review J—
. . M E gu::> hornos%?izeous
The heat flux at the wall is given by >
the empirical expression known as —>
Newton’s Law of Cooling @[\\é T
(a linear driving-force model for T,#T,, ( /W',;;;E;e"’,;;;
interphase heat transport) B i o

This expression serves as
the definition of the heat
transfer coefficient.

q
Zx| :@lTbulk — Twaul

h depends on:

*geometry

«fluid velocity field
«fluid properties
stemperature 20

© Faith A. Morrison, Michigan Tech U.

1/20/2021

10
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Microscopic Energy Balance Review

Review so far...
convection
source

* Microscopic

. (0T -
energy balance pC, <— +v- VT) = kV2T + S,
at -
rate of change conduction
(all directions)

Fourier’s Law of Heat Conduction

* Fourier’s law of (for a homogeneous
. dx dT phase)
heat conduction L P
A dx

. ’ This expression serves as

New_ton s law Of the definition of the heat

coollng transfer coefficient.

(h, at the phase q

x
boundary) Z| :@lTbulk - Twalll

Next ‘

* Resistances due to k and h ‘
21

© Faith A. Morrison, Michigan Tech U

Microscopic Energy Balance Review—Resistance to Heat Transfer

R = Resistance to Heat Transfer

The language of resistance to describe the physics of heat transfer will be
handy in our study of unsteady state temperature profiles. We encountered
this language in CM3110, and we review and summarize now.

qx _ driving force

Two limitations create resistance: A Z resistances

1. Limited conductivity within the
homogeneous phase (k)

2. Limited heat transfer between phases
at a boundary (h)

Also, resistances:

Note: Geankoplis
1. Are affected by geometry uses a slightly
(rectangular versus radial) different definition of
2. Can be stacked (that is, added resistance; we follow
together like electrical resistances) Bird et al. 2002.

22

© Faith A. Morrison, Michigan Tech U.

1/20/2021
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1D Heat Transfer — Resistance

Thermal conductivity k and heat transfer
coefficient h may be thought of as sources of
resistance R to heat transfer.

These resistances R stack up in a logical way,
allowing us to quickly and accurately determine
the effect of adding insulating layers,
encountering pipe fouling, and other
applications.

Using the microscopic energy balance on a test problem, we can
solve for the temperature profile and then the heat flux, which is
the driving force/resistance.

We can then identify the resistances for each test case considered.

qx _ driving force

A ) resistances

23
© Faith A. Morrison, Michigan Tech U.

1D Heat Transfer — Resistance

RESISTANCE SUMMARY: —B—
qx (Tl - TS)

1D Rectangular:
Door (k; = k;), and
Composite Door

0 B/2B
1 k2

Bulk fuid

1D Rectangular: ==& 7 o A _ Tp1 —Tp
Slab with A (1 B 1
Newton’s law BC PR

1D Radial: Pipe
(k] = kz) and
Composite Pipe

qr _ (T, — Ts) l
A - 1 R2 1 R3 T

LR TR "R,

Cooler fluid
otT,

1D Radial: D qr _ (To1 = Th2) 1
Pipe with » AT 1 1 TR 1T \r
Newton’s law BC l R, TEM\R,) TR,

Hot fluid at
o

1/20/2021
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1D Heat Transfer — Resistance

. p=8
Let: R_k

qx _ (Ty —T,) _ driving force

A R

resistance

1D Rectangular

T(x)

=T,

Note: Geankoplis uses a different
resistance. For rectangular heat flux:
RGeankoplis =R/LW

Let: R=1mk
k™ Ry

qr _((Ty —T;)\1 _driving force
N r resistance

A R

Note: Geankoplis uses a different
resistance. For radial heat flux:
RGeankuplis =R/2rmL

Cooler wall
atT,

suonipuo) Aiepunog ainjesadwajl

Hot wall
atTy

25
© Faith A. Morrison, Michigan Tech

c

1D Heat Transfer — Resistance

Rizﬁforizl,z

1, R,
Ry =-In=2
3Tk Ry

Let: 1D Rectangular . 2
g

R;=—fori=12 () =
h; S

_B o

qx _ (Tpy —Tpz)  driving force 1, 9
A R,+R,+R; resistance :o:
§

oQ

Let: ©
5

Ty, | &

Q

<

0O

o

=]

=

g

a

A R +R,+ R3\r resistance

h; =inside

h, =outside Q

qr _ (Tp1 —Tpa) (1) __ driving force

26
© Faith A. Morrison, Michigan Tech U.
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CM3120 Module 1 Lecture 2

Now,

Microscopic Energy Balance Review

CM3110
REVIEW

Unsteady State Heat Transfer

Module 1: Intro and Prerequisite Material

We begin with a Review:

Steady Heat Transfer
Review

“Slash and Burn”

:‘:>\/

* Solving for the steady temperature field T'(x, y, 2)

v¥ Microscopic energy balance

V¥ Fourier’s law of heat conduction (k, homogeneous)
v Newton'’s law of cooling (h, at a boundary)

Resistances due to k and h

+ Dimensional analysis in heat transfer

+ Radiation heat transfer

+ Data correlations for forced and free convection

© Faith A. Morrison, Michigan Tech U.

Microscopic Energy Balance—Solve for Temperature Field

CM3110

REVIEW

For review, let’s carry out an example
of 1D, steady heat transfer m—)

CM3110 IMichiganjTec.

Transport |

Part II: Heat Transfer

One-Dimensional Heat
Transfer
(part 1: rectangular slab)

b ——

Simple problems that allow

ProfessorFaith Mormrison U DB E D

Department of Chemical Engineering
Michigan Technological University

@FaithA Momison, Michigan Tech U

28
© Faith A. Morrison, Michigan Tech U.

1/20/2021
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CM3120 Module 1 Lecture 2

Microscopic Energy Balance—Solve for Temperature Field

Example 3: Heat Conduction with Generation

What is the steady state temperature profile in a wire if
heat is generated uniformly throughout the wire at a rate
of S, W/m? and the bulk fluid surrounding the wire is at
T, ? What is the heat flux?

long wire

Ty
S. = energy production
per unit volume

© Faith A. Morrison, Michigan Tech U.

Microscopic Energy Balance—Solve for Temperature Field

Example: Heat conduction with
generation

long wire

T
S. =energy production
per unit volume

h = heat transfer coefficient

Let’s try.

30

© Faith A. Morrison, Michigan Tech U.

1/20/2021

15



CM3120 Module 1 Lecture 2 1/20/2021

Microscopic Energy Balance—Saolve for Temperature Field

Example: Heat conduction with
generation

long wire

5, = energy production
per unit volume

h = heat transfer coefficient

Let’s try.

In class solution will be posted with
the other “hand notes.”

31
© Faith A. Morrison, Michigan Tech U.

Microscopic Energy Balance—Solve for Temperature Field

Compare radial
conduction solutions

1.2 ‘ ‘
ﬁ: Radial conduction through pipe wall
— Radial conduction in wire with generation

1 —
\\
=ln—
\ I-T,, R R,

o
@
I

N

\ R,

N

\ T-1, _,_(rY
SR>/ 4k R

0 0.2 0.4 0.6 0.8 1
r/R or r/R1

Temperature ratio
o o
EN o

o
N
L

© Faith A. Morrison, Michigan Tech U.
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Unsteady State Heat Transfer CM3110
REVIEW

Steady Heat-Transfer Review Summary (thus far):

* Microscopic energy balance

* Fourier’s law of heat conduction (k, homogeneous)

* Newton’s law of cooling (h, at the boundary between two phases)

* Resistances due to k and h; vary with boundary conditions (BC)
and geometry

T BC h BC
1D rectangular E l
k h
1 R, 1

—ln— S

kR, Rh

* Solving for the steady temperature field T(x, y, z), a.k.a. “Slash
and Burn”

33
© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer CM3110
REVIEW

Steady Heat-Transfer Review Summary (thus far):

* Microscopic energy balance

* Fourier’s law of heat conduction (k, homogeneous)

* Newton’s law of cooling (h, at the boundary between two phases)

* Resistances due to k and h; vary with boundary conditions (BC)
and geometry

B Sneak peak: The ratio
of T (internal) and h

1 (external) resistances is

h

B
1D rectangula( T the Biot number:

N A
B/k hB
1\R2‘—/1/ Bi = I/Lh = T
f— n_ e
k Ry Rh This is important in
unsteady heat transfer.

* Solving for the steady temperature field T(x, y, z), a.k.a. “Slash
and Burn”

34
© Faith A. Morrison, Michigan Tech U.

17



CM3120 Module 1 Lecture 2

Microscopic Energy Balance Review CM3110
REVIEW

Unsteady State Heat Transfer

Module 1: Intro and Prerequisite Material

Finally,
Dimensional analysis and sty et Tronse
data correlations for heat .

transfer coefficient h
We begin with a Review:

v¥ Microscopic energy balance

V¥ Fourier’s law of heat conduction (k, homogeneous)

v Newton'’s law of cooling (h, at a boundary)

v¥ Resistances dueto k and h

v Solving for the steady temperature field T (x, y, z)
* Dimensional analysis in heat transfer

|:j‘> + Data correlations for forced and free convection

+ Radiation heat transfer

© Faith A. Morrison, Michigan Tech U.

Microscopic Energy Balance Review CM3110
REVIEW

9 Dimensional Analysis?

For complex systems, we turn to data
correlations based on dimensional analysis

The engineering quantity of interest in heat
transfer is the amount of heat 9 transferred

Nusselt number, a dimensionless heat transfer

coefficient, is a dimensionless amount of heat 9
transferred

© Faith A. Morrison, Michigan Tech U.

1/20/2021
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Microscopic Energy Balance Review—Dimensional Analysis cM3110
Heat Transfer Coefficient: REVIEW
* Linear driving force model q
X
» Heat transfer between phases _| — th — T |
- bulk wall
A
[}
bulkflud 1 solidwall
1
T(x) e
Thuik

Tyuie = Twau

37

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer — Dimensional Analysis CM3110
REVIEW

Review: What is Dimensional Analysis?

*Flow in pipes at all flow rates (laminar and turbulent)
Solution: Navier-Stokes, Re, Fr, L/D,
dimensionless wall force = f; f = f(Re,L/D)

*Rough pipes Solution: add additional length scale; then
nondimensionalize

*Non-circular conduits Solution: Use hydraulic diameter as the length
scale of the flow to nondimensionalize

*Flow around obstacles (spheres, other complex shapes

Solution: Navier-Stokes, Re, dimensionless
drag = CD' CD = CD(Re)

*Boundary layers Solution: Two components of velocity
need independent lengthscales

38
© Faith A. Morrison, Michigan Tech U.
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Complex Heat Transfer — Dimensional Analysis CM3110
Data Correlations: REVIEW
I [ Smooth pipe | T Sand-roughened pipe

1 ‘
a1 1

Turbulent flow (smooth pipe) Rough pipe
1 . ‘ 1

y ” “ wcen | h
' J " w0 10° 10" 10 10* 10°
Re Re

Noncircular cross section Around obstacles

o™ T T T T T T MWT i
A
f:o'z -

bNikumdu::;‘N\“\:

.2 [ ® Sehiller {1923)
6%, |

T T 71T

ol ol gl g7l

102 10° 10? 10°% 10%
Re 39
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Complex Heat Transfer — Dimensional Analysis CM3110
Data Correlations: REVIEW
Turbulent flow (smooth plpe) Rough plpe
[ Smooth pipe ] Sand-roughened pipe

vipe |

1
I3

DlmenS|onaI anaIyS|s
allows us to capture and
engineer around or

with complex behavior |
T e

© Nikuradse ( 1930)
a* Schiller {1923)
[[+]
1 1

ol ol gl g 1T
102 103 10* 10° 108 ¥
Re 40
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How does Dimensional Analysis CM3110
work in Heat Transfer? REVIEW

First try: Forced Convection

Complex Heat Transfer — Dimensional Analysis

Chosen problem: Forced Convection Heat Transfer
Solution: Dimensional Analysis

~{ ba

Following procedure familiar from pipe flow,
* What are governing equations?
» Scale factors (dimensionless numbers)?
* Quantity of interest?
Answer: Heat flux at the wall

41
© Faith A. Morrison, Michigan Tech U.

Dimensional Analysis in Forced ( FORCED @_’
Convection Heat Transfer SONVEL HON
Pipe flow . . CM3110
z-component of the Navier-Stokes Equation: REVIEW
ov, ov. v, 0v, ov,
P +v, +-—=+v,
ot or r 00 0z

oP [1 a[ asz 1 8%, &%
=——Fu ——|r +——=

e p— +_Z +
0z ror\ or ) r*o6?* GZZJ PE:

» Choose “typical” values (scale factors)
D = characteristic length |* Use them to scale the equations

V = characteristic velocity |* Deduce which terms dominate

D/V = characteristic time

pV? = characteristic pressure

Choose:

42
© Faith A. Morrison, Michigan Tech U.
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Dimensional Analysis in Forced _( FORCED @_’
Convection Heat Transfer CONVECTION
Pipe flow ) ) )
non-dimensional variables:
CM3110 o
driving
REVIEW time: position: velocity: force:
. tV s T Y . P
[ =— yro=— v, =+ P = :
D D V pV
* z Y *
zZ =E—| vy = L g. = g:
D V g
x« ¥V
%
» Choose “typical” values (scale factors)
» Use them to scale the equations i
* Deduce which terms dominate © Faith A. Morrison, Michigan Tech U.

Dimensional Analysis in Forced _( Ceaeis
Convection Heat Transfer CONVECTION ( >"

Energy

Microscopic energy balance:

o (0T, 0T vedT OT\_ (10 ( T\ 10°T 0°T\
Pee\ac " ar T a0 T 20z ) T \rar\"ar ) T 2962 T 922

non-dimensional variables: Choose:
T —use a
position:| | temperature: || source: characteristic
interval (since
* = 1 *_ T - ]; . S distance from
r= D T = = absolute zero is not
T - T SO part of this physics)
7 1 0
== S — use a reference
D source, S,
T, = surface
T, = bulk 44

© Faith A. Morrison, Michigan Tech U.
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Complex Heat Transfer — Dimensional Analysis Forced Convection
CMm3110
Forced Convection - )
Heat Transfer v REVIEW
Pipe flow

non-dimensional variables:

driving
time: position: velocity: force:
l'zﬁ r*zL V:Ei P= PZ .
Dl " DTV Substitute all these
ezl .y, . g . agn
z =— =L =2z
D"y &7 definitions,
*_ Vo
Vo=, (t* 7'* Z* * *
 Choose “typical” values (scale factors) ) ) ) p ) g )
+ Use th le th i
S Vi v, vl T, §*)

Forced Convection
Heat Transfer

into the governing
equations and
simplify...

Energy
Microscopic energy balance:

L (0T 9T wvgdT _ aT 19 ( 9T\ 19°T 8T
L e iy O e toa o |+ S

ror\"or) Tr2002 T 922
non-dimensional variables: Choose:
T —usea
position: temperature: || source: characteristic
interval (since
regl el =S| mamen,
z (Ti - 1:7) SO part of this physics)
== S — use areference
D source, S
45
© Faith A. Morrison, Michigan Tech U.
Complex Heat Transfer — Dimensional Analysis Forced Convection
CM3110
REVIEW
FORCED CONVECTION

Non-dimensional Energy Equation

(6T* LOT* vy dT* *OT*)

+ + + Lo + o°r +5*
ac " ar a0 T2 27902 " 972
FORCED CONVECTION épﬂ pVD
Non-dimensional Navier-Stokes Equation Pe =PrRe = —~——
- u
*
Dy, _ o
Dt” Pr=—>

6v;+8v;+6v:+_0 T* =T"(Re, Pr)
oo el v* = v (Re, Fr)
46
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Next?

‘ The engineering quantity of interest is the
amount of heat transferred ¢

Microscopic Energy Balance Review

Dimensional Analysis?

For complex systems, we turn to data
correlations for heat transfer coefficients based
on dimensional analysis

CM3110
REVIEW

Nusselt number, a dimensionless heat transfer
coefficient, is also a dimensionless amount of
heat transferred Q

47

© Faith A. Morrison, Michigan Tech U.

Forced Convection
Heat Transfer

FORGED
_’( CONVECTION

CMmM3110
REVIEW

(2mRL)

Linear driving force model

q
| = hiry = o]

jj g surface as

21T L

Apply in the fluid, at the surface:

(h)(T1 - To)= Q

(2nRL)(h)(Ty — Ty)=0 = f J +k— Rdzd6
r=R

Now, non-dimensionalize
this expression as well.
48
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Complex Heat Transfer — Dimensional Analysis

Non-dimensionalize

non-dimensional variables:

position: temperature:
S= 7 T-T,
D =17 _
* z Ti ]:)
zZ =—
D
T, = surface
T, = bulk

CMmM3110
REVIEW

49
© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer — Dimensional Analysis

CMmM3110
REVIEW

27L/D * \&
h(ﬁ\QL)(g,{,):j [ -+, g AL
or |. b2
0 0 r=1/2
DY L\ ¢ or :
27{]1—)(—): [] LT gag
k \D) <+ Or A
Nusselt number, Nu
(dimensionless heat- * L
transfer coefficient; dimensionless Nu = Nu T —
amount of heat transferred) i D

50
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Complex Heat Transfer — Dimensional Analysis

FORCED CONVECTION
Non-dimensional Energy Equation

b

aT* 4o aT* + vy 0T 4o aT* 1 9%T* + 2%T* e
ot " or T 00 ' 2oz 2 962 ' 972
FORCED CONVECTION épﬂ pVD
Non-dimensional Navier-Stokes Equation Pe =PrRe = ———
* H
DVZ _ . épﬂ
r=—-—
Dt p
Non-dimensional Continuity Equation Quantity of inteﬁg_§.t
* * *
Ov,  Ov, Ov,
r+—5+—=+=0
X Oy Z

51
© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer — Dimensional Analysis

CM3110
REVIEW

According to our forced convection dimensional
analysis calculations, the dimensionless heat transfer
coefficient should be found to be a function of four
dimensionless groups:

Peclet number
_ pCpVD _ Cpu pvD
T k  k u

L
Nu = Nu (Re, Pr, Fr,—)
Pe D

(tentative)
Prandtl number

¢ flui
ML U T

=-"  properties) | NOW, do the experiments.

52
© Faith A. Morrison, Michigan Tech U.
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Complex Heat Transfer — Dimensional Analysis
CM3110
REVIEW
According to our forced convection dimensional
analysis calculations and follow-up experiments, the

dimensionless heat transfer coefficient should be found to
be a function of these four dimensionless groups:

no free surfaces

7
Peclet number L pu
_ pCVD _ Cou pvD Nu = Nu|( Re, Pr, D'
e S Hw

FORCED CONVECTION
Prandtl number

. . Sometimes
pr = et (fluid “it turns out...” u(T) seen to
Tk properties) be important

53
© Faith A. Morrison, Michigan Tech U.

Data Correlations for Forced Convection Heat Transfer
CcM3110
Forced convection REVIEW Physical Properties

Heat Transfer in Laminar flow in pipes (except u,) @Valuated at:
1
2 0.14
Nu, = — = 1.86 (RePr—) - T e
k L7 \Hw 2
Sieder-Tate equation (laminar flow)
q = haAAT,
AT, = (Tw — Tw) "2' (Tw — Tho) ’May have to

be estimated
Forced convection

Heat Transfer in Turbulent flow in pipes

0.14
Mg D 1 Tyin + T,
Ny, = —2~ = 0.027Re®3Pr3 (”_b> Zbin T “bout

k U 2
Sieder-Tate equation (turbulent flow) Bulk mean
temperature
q = hym ATy,

ATw—bi B ATw—bo

A = =T 0
w=bo 4
in (3722 °

© Faith A. Morrison, Michigan Tech U.
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Complex Heat Transfer — Dimensional Analysis—Forced Convection

Exam 1 Handout, Forced Convection Data Correlations

Heat Transfer Data Correlations for Examinations
CM3110 Transport Phenomena Log mean driving Ly ®
Wichigan Technological University force ATy =
Professor Faith A. Morrison
1 December 2020
I Forced Convection Around the Outside of a Cylinder
I Forced Convection Through Pipes
n : P | analyis that the Nusselt number is I hestantertkingpce etwesn i 3t bk moertue Ty fowingperpendiclr o2
o G St Ho P 1D Bl cylinder with wall temperature T, the material properties are evaluated at the film temperature.
5 @
Prandtl number G w Film temperature ©
(fluid praperties) Preos
10 pipe flow with heal transfer taking place, the fluid enters at bulk fluid temperature Ty and exits “Theidata carrelation for Nusssit mber in ts casa s
BTy, Ty Isthe the wall. For Nu data through W (10)
pipes, all fluid material properties except fi, = (T,,) are evaluated at the mean bulk temperature. Outside Cylinder N == CRe™RIS
The mean bulk temperature is given by
Mean bulk temperature 7, =Tt Too ;T“" @ Wall-bulk driving 4= hA(T, ~T;) ay
A. Laminar Flowin Pipes The values of € and m depend on the Reynolds number (Geankoplis, Table 4.6-1, p272). These
values are vald for Pr > 0.6,
Sieder and Tate's correlation (Geankoplis, 5260)for laminar flow is
i 3
Laminar flow Nug =222 — 186 (Repr ) (52)
2 L7 At 1-4 0.330 0989
= hyaT, @
¢ L 4-40 0385 0911
Arithmetic mean 1, = (e =T + (R = Too) ) 40— 4,000 0466 0683
ariving force 0=
4,000 - 4 x 10* 0618 0193
5. Flow in Pi
Trbulent Flow n Pipes 4x10°-25x10° 0805 00266
Sieder and Tate’s correlation (Geankoplis, 5261) for turbulent low is
_hmD _ s d (H0\?H ©
Tuerctow Mo = = 00273 (1)
4 = humAATr 7
x 2

55
© Faith A. Morrison, Michigan Tech U.

When the physics of the heat transfer CM3110
changes, the correlations and REVIEW
dimensionless numbers change.

new physics: Natural Convection

Complex Heat Transfer — Dimensional Analysis—Free Convection

Free Convection | i.e. hot air rises

The methods
don’t change,

1l ||
I, bkl

*heat moves from hot surface to cold air (fluid) by radiation and conduction
sincrease in fluid temperature decreases fluid density

srecirculation flow begins

erecirculation adds to the heat-transfer from conduction and radiation

—>  coupled heat and momentum transport

56
© Faith A. Morrison, Michigan Tech U.
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Complex Heat Transfer — Dimensional Analysis

NATURAL ) | ] ]}

NATURAL(FREE) CONVECTION
Non-dimensional Energy Equation
(aT* aT* LT . 6T*>

tvi=—+v +v
ot Fox* Yoy oz

NATURAL(FREE) CONVECTION
Non-dimensional Navier-Stokes Equation
- )

Non-dimensional Continuity Equation

* a * *
8v§+ VZ+8vi+:0
ox Oy Oz

CONVECTIO;{W

1¥02T*  92T* 92T* CM3110
+ +
a2 oy o REVIEW

_ .gLsﬁz,g(Tz -T)
=Grashof number

Gr

Quantity of interest

- 1 1 dT*
—f f +—— dx*dz"
R T

57
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Complex Heat Transfer — Dimensional Analysis

NATURAL ) | | ]

CM3110
REVIEW

CONVECTIO%M

According to our natural convection dimensional
analysis calculations, the dimensionless heat transfer
coefficient should be found to be a function of two
dimensionless groups:

Grashof number

Prandtl number

Nu = Nu(Gr, Pr)

gL p*B(T, — T)
Gr==——-——
u

NATURAL(FREE) CONVECTION

P ,
pp = Gt (fuid

© properties) Now, do the experiments.

58
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Complex Heat Transfer — Dimensional Analysis—Free Convection

cylinders

Experimental Results:

gD3p?BAT
Gr = B e—
U

Example: Natural convection from vertical planes and

hL

Nu =— =aGr" Pr"
k

*a,m are given in Table 4.7-1, page 278 Geankoplis for several

cases
+L is the height of the plate

«all physical properties evaluated at the film temperature, T;

T
/ 2

_TL,+7,

Free convection
correlations use the
film temperature

for calculating the
physical properties
59
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Complex Heat Transfer — Dimensional Analysis—Free Convection

Exam 1 Handout, Natural Convection Data Correlations

W Natural Convection from Various Geometries

Natural have been found by dimensianal
analysis and experimentally to correlate as follows:

Natural convection L " -
(various geometries) Nu =5 = a(Grpry

G = otgpar 3
i

Grashof number

The values for a and m depend on the geometry; values may be found in Geankoplis in Table 4.7-1
(5278, shown below). Table 4.7-2 (5280, next pages) provides simplified versions of the correlations
specialized to common fluds (air, water, organic liquids).

Tanie 47-1._Constants for Use with Eq. (4.7-4) for Natural Convection

Physical Geometry NodVe, a m Ref

Vertical planes and cylinders
[vertical height Z < 1 m (3 f6)]

<10* 136 4 (P3)
10-10° 0.59 i (M1)
>10° 013 ] (M1)
Horizontal cylinders
[diameter D used for
Land D <020m (066 )]
. <10 049 0 ®3)
1075107 071 & (®3)
1071 1w % (®3)
1-10 1.09 1 (P3)
10%10° 053 4 (1)
>10° 013 § ®3)
Horizontal plates
Upper surface of heated plates or 1052 x 107 054 L (1)
Tower surface of cooled plates 2x103x10° 014 i 1)
Lower surface of heated plates or
upper surface of cooled plates 010" 058 i (F1)
3

Tasvg 47-2. _ Simplified Equations for Natural Convection from Various Surfaces

| Equaion
= buu/hf°F
L=fAT="F
Physical Geometry NoVe: D=f Ref
Air at 101,32 kPa (1 atm) abs pressure
Vertical planes and 10100 h=028(ATILY# A =137(ATILY*  (P1)
cylinders >10° h=018(AT)" =124 ATS (P1)
Horizontal cylinders 10100 h=021ATIDY* k= 132ATID)*  (M1)
>10° h=018AT)"  h=124AT% (M1

Horizontal plates
Heated plate facing ~ 10°-2X 107 h=027(ATILY*  h=132(ATL)" (M1)
upwardorcooled  2X 173X 107 h=02(A"  h=15247% (M)

plate facing
downward

Heated plate facing 3 X 10°-3x 10° = 0.12ATILY*  h=0S9ATILY* (ML)
downward or
cooled plate:
facing upward

Water at 70°F (294 K)
Vertical planes and 1010° h=26(ATILY*  h=127(ATIL)™  (P1)
cylinders
Organic liquids at 70°F (294 K)
Vertical planes and 10°10° h=12ATLY"  h=SATLY* (1)
cylinders

Reference: C. J. Geankoplis, Transport Procasses and Separation Process Principles, 4 Edition,
Prentice Hall, 2003.

60
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Dimensional analysis will be a key
tool in the third transport field,
diffusion/mass transfer (Module 3)

These numbers tell us about
the relative importance of the

Analysis terms they precede.

Dimensional

Dimensionless numbers from the
Equations of Change (microscopic batances)

Non-dimensional Navier-Stokes Equation

av; X aP* Fan
——+tv Vv | =—

Re — Reynolds
Fr — Froude

momentum

Pe — Péclet, = RePr

Pr — Prandtl
/Nm‘fﬂ, \
2 Pe — Péclet,, = ReSc }
£ Sc— Schmidt/ 1

© Faith A. Morrison, Michigan Tech U.

Microscopic Energy Balance Review CM3110
REVIEW

Unsteady State Heat Transfer

Module 1: Intro and Prerequisite Material

Steady Heat Transfer
Review

We begin with a Review:

V¥ Microscopic energy balance

V¥ Fourier’s law of heat conduction (k, homogeneous)
v Newton'’s law of cooling (h, at a boundary)

v¥ Resistances due to k and h

v Solving for the steady temperature field T (x, y, z)
L. v Dimensional analysis in heat transfer
Radiation v Data correlations for forced and free convection

I:':} + Radiation heat transfer

© Faith A. Morrison, Michigan Tech U.
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Radiation REVIEW B D
Summary' REVIEW in radiation
" calculations.
General properties:

»  Absorptivity, a
=gray body: a = constant
=black body: a =1

*  Emissivity, €
Gemit = €qemit,blackbody

* Kirchoff's law: ¢ = ¢

» Stefan-Boltzman law

Qemit,blackbody _

i oT*

NET Radiation energy going
from surface 1 to surface 2:

d1-2 —q2-1 _ 0(T14 _Tz4)
4 T, 1_

Eez

Heat shields:

q_( 1)d#—ﬁ)
A \N+1) (2
Y (G0

Net heat transfer to a body:

Stefan-Boltzman constant:

g =5676x10"8

m2K*4

Heat transfer coefficient:

Geankoplis 4" ed., eqn 4.10-10 p304

63
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Radiation REVIEW B D
Summary' REVIEW in radiation
: calculations.
General properties:

»  Absorptivity, a
=gray body: a = constant
=black body: a =1

*  Emissivity, ¢
Gemit = €qemit,blackbody

* Kirchoff's law: ¢ = ¢

» Stefan-Boltzman law

Qemit,blackbody _

i oT*

NET Radiation energy going
from surface 1 to surface 2:

912 —92-1 _ a(T¢ = T3)
A 1,1

& &

Heat shields:

q_( 1)d#—ﬁ)

A \N+1) (2_
-1

A

Net heat transfer to a body:

Stefan-Boltzman constant:

g =5676x10"8

m2K*4

Heat transfer coefficient:

Geankoplis 4! ed., eqn 4.10-10 p304,

64
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Microscopic Energy Balance Review CM3110
. . . . REVIEW
Module 1: Intro and Prerequisite material

Unsteady State Heat Transfer

Module 1: Intro and Prerequisite Material

Steady Heat Transfer

DONE!

We begin with a Review:

v Microscopic energy balance

V¥ Fourier’s law of heat conduction (k, homogeneous)
v Newton'’s law of cooling (h, at a boundary)

v¥ Resistances due to k and h

v Solving for the steady temperature field T'(x, y, z)
v Dimensional analysis in heat transfer

v¥ Data correlations for forced and free convection

v Radiation heat transfer /r
7/
7

© Faith A. Morrison, Michigan Tech U.

CM3120: Module 1

ﬁ\troduction and Prereq Material

I.  Introduction

Il. Review of Prerequisite Material

Microscopic energy balances

Fourier’s law of heat conduction (k, homogeneous)
Newton’s law of cooling (h, at a boundary)
Resistances due to k and h

Solving for the steady temperature field T(x,y,z)
Dimensional analysis in heat transfer for h

h Data correlations for forced and free convection
h For radiation heat transfer

DONE!

Smro a0 T

66
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33



CM3120 Module 1 Lecture 2

NEXT:

Module 2: Unsteady State Heat Transfer

CM3120 Transport/Unit Operations 2

Unsteady State Heat Transfer

Professor Faith A. Morrson
Department of Chemical Engineering
Michigan Technalogical University

www.chem.mtu_edu/~fmorriso /em3120/cm3120 html

67
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