CM3120 Module 2 Lecture IV 2/3/2021

Unsteady State Heat Transfer

I.  Introduction

Il.  Unsteady Microscopic Energy Balance—(slash and burn)

Ill.  Unsteady Macroscopic Energy Balance

IV. Dimensional Analysis (unsteady)—Biot number, Fourier
number

V. Low Biot number solutions—Lumped parameter analysis

VI.  Short Cut Solutions—(initial temperature Ty; finite h),
Gurney and Lurie charts (as a function of position, m =

1 . .
BY and Fo); Heissler charts (center point only, as a

function of m = 1/Bi, and Fo)
VII. Full Analytical Solutions (stretch)
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CM3120 Module 2 Lecture IV

We used microscopic
unsteady state energy
balance modeling to solve
one practical problem.

We used macroscopic
unsteady state energy
balance modeling to solve
another practical
problem.

Solution Summary:

CM3120 Module 2—Cooling of a recently d part

Example: Brass parts (oddly shaped, mass M with surface area S) are
ejected at regular intervals from a machine that fabricates them. When
ejected, the very hot parts at temperature T, enter a moving air stream
where the air temperature is Ty.. Create a model that will allow us to
calculate the temperature of the part as a function of time. Using
Excel, calculate T(t) for the parts.

t<0 M =mass

>0 Cooling in air

i Forced convection, h, Thyx
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How can we

organize our tool
belt?

What is our usual
strategy for complex
phenomena?

Answer: Dimensional
Analysis

Heat Transfer: Steady vs Unsteady

. L
What are the various cases that are seen? .4-.'|
¢« If hyis large, the wall temp T /
Tha i

is justthe bulk temp {fast
convection)

« If kislarge, the temp profile
is straight (quasi-steady
state in the slab) and the
convection works to keep up
{heatxfer limited by h;: fast
conduction in slab}

+ If neither mechanism I
dominates, it's complicated! B x

v’ Let’s nondimensionalize the governing equations and BCs.
v’ Let’s sort out the various unsteady cases.
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CM3120 Module 2 Lecture IV

1D Heat Transfer: Unsteady State

Let’s nondimensionalize the governing equations and BCs.
Let’s sort out the various cases.

1D Heat Transfer: Unsteady State

Unsteady State Heat
Conduction in a Semi-Infinite

Slab
aT _ k a%T _
at  pC,\0x2 =%\ oxz

Initial condition: t=0 T=T, Vx

Boundary conditions:

thermal
diffusivity

(Review:
How did we do this before?)
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Method:
+ Identify the governing
equation(s)

* Choose “typical” values
(scale factors)
* Use them to scale the

We’'ll modify our solution for

Forced Convection
Heat Transfer

CM3110
REVIEW

Energy

equations
Pipe flow
non-dimensional variables:
driving
time: position: velocity: force:
.tV . . .
r=) el VZEL PEPZ
D D 4 oV
L2 e, -_&:
zZ =E— Vv, =— ===
D =y & <
* V,
Vy 27‘}

non-dimensional variables:

position: temperature: source:

T * T-T S

r=—=||T = 0 s =
D

2 (-1, S0
z'=—
D
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CM3120 Module 2 Lecture IV

We’ll modify our solution for

Forced Convective Heat Transfer

~( b

CM3110
REVIEW

Energy

Pipe flow
non-dimensional variables:
driving
velocity: force:
. « P
v, == P = 2
vV pV
SV, 8.
v ==L ===
7 g <
* Vy
v, ==
D v
tchar = v

non-dimensional variables:

position: temperature: source:
T* _ T—Ta N

*

r

Ol N T =

z*

(forced convection)

Slight problem: We need to nondimensionalize t for
the unsteady case also, but there is no characteristic
velocity in thermal conduction in a solid.
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1D Heat Transfer: Unsteady State

Choice:

For the unsteady
case we’ll choose a
characteristic time
based on the thermal
diffusivity, a.

Unsteady State Heat
Conduction in a Semi-Infinite

Slab
oT k [9%T 92T thermal
— = —)=al— diffusivity
at  pC,\ox* 0x? _k

Initial condition:

t=0 T=T, Vx

Boundary conditions:

ar
x=0 q—"=—k—x=h(T1—T) t>0

A d
t . at x=o T=T, vt
—tt=—
t D?
char char thermal
diffusivity

This dimensionless time is
called Fourier number Fo.

L D? D?*pC,
char — a - k
(thermal diffusion)

k (Appears in the
pC,  energy balance)

a

D? e . D2pé
== thermal diffusion time = %
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CM3120 Module 2 Lecture IV

1D Heat Transfer: Unsteady State

2

Energy is diffusing
What is the meaning of time a/D?? down the
|Example: When will my pipes freeze? |
1D Heat Transfer: Unsteady State Heat Conductionin te m pe ratu re
T(x, t) 20 Va Semi-Infinite Slab gradient
(F) =+
204
F increasing .
10 I time, t —2
I < ] —s
[ —10
0T Direction of 0
[ hgat flux, — % thermal
btu [ X
"mer 01 <0 - diffusivity
a=0018 r —20
k= O.Sb%ftF 220 P S S s a= li
2 0 2 4 6 8 10 PGy
X, ft L

\ . k
= thermal diffusion rate = ——
D“pCyp
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Dimensional Analysis, Unsteady State Convection

Non-dimensionalize (eqns, BCs)

E = 0x?2 A 0x

non-dimensional variables:

2 aT
o a(a_T> L L w1, -1

Fo — Fourier Number = D2

position: temperature: time:
x*=£ y_T*=u ,_at
~D “(-T) b Fp2
This dimensionless time is
at called Fourier number Fo.
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CM3120 Module 2 Lecture IV

1D Heat Transfer: Unsteady State

Let’s
do it.

Dimensional Analysis, Unsteady State Convection

ar
at

Non-dimensionalize (egns, BCs)

_ (oT
=\ oxz

non-dimensional variables:

oT
4x =~k =hA(T, = T)

position: temperature: time:
P X _(m-7n at
X =—= Y e —— t* = —
D (Ty — Ty) D2
—

. at
Fo — Fourier Number = —

This dimensionless time is
called Fourier number Fo.

D2
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1D Heat Transfer: Unsteady State

Slab

Unsteady State Heat
Conduction in a Semi-Infinite

aY
ot*

Initial condition:

Boundary conditions:

. hD
Bi — Biot Number = a

0%Y temperature:
(T, =T)
0x*? Y =-——— =
(Ty = Ty)
t*=0 Y=1 Vvx*
o Y=1 Vt*
=0 =BiY t*>0
dx* X
Bi hD
Tk
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CM3120 Module 2 Lecture IV

I d . . I f 1D Heat Transfer: Unsteady State - B —
n dimensionless form, e — -+,
. Conduction in a Semi-Infinite — o
we see that this siab b
aT k (0T 92T iefinal
problem reduces to Tt (CD)=e(5r) =
pCp dx dx a;%
G
Initial condition: t=0 T=T, vx
_ X . Boundary conditions:
Y =Y (=, Fo, Bi i
D x=0 %:—ka=h(Tl—T) t>0
x=t T=T, vt

Dimensionless quantities:

)

Y = (r,-7) Y (dimensionless temperature interval) S
(T1—To) g

t* =Fo = at Fourier number (dimensionless time based on %
- " p2 thermal diffusivit g

D y) 2

* X . . . <
x = D x* (dimensionless position) S
. _hD . 5
Bi = — Biot number (pronounced BEE-OH) =
k Ratio of internal heat transfer resistance to i
resistance at the boundary. This is a transport S

. 1 L

issue. e

Because we can solve this problem analytically, we can confirm that
the dimensional analysis is correct:

Solution:
Unsteady State Heat Conduction
in a Semi-Infinite Slab
Solution:
77:_? = erfc{ — ePS+B) erfc(¢ + B)
ice 0 Tm-n
thIS. , R YE(TT}T—ITUTJ)
patlat e i
_ _ hD : at
4+ Bi — Biot Number = 7 Fo — Fourier Number = ﬁ

x1 1 Bi(—x)+Bi2F0 ox 1
—-Y = _—] = D -
1-Y erfc( 2\/%) e erfc| VFo| Bi + o
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CM3120 Module 2 Lecture IV

Unsteady State Heat Transfer in a Body

Two Additional
Dimensionless w5 Dimensionless Numbers
Numbers Re — Reynolds—pvn 0

These numbers from the governing
equations tell us about the relative
importance of the terms they precede
in the microscopic balances
(scenario properties).

Fr— Froude—f
Pe — Péclet, = RePr = CPVD b

q . hD
Bl — B].Ot Number = % Pe — Pecletm—ReSc—f

Pr — Prandtl = EL" —5 } These numbers compare the

Quantifies the tradeoffs Sc — Schmidt = LePr z magnitudes of the diffusive
. . transport coefficients v, a, Dy

between the internal resistance Le — Lewis = ;- (material properties).

D /k (due to conduction) and

1/h, the resistance at the.phase N st =22

boundary (due to convection) sh- Sherwood——u

4B

DAE

These numbers are defined to help

f — Friction Factor = Far 3 !
us build transport data correlations

pV2 Ac
based on the fewest number of
grouped (dimensionless) variables
(scenario properties).

at

Fo — Fourier Number =

char
Scales the time evolution of the temperature profile relative to the

material’s thermal properties, & = k/pfp (thermal diffusion time).

15
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Dimensional Analysis in Unsteady State Heat Transfer

Note Two Different Numbers Wa rning!

with completely different purposes and meanings
but confusingly similar definitions

. . hD  hDypogd
Bi — Biot Number = — = —%

k kbody
Quantifies the tradeoffs between the internal resistance to heat flow D /k
(due to conduction) and the external resistance to heat flow at the boundary

1/h (due to convection) for a body in contact with a moving fluid.

hD hD ¢
Nu — Nusselt Number = — = —22%

k kfiuia
Dimensionless heat transfer coefficient in convection. Quantifies the physics in
the moving fluid and how this results in a resistance to heat transfer, captured

in the heat transfer coefficient.

16
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CM3120 Module 2 Lecture IV

Dimensional Analysis in Heat Transfer

Note also: i i
. T Dimensionless Numbers
D . _pvp_vD
t harl = o5 Re = Reynolds “ v These numbers from the governing
char, 74 Fr— equations tell us about the relative

(forced convection) q

D2 D%pC, ,
tchar,z = = k Pr — Prandtl = % = 411 These numbers compare the
a Sc — Schmidt = LePr = —~ v magnitudes of the diffusive
(thermal diffusion) - " PDap Dam transport coefficients v, a, D5

Pe — Péclet, = RePr = 2872 = 2

. a
Le — Lewis = —
Dap

importance of the terms they precede
in the microscopic balances
(scenario properties).

a

(material properties).

convectiverate 1/tcpgrq

- F,
f — Friction Factor = 2%
2PV?)Ac
Nu — Nusselt = ©

Sh — Sherwood = "=

These numbers are defined to help
us build transport data correlations
based on the fewest number of
D grouped (dimensionless) variables

(scenario properties).

hD

K,

m!
Dagp

dif fusiverate ~ 1/tchara

V/D pVDC, >
= = = = e
k/D%pC, k

Non-dimensional Energy Equation

Pe — Péclet;, = RePr
Pr — Prandtl

The Peclet number is the ratio

energy

aT*_{_ LT _1‘
at* v N

of convective and diffusive heat
transport rates
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Bi — Biot Number = hTD

Quantifies the tradeoffs between the
resistance to heat flow (due to conductivity,
D/k) and the resistance to heat flow at the

Bi

. Ry _DJk

boundary

"R, 1/h

At high Bi, the surface temperature
equals the bulk temperature; heat
transfer is limited by conduction in
the body.

At moderate Bi, heat transfer is
affected by both conduction in the
body and the rate of heat transfer to
the surface.

At low Bi, the temperature is
uniform in a finite body; heat
transfer is limited by rate of heat
transfer to the surface (h).

(1/h)

High Bi:
low k,
high h

Moderate Bi:
nether process
dominates

Low Bi:
high k,
low h

18
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CM3120 Module 2 Lecture IV

: . hD Quantifies the tradeoffs between the
Bi — Biot Number = T resistance to heat flow (due to conductivity,
D/k) and the resistance to heat flow at the
: Dchar/k
Bi =T boundary (1/h)

Vbody
Abody

D char —

At high Bi, the surface temperature

When the temperature is uniform in the
body, we can do a macroscopic energy
balance to solve many problems of interest.
Qi This is called a “lumped parameter analysis.”

bod
the surface. dominates
ow Bi, the temperature is Low Bi:

uniform in a finite body; heat
transfer is limited by rate of heat h|gh k,
transfer to the surface (h).

low h
/
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: . hD Quantifies the tradeoffs between the
Bi — Biot Number = T resistance to heat flow (due to conductivity,

D/k) and the resistance to heat flow at the

Bi = — boundary (1/h)
1/h — T =T(xyzt),
At high Bi, the surface temperature ngh BI: gasy BC

equals the bulk temperature; heat
transfer is limited by conduction in

low k,

\innNo -

When the wall temperature and the bulk
RPN temperature are equal, the microscopic
rlow Bt energy balance is easier to carry out
uniform in (temperature boundary conditions).

transfer is limited by rate o
transfer to the surface (h).

20
© Faith A. Morrison, Michigan Tech U.

2/3/2021

10



CM3120 Module 2 Lecture IV 2/3/2021

: . hD Quantifies the tradeoffs between the
Bi — Biot Number = T resistance to heat flow (due to conductivity,

D/k D/k) and the resistance to heat flow at the
Bi = —— boundary (1/h)
1/h
When both processes affect the outcomes, the full
solution may be necessary. For uniform starting
temperatures, the solutions are published.
e poay. T = T(x, y, z, t) | mgirir |
hard BC L ——]
At moderate Bi, heat transfer is Moderate Bi:
affected by both conduction in the
body and the rate of heat transfer to nether process
the surface. i
dominates _
/
At low Bi, the temperature is L B..
uniform in a finite body; heat ow bl
transfer is limited by rate of heat h|gh k’
transfer to the surface (h).
low h
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NEXT: Lecture V (Talk about the three Bi cases)

High Bi:
low k,
high h

Moderate Bi:
nether process
dominates

Low Bi:
high k,
low h

But! Before dimensionless numbers get more out

22
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Library of Dimensionless Numbers

in Transport

Dimensionless numbers:

1.

From the Equations of Change for
a. Momentum

b. Energy

c. Species A Mass

Comparing Transport Coefficients
(material properties)

Involving Engineering Quantities of
Interest (scenario properties)
Unsteady Heat Transfer

23
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Dimensional

Analysis

Dimensionless numbers from the
Equations of Change (microscopic balances)

Non-dimensional Navier-Stokes Equation

momentum

v,
at*

<

Non-dimensional Energy Equation

+v*- V*v;) =—

ap*
az*

energy

mass

Re — Reynolds
Fr — Froude

Pe — Péclet, = RePr
Pr — Prandtl

Pe — Péclet,, = ReSc
Sc — Schmidt

These numbers tell us about
the relative importance of the
terms they precede.

24
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CM3120 Module 2 Lecture IV

Dimensionless numbers from the
Equations of Change

Re — Reynolds = e _ VP
u v
VZ
Fr — Froude = —
gb .
Pe — Péclet, = RePr = @ = %
Pe — Péclet,, = ReSc = 2
Dap

(o
Pr — Prandtl = 2£ =¥
k a
u v

Sc — Schmidt = LePr = =

pPDap  Dap

. a
Le — Lewis = —
Dap

Dimensionless Numbers

N

J

These numbers tell us about
the relative importance of
the terms they precede in the
microscopic balances
(scenario properties).

These numbers compare the
magnitudes of the diffusive
transport coefficients
v, a, D,p (material properties).

25
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Dimensionless numbers from the
Equations of Change

Re — Reynolds = e _ VP
u v
VZ
Fr — Froude = —
gb .
Pe — Péclet;, = RePr = VD _ %
Pe — Péclet,, = ReSc = 2
Dap
Pr — Prandtl = 2£ = ¥
k a
u v

Sc — Schmidt = LePr = =

PDap  Dap

. a
Le — Lewis = —
DaB

N

J

Dimensionless Numbers

These numbers tell us about
the relative importance of
the terms they precede in the
microscopic balances
(scenario properties).

These numbers compare the
magnitudes of the diffusive
transport coefficients
v, a, D4g (material properties).

Transport coefficients

26
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mass species A

Re — Reynolds = eve _ ¥
u v

VZ
Fr — Froude = —
gD

, CppVD VD

Pe — Péclet), = RePr = 222 = -
. VD
Pe — Péclet,, = ReSc = —
Dap

¢
Pr — Prandtl = 2£ =2
k a v

Sc — Schmidt = LePr = 2 =
pDaB AB

. a
Le — Lewis = —
Dap

F
f — Friction Factor = _—drag
(ov2)ac

Nu — Nusselt = hTD

W_/\——Y~JL_Y__/

Sh — Sherwood = Xm2 = Nuyp
Dap

These numbers are defined to
Nuyp = help us build transport data
correlations based on the
fewest number of grouped
(dimensionless) variables
Dimensionless numbers from the (scenario property).
Engineering Quantities of Interest
€ Dimensionless Force on the Wall (Drag) (Fanning) T
3 . .
E’ i ﬂ% ff o s /L‘ — Friction Factor f= - drag
1 = 3
5 L ~ — Aspect Ratio (Epvz) A
- Newton’s Law of Cooling
S Nu — Nusselt hD
g L . Nu = —_—
© 5 Aspect Ratio k
. Dimensionless Mass Transfer Coefficient
[}
Z G 1‘&“ ExA i l:IuAB =Sh - S?erWOOd Sh = kmD = Nugg
§ |k - — — Aspect Ratio Dag
27
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momentum . .
energy Dimensionless Numbers

These numbers from the governing
equations tell us about the relative
importance of the terms they precede

in the microscopic balances
(scenario properties).

These numbers compare the
magnitudes of the diffusive
transport coefficients v, @, D5
(material properties).

These numbers are defined to help
us build transport data correlations

based on the fewest number of

grouped (dimensionless) variables

(scenario properties).
28
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Dimensionless Numbers

(Unsteady Heat Transfer)

Bi — Biot = *Pchar Ratio of internal resistance to
k external resistance to heat transfer

. aD A A q
Fo — Fourier = 7z Dimensionless time

CpPVD _ VD _ _ tconvection Ratio of convective timescale
@ tthermal dif fusion to thermal diffusion time scale

Pe — Péclet,, =

29
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