CM3120 Module 2 Lecture VII 2/8/2021

Unsteady State Heat Transfer

I.  Introduction

Il.  Unsteady Microscopic Energy Balance—(slash and burn)

Ill.  Unsteady Macroscopic Energy Balance

IV. Dimensional Analysis (unsteady)—Biot number, Fourier
number

V. Low Biot number solutions—Lumped parameter analysis

VI.  Short Cut Solutions—(initial temperature Ty; finite h),
Gurney and Lurie charts (as a function of position, m =
1/Bi, and Fo); Heissler charts (center point only, as a
function of m = 1/Bi, and Fo)

VII. Full Analytical Solutions (stretch)
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CM3120 Module 2 Lecture VII

We indicated that there are

three ranges of Biot number to
consider:

At high Bi, the surface temperature
equals the bulk temperature; heat
transfer is limited by conduction in
the body.

At moderate Bi, heat transfer is
affected by both conduction in the
body and the rate of heat transfer to
the surface.

At low Bi, the temperature is
uniform in a finite body; heat
transfer is limited by rate of heat
transfer to the surface (h).

We have been exploring these ranges

Bi — Biot Number = %D

— Dchar/k

Bi 1/h

High Bi:
low k,
high h

Moderate Bi:
nether process

dominates

Low Bi:
high k,
low h
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Bi

Bi — Biot Number = h?

_D/k
=7

At high Bi, the surface temperature
equals the bulk temperature; heat
transfer is limited by conduction in
the body.

At moderate Bi, heat transfer is
affected by both conduction in the
body and the rate of heat transfer to
the surface.

At low Bi, the temperature is
uniform in a finite body; heat
transfer is limited by rate of heat
transfer to the surface (h).

D Quantifies the tradeoffs between the
resistance to heat flow (due to conductivity,
D/k) and the resistance to heat flow at the
boundary (1/h)

High Bi:
low k,
high h

Moderate Bi:
nether process

dominates

Low Bi:
high k,
low h
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: : hD Quantifies the tradeoffs between the
Bi — Biot Number = T resistance to heat flow (due to conductivity,
D/k D/k) and the resistance to heat flow at the
Bi = —— boundary (1/h)
1/h

When both processes affect the outcomes, the full
solution may be necessary. For uniform starting
temperatures, the solutions are published.

e poay. T — T(x,y,Z, t) | grir |
hard BC o
At moderate Bi, heat transfer is Moderate Bi:

affected by both conduction in the
body and the rate of heat transfer to

nether process

the surface. dominates
__//
At low Bi, the temperature is Low Bi:

uniform in a finite body; heat
transfer is limited by rate of heat high k,
transfer to the surface (h).

low h

5
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Unsteady State Heat Transfer: Analytical Solutions

No Mechanism
-

Example: Measure the convective heat-transfer coefficient for heat
being transferred between a fluid and a sphere.

* We need to devise an experiment

Both internal (D /k) and external
(1/h) resistances are important

T=T(rt)

* We need to match measurable
quantities with calculable
quantities

* = Microscopic Energy Balance

* = Uncertainty considerations
Fluid bulk

temperature= T,

6
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Unsteady State Heat Transfer: Analytical Solutions

No Mechanism
-

Example: Measure the convective heat-transfer coefficient for heat
being transferred between a fluid and a sphere.

* We need to devise an experiment

Both internal (D /k) and external
(1/h) resistances are important

T=T(rt)

» We need to match measurable
quantities with calculable
quantities

* = Microscopic Energy Balance

* =Uncertainty considerations
Fluid bulk

temperature= Ty,
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Unsteady State Heat Transfer: Intermediate Biot Number
Example: Measure the convective heat-transfer coefficient for heat
being transferred between a fluid and a sphere.
* We need todevise an experiment T —T(rt)
+ Bothinternal (D/k) and external .
(1/h) resistances are important
* We need tomatch measurable
quantities with calculable
quantities
* = Microscopic Energy Balance
¢ = Uncertainty considerations
Fluid bulk
Th . k . temperature= T,
1nINKIng ,J
* Create an unsteady state

heat transfer situation...
* Measure...?
* Compare...?

* Consider uncertainty in
measurements ... ? Y@ U t ryo

8
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Unsteady State Heat Transfer: Analytical Solutions

y -

Measurethe conwectve heat-ran sier coeficient br heat
being ransferecibetueena fuid and a sphere.

- Weneed to devse an eperment

Experiment: Measure T(t) at the center of a sphere (r = 0): e e
Initially: Suddenly: ST
t>t,
T =T(rt) =T(0,t)

Unsteady state
heat transfer
takes place.

9
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Unsteady State Heat Transfer: Analytical Solutions

Initially:

A\

=~ of
A
~ ot

es T(t) at
the center of the
sphere

Suddenly:

t>t,

T =T(rt) =T(0,t)

y -

Experiment: Measure T (t) at the center of a sphere (r = 0):

Excel:

t(s) |T(C)

9.50E-02 7.46E+00
2.11E-01 7.44E+00
3.09E-01 7.44E+00
4.09E-01 7.57E+00
5.24E-01 7.46E+00
6.23E-01 7.49E+00
7.39E-01 7.53E+00
8.37E-01 7.46E+00
9.54E-01 7.59E+00
1.05E+00 7.53E+00
1.15E+00 7.58E+00
1.27E+00 7.48E+00
1.37E+00 7.57E+00
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Unsteady State Heat Transfer: Analytical Solutions

Experiment: Measure T (t) at the center of a sphere (rr = 0):
Initially: Suddenly:
t<ty t=ty
T=T, T =T(r,t) =T(0,t)
T-couple Excel:
measures T(t) at
the center ofthe o,
sphere ) |TCC)
9.50€-02 7.46E400
2.11E-01 7.44E400
3.09€-01 7.44E400
4.09e-01 7.57E400
5.24g-01 7.46E400
. 6.23e-01 7.496400
Modeling =n (S
8.37e-01 7.46E400
9.54E-01 7.59€400
1056400 7.53E400
What are the hary || e
. 137E+00 7.57E400
modeling
equations?
. . L 11
© Faith A. Morrison, Michigan Tech U.
Unsteady State Heat Trangfer: iate Biot Number nifiai) Suddenly:

Example: Measure the convective heat-transfer coefficient for heat <
being transferred between a fluid and a sphere ~— -

- We need to devise an expenment

- Both internal (k) and external (k)
resistances are important

= We need to maich measurable
quantities with calculable
quantities

%
= = Microscopic Energy Balance @
« =Uncertainty considerations

Fluid bulk

’ temperature= T, Y

T =T(r,t)

Can we meet our objective?

To determine h:

* Measure center-point temperature as a function of time

* Compare with model predictions, accounting for
uncertainty in measurements

* Deduce h

12
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Unsteady State Heat Transfer: Analytical Solutions

Experiment: Measure T (t) at the center of a sphere (rr = 0):
Initially: Suddenly:

t<ty t=tg
T=T, T=TG,t) =T(0t)

T-couple Excel:
measures T(t) at
the center ofthe t(s T(°C
e ) |TCC)
9.50€-02 7.46E400
2.11E-01 7.44E400
3.09€-01 7.44E400
4.09e-01 7.57E400
5.24g-01 7.46E400
. 6.23e-01 7.496400
Modelin i |
8.37e-01 7.46E400
9.54E-01 7.59€400
1056400 7.53E400
1 15E400 7.58£400
What are the 127E400 | 7.48£400
. 1.37E400 7.57E400
modeling
equations?

You ftry.

13
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Unsteady State Heat Transfer: Analytical Solutions

o (0T OT Wil s G\ (10 (L0F\ 1 0 ory 1
Pp ot U ar r 00 ' rsin0op) r2 or " or 2 sin @ 90 s 00 r2sin? 0 dg?

Microscopic Energy Balance

Microscopic energy balance, constant thermal conductivity; Gibbs notation

pCy (% +u- W) =kVAT + S
2

Microscopic energy balance, constant thermal conductivity; Cartesian coordinates

G (T2 2 IT) L (PO P s
Por o T T ey T8 ) T\ 022 Ty T a2 ) TF

Microscopic energy balance, constant thermal conductivity; cylindrical coordinates

é (@+I,@+E@ﬂ,£>,k lﬁ(r£)+iﬁﬂ+@2T +5
Poo\ar T T oe 0z ) T \rar Uor ) Ti2oez T o2 ) T

Microscopic energy balance, constant thermal conductivity; spherical coordinates

0’7

)+s

www.chem.mtu.edu/~fmorriso/cm310/energy2013.pdf
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Indiay Suddeny

Unsteady State Heat Transfer to a Sphere

* 6,¢ symmetry
* No current, no rxn

Boundary conditions:
qr oT
r =R, Z:_ka:h(T(r)_Tbulk) t>0
qr oT
r= 0, —_—= —k— = 0 vVt
A ar

Initial condition:
t=0, T = Tiitiat vr

15

Microscopic energy balance in the sphere: | &0
=a
aT 10 aT
= . ——|r?— * Unsteady
ot r2or or _
* Solid (v =0)

© Faith A. Morrison, Michigan Tech U.

Indiay Suddeny

Unsteady State Heat Transfer to a Sphere

*  6,¢ symmetry
* No current, no rxn

Boundary conditions:
qr aT
r =R, Z:_kazh(T(r)_Tbulk) t>0
r=0, ar _ —ka—T =0

Initial condition:
t=0, T = Tiitiat

A ar

(“v” means “for all”) 16

Microscopic energy balance in the sphere: | &0
=a
aT 10 aT
= . ——|r?— * Unsteady
ot r2or or _
* Solid (v =0)
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Indiay Suddeny

Unsteady State Heat Transfer to a Sphere

Microscopic energy balance in the sphere: &)

=a

T [k Y1 0 ( 26T>
— =\ = * Unsteady
at \pC,\rcor\ or « Solid (v = O

‘Now, Solve

Initial condition:
t=0, T = Tiitiat

(“v” means “for all”) 17

© Faith A. Morrison, Michigan Tech U.

Indiay Suddeny

Unsteady State H
Microscopic enerd Collduction &)
of Heat 1n =
. steady
SOhdS lid (v = 0)
¢ symmetry
SECOND EDITION ) ETTER, 18 H
Boundary conditid

T' = R, AT THE CLARENDON PRESS
r=20,
H. S. CARSLAW and

. JAEGER
Initial condition: LG e

t=0, 1947

© Faith A. Morrison, Michigan Tech U.
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Unsteady State Heat Transfer to a Sphere

Indiay Suddeny

£(r.t) = ;:(7" ) — Tpuik

Solution:
initial — Tbulk

Bi = Biot number;

Fo = Fourier number
(o]

n=1

where the eigenvalues 4,, satisfy this equation:

(R1) = RA
f " tanRA

Characteristic Equation

+Bi—1=0

(Carslaw and Yeager, 1959, eqn 10, p238)
Incropera and DeWitt, 7t ed, eqn 5.51a, p303

T-=T, - Z ro(,R)? (ST Ay \ (sinRAy, (RA,)? + (Bi — 1)?
5= T,—T, 'L° T RA, (RA,)? + Bi(Bi — 1)

19
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Unsteady State Heat Transfer to a Sphere

Indiay Suddeny

£(r.t) = ;:(7" ) — Tpuk

Solution:
initial — Tbulk

Bi=— Fo =

Bi = Biot number;

Fo = Fourier number
(o]

hR at
k R?

i
n=1 n

where the eigenvalues 4,, satisfy this equation:

(R1) = RA
f " tanRA

Characteristic Equation

+Bi—1=0

(Carslaw and Yeager, 1959, eqn 10, p238)
Incropera and DeWitt, 7t ed, eqn 5.51a, p303

£ = T-T, - Z o=Fo(nR)? (sin rln> (sin R/ln) ( (RA,)? + (Bi — 1)? )
T B RA,

(RA,)? + Bi(Bi — 1)

20
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Suddeny

Unsteady State Heat Transfer to a Sphere

. T(r,t)—T, ;
Solution: £(r, ) = 206 ~ Toute E 1
Tinitiar = Touik
Depends on —
material (a =

k/pfp), and heat
transfer processes at
surface (h)

Bi = Biot number;
Fo = Fourier number

[ee)

_T-=T, 2B Z _Fo(i,R)? (ST AR\ (sinRAy, (R2,)? + (Bi — 1)?
¢= Ty =Ty 'Le Tn RAp, (RA,)? + Bi(Bi — 1)

n=1

where the eigenvalues 4,, satisfy this equation:
We’'re interested in

RA
RA) = +Bi—1=0 T(r,t) at the center of
ALY tan RA the sphere, = 0.

Characteristic Equation

(Carslaw and Yeager, 1959, eqn 10, p238)

21
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Suddeny

Unsteady State Heat Transfer to a Sphere

What does this

look like?

[ee)

£(0,Fo) = T=Tp _ ZBiZ e—Fo(AnR)? sinRA,\ [ (R2,)* + (Bi — 1)?
T =T, R, )\(RA,)? + Bi(Bi — 1)

n=1

where the eigenvalues A,, satisfy this equation: f(RA) = +Bi—1=0

tan RA

Characteristic Equation

Let’s plot it to find
out. (Excel)

22
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Unsteady State Heat Transfer to a Sphere

Eigenvalues are the roots of the

Bi hR
i=—
X @
characteristic equation
Bi = 1.00
30 ] <
x Characteristic Equation:
] x x X %
— 20 1 % X x ]
1 RA) = +Bi—1
'alﬁ x X Z}( 1}( fRA) tan RA
1 X
+ 10 X é ’%
< X X 3
S5 ' X
g o] ) _ X * The A, are the roots (zero
n % 3 X ° crossings) of the
= a0 x % X X characteristic equation
< ] X X x X X .
< x x % 4 * They depend on Biot
1 x x x x number Bi
-20 - X %
X « o
-30 1
RA
23
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Unsteady State Heat Transfer to a Sphere

30

Eigenvalues are the roots of the
characteristic equation

Bi = 1.00

-30

* They depend on Biot

Characteristic Equation:

RA
fRA) =

tan RA 1

* The A, are the roots (zero
crossings) of the
characteristic equation

number Bi

24
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12

2/8/2021



CM3120 Module 2 Lecture VII 2/8/2021

Let’s plot it to find out: Bi = hR Fo = at T
what are the variables? Tk ~ R? s
& =
Solution: —

[ee]

£(0,Fo) = T=T _ 2Bi Z e—Fo(AnR)? sinRA,\ [ (RA,)* + (Bi — 1)?
S heT RAn, J\(RA,)? + Bi(Bi— 1)

n=1

Exponential decay with Fo (scaled time)
(00}

T—T, 2 bunch of terms
_ —28i ) e-(FO)UnR)
§(0,Fo) T, — Tp 2l Z € (that vary with Bi and /'In(Bi))

n=1

A, (Bi) varies only with Bi and n:

R1 If we choose a fixed Bi, ﬂ“
~—+Bi—1=0 then & only varies with Fo

tan R4, y

Characteristic Equation

25
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If we choose a fixed Bi, Bi = hR Fo = at Y
then & only varies with Fo Tk ~ R? S
al| =
For a fixed Bi:
_ © : 2 C_1)2
£(0, Fo) = T—-T, _ 2Biz o—FO(inR)? sinRA,\ [ (RA,)* + (Bi—1)
’ T, — T, 4 R, J\(RA4)? +Bi(Bi— 1)
Exponential decay with Fo (scaled time)
T—T, S 2 bunch of terms
= = i =(Fo)(AnR)
§(0, Fo) T, —T, 2B Z € (that vary with Bi and An(Bi))
n=1
N J
Y

An infinite sum of decaying exponentials

* whose argument is Fourier number scaled by
something that depends on Biot number and n

* with a prefactor that also depends on Biot number
andn

26
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If we choose a fixed Bi, _hR _at o
then & only varies with Fo = Fo = R2 5
&
For a fixed Bi: 5

§(0,F0) = ) e iR*ro
n=1

An infinite sum of decaying exponentials

C,,depends on n through 1,,
A, are calculated (numerically)
from the roots of this equation:

RA) = +Bi—1=0
fRA) tan RA
’
Let’s plot £(0, Fo)
27
© Faith A. Morrison, Michigan Tech U.
Unsteady State Heat Transfer to a Sphere = —
Solution: |#1
/10 : _ s
first term only Fo=0.2 : —nine
1 terms
sum of 9 terms —first
v/ term
— |
22 / \
B[ |
| = 01
w3
S| s
=
1]
~ 0.01
(@]
23
S
VS
0.001
0.0 0.2 0.4 0.6 0.8 1.0
_at
Fo = ﬁ

28
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Unsteady State Heat Transfer to a Sphere

Solution:

(10

first term only

sum of 9 terms

ey
J

Fo = 0.2

Lo
£3
Mo
—nine
terms
—first
term

i
j

* Plotted log-linear, the
solution is linear for
Fo > 0.2

* The slope exhibited at
high Fo depends only
on Biot number

SE
3| 8
ol
1]
2l 3 0.1
~ S
S| 8
=
Il
~ 001
o
F
=)
—
SV
0.001

. _ hR
Bi = —

k
i _
Bi ~ nr

0.0

0.2 0.4 0.6 0.8

1.0

29
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Unsteady State Heat Transfer to a Sphere

Solution:

(10

first term only

sum of 9 terms

ey
J

Fo = 0.2

Lo
L2
Mo
—nine
terms
—first
term

:
|

* Plotted log-linear, the

2| ox .
KR \ solution is linear for
L —~—— Fo > 0.2
0.1 ibi
kG C * The slope exhibited at
S § ! aVa high Fo depends only
= i
I Above Fo = 0.2, there is no eI B MU 2=
- 0.01 - difference between using just one —— Bi = hR
L;. term n = 1 and all the terms of =T
Nt the infinite sum! 1 _k
Bi R
0.001 ! ! !
0.0 0.2 0.4 0.6 0.8 1.0
at Note: .
Fo = ﬁ Dcha..,- =Rin
this case

3U
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Unsteady State Heat
Transfer to a Sphere

What are all those higher order terms

0.8

14—

I Fo = 0.2

contributing to the solution?

ed Bi
fixed Bi

—first term

~——second term .

—third term = fixed h" R’ k
——fourth term

—fifth term

5
o

T(0,8) — Thuue
Tmltlal - Tbulk

term n=1
1.2 \ —1 | &
1.0 l/‘\ |
C

0.6 7 (sum of 9 terms) \ eighth term 2

ninth term o

1l 0.4 T [
=~ &
= 0.2 K | @
S term n=3 S
K 0.0 +& ——— t —Clt’ i
{ 01 0.2 03 04 Eo=_— 9

-0.2 R? =

o

0.4 <§i

=

-0.6 ‘T

w

©

sixth term
seventh term

31

Unsteady State Heat Transfer to a Sphere

B3

Fo = 0.2 I, 2l =
14 = Biot numbers L
—first term
12 T For Fo > 0.2, the higher-order
10 terms make no contribution to
' ] ~ ‘ the solution
2| X 0.8 sixth term
S| 3
.8 seventh term
&= 0.6 result | eighth term
1| (9 terms) th
C § 04 nin erm
.| 3
AN
~ | 0.2
N
1~ 0.0 ——— J :
= ()/ 0.1 0:2 03 94 Fo= il
N . | =52
S 0.2 R
Ma <5
0.4 ] (bﬁ
0.6 - L I -
Fo = 0.2

32
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Unsteady State Heat Transfer to a Sphere ; =
Fo = 0.2 |8 -8 T
1.4 = Biot numbers L
—first term
1.2

For Fo > 0.2, the higher-order
/ terms make no contribution to

‘ the solution

We already know the short-
time behavior, T is constant
at the initial temp; we thus

fit the data (and therefore
need only one term of the
summation)

concentrate on long times to
e [-&|

S 0.8 sixth term
5 5 06 result seventh term
. E|ghth term
11 (9 terms)
~ 1
= s 04 The higher-order terms are
S| s 1/\\ working to get the solution right
=~ 0.2 .
i k for shorter and shorter times
~ 0P > (low Fo)
23 ()/ o1 012 03 0l4
=) 0 | |
—
it Y
04 N_ & E
06 - I SL
Fo = 0.2
33
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Unsteady State Heat Transfer to a Sphere - w——
Fo=0.2 |82
14 +— =Biot numbers L
—first term
1.2 T For Fo > 0.2, the higher-order
10 m / terms make no contribution to
A Z : ‘ the solution
2| X 0.8 sixth term
5 5 06 result seventh term
. E|ghth term
11 (9 terms)
~ 1
= s 04 The higher-order terms are
ol =

working to get the solution right
for shorter and shorter times

s— (low Fo)

0.2 03 04

Fo=10.2

34
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Unsteady State Heat Transfer to a Sphere
hR :;;‘:,:
| w=t® | |
Eigenvalues are the roots of the k
characteristic equation -
Bi = 1.00
30 ] <
% x Characteristic Equation:
] Y x RA
— 20 7 X X X
RA) = +Bi)- 1
(&) 8 X X X fRY = Gnra B)
10 - o X X >><<
] X g X ¥
< X X X . .
> X 3 X
2|3 1 * The A, eigenvalue is
A , \ 2 <k the one that
= X % E % i
g ] X 5 ¥ X ¥ dominates at long
S ] x x x o X time
x X
20 ] * x B * The value of 1,
. X 9
x x depends on Biot
30 number Bi
RA
35
© Faith A. Morrison, Michigan Tech U.
Unsteady State Heat Transfer to a Sphere w——
EJ
/10 _ “
first term only Fo=0.2 —nine
terms
sum of 9 terms —first
term
1 / E——— T .
o2 \ * Plotted log-linear, the
5 5 | —— solution is linear for
Fo > 0.2
| | 0.1 \
o 3 * The slope exhibited at
S § high Fo depends only
I on Biot number
1]
~ 001 Py
o ] = —
= Bi = .
o
vt 1_k
0.001 EirE
0.0 0.2 0.4 0.6 0.8 1.0
_at
Fo = ﬁ
36
© Faith A. Morrison, Michigan Tech U.
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Unsteady State Heat Transfer to a Sphere

Summary

No Mechanism
Dominates

*Solution is an infinite sum of terms.

linear plot versus Fo

*For a fixed Bi the results are only a function of Fo.

*Each term corresponds to one eigenvalue, 4,

*The first term n = 1 (1,) is the dominant term

*The n > 1 terms alternate in sign (positive and negative)
*Higher terms are “fixing” the short time behavior

*At fixed Biot number, the time-dependence is an
exponential decay (for Fo > 0.2); this is linear on a log-

function of Biot

Question: How do various values of Biot
number affect the heat transfer that occurs?

e
Sk

at

FO:E

So, actually, it
turns out all we
need are those

slopes as a

number.

© Faith A. Morrison, Michigan Tech U.

37

Characteristic Equation:

FCRD) =%1

* The 4, eigenvalue is
the one that
dominates at long
time

*The value of A;
depends on Biot
number Bi

Unsteady State Heat Transfer to a Sphere
E are the roots of the
characteristic equation
w Bi=1.00
hR - w .
Bi = T o %
== %
2|5 =g %
L Y %
14.0 g i I % %
o y l ,
’ % RA
XX XX XX XX XX XN XX /14'
10.0 }
e [
= 80 Az
6.0 l--..llllll
..-". Az high Bi is :
40|----| EmmEEEEE ‘ low k, high h number Bi
low Bi is .0‘..040000
*
I . . L]
2.0 high k, e A
low h oM
I ‘
00 +oladdl oo ‘
0.001 0.01 0.1 1 10 100 1000
Biot Number

* The 4, are the roots of the
characteristic equation
* They depend on Biot

* At low (Bi < 0.1) and high
Bi (Bi > 10) the solution
becomes independent of Bi

38
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Biot Number

Unsteady State Heat Transfer to a Sphere .
! g Low Bi: |
high k, =l
pi= R low h 5
Tk
14.0 \
\ XfoXXXX Characteristic Equation:
1200 1 2 T R, .
s XX 3 ¢ kK e ik 4 —+Bi—1=0
| tan RA,
0.0 i
\
8.0 i Ag LI
\ \ * The A, are the roots of the
6.0 At low Bi, the temperature is characteristic equation
uniform in the sphere; heat * They depend on Biot
o |Pmmtm=m=R=mF" transfer is limited by rate of heat ~ number Bi
— transfer to the surface (h). * Atlow (Bi < 0.1) and high
low Biis KESd Bi (Bi > 10) the solution
0 {1 highk, * A . )
low h / g becomes independent of Bi
sele L LA .) o
0.0\ '
0. 001 JSo1 1 10 100 1000
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Unsteady State Heat Transfer to a Sphere

At high Bi, the surface
temperature equals the bulk

sphere.

limited by conduction in the /

temperature; heat transfer is

High Bi:
low k,
high h

Characteristic Equation:

Biot Number

12.0 i RA
n g
XX XM XXX K XX X XK X X 14 —4+Bi—1=0
100 | tan R,
. \
\
IS4
= 80 Az
i * The A, are the roots of the
6.0 gunENEERES characteristic equation
) oth Ay high Bi is * They depend on Biot
4.0IIIIII L T Lk | low k, high h number Bi
0“‘4“” * At low (Bi < 0.1) and high
2o I 'Ef”hBikiS i il Bi (Bi > 10) the solution
' |:)gw Py ‘,»’ \ 1 becomes independent of Bi
0.0 ““‘L“’w.‘ ‘ /
0001 001 01 1 1 100 /1000
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Unsteady State Heat Transfer to a Sphere Moderate Bi: |
At moderate Bi, heat transfer is affected by nether process ®
both conduction in the sphere and the rate of .
heat transfer to the surface. dominates -
14.0 /\ ‘
/ XfoXXXX Characteristic Equation:
12.0 i T T RA,
XX/ XX ></><><Z [ ‘ 14’ m‘}‘Bl—l:O
10.0 B T J’»f— ————— anfan
L
3 A
= 80 ‘ Az
l * The A, are the roots of the
60 Tl characteristic equation
. "Rl i o
.._-' Ay high Bi is * They depend on Biot
40|llll| HusEpmEEN L | lowk, highh number Bi
' ”\ . "t"’ * At low (Bi < 0.1) and high
20 Ll 'Ef”hB'k's L LU Loel2ll S L il Bi (Bi > 10) the solution
' |:)gw I Jolt $* 1 becomes independent of Bi
0.0 .aao‘i"’\" I / ‘
0001 001 O 1 10 100 1000
i umber "
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What were we trying to do?

Example: Measure the convective heat-transfer coefficient for heat
being transferred between a fluid and a sphere.

Where are we in the
process?

v" We have the model

* We need the measured center-point | Can we meet our objective?

temperature as a function of time To determine h:
* Measure center-point temperature as a function of time
. Compar s, accounting for
* We need to compare the two to uncertainty in measurements
deduce h. * Deduceh

42
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. [ee) —_ at o
The solution e Fo=—7
= —n o -
of the model:  $(0-F0) Z Cne + ==
=il pi= R 2
B k 4.
Use to interpret data. =
For a fixed Bi, Fo > 0. 2: o From the model solution...
. [T T T T
§(0,Fo) = Cre™M1™re 120 { Characteristic Equation:
RY Bi—1=0
In£(0, Fo) = In(C;) — 22R2Fo ©0 1 tanRA,
< 8.0 | | ‘ Az
From experiments... &= l
T — Tb 6.0 ... S :
PIOt lnf=ln VS FO T T T L 2
T; —T, 4.0 l
' t99 ey
202 2.0 ! 0"‘ A
=>slope = —AJR* > --=---=rok*-
0.0 4elalslaseet? il ‘
‘0,001 0.01 0.1 :1 10 100 1000
Blot Number
, ' hR
= Once we know Bi, we can Bi= —
calculate h from Bi Tk 0
© Faith A. Morrison, Michigan Tech U.
w
. k=109—
Experimental Data K
R =0.0127m
From experiments...
T — Tb 1 T
: Iné =1
Plot: In¢ H<Ti _Tb> vs Fo e
—limit of detection
‘ => slope = —AZR? ‘ —fit
01 +

0.01 +

T(0,8) — Thuu
Tl‘l’lltlal - Tbulk

Slope= —0.74656
MR =+/0.74656 = 0.864039 0001 ¢

Characteristic Equation:

RA4 ) I )
+Bi—1=0 0.0001 e S U S
tan RA; o s 1o s
at
hR w Fo = RZ
= Bi=—=10.2621919,h = 2300 ——
k m<K
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Reca P: Measure convective heat-transfer
coefficienli?ﬁror heat being transferred
between a fluid and a sphere.

What was the
process?
xjfﬁm,\
1.Create the scenario ® 2.Take data
and the model of the ‘ ? % of center-
scenario Can we meet our objective? point T(t)

To determine h:

* Measure center-point temperature as a function of time

« Compare with model predictions, accounting for
uncertainty in measurements

« Deduceh

3.Plot the datain a
Bi= hR =) way that we can
k match it to the
" model to deduce Bi

4. Calculate h.

Characteristic Equation:

°
2

T(0,) = Touwk
Tinitiat = Touik

RA _
— 4Bi—-1=0

tan R,
Pz
slope = —A2R? : a
© Faith A. Morrison, Michigan Tech U.
Unsteady State Heat Transfer
Summary

High Bi: dominated by internal

temperature variation = solve ORI  Cuantifes the tradeoffs between the
. 1 — blot Number = == s heat flow (due to conductivity,
with temperature boundary [l eoorence to '

D/k) and the resistance to heat flow at the

conditions; Bi = hD ., /k gi = 2k boundary (1/h)
. . 1/h

(D¢par varies with the problem)
At high Bi, the surface temperature High Bi:
equals the bulk temperature; heat | k

Moderate Bi: The limits for transfer is limited by conduction in oWk,

" ” ° . the body. M

moderate” are 0.1 < Bi < /«
P H At moderate Bi, heat transfer is Moderate Bi:
10. When Bi is in this range, a R o ot cancetion i the

body and the rate of heat transfer to nether process

more complete solution may bodyand t dominates

be necesse?ry, B,l hDChaT/k' At low Bi, the temperature is Low Bi:

(Dchar varies Wlth the uniform in a finite body; heat ow Bi:
tranSterisdicaited by rate of heat | highrie, |

problem) transfer to the surface (k). low h

Low Bi: no internal
temperature variation =
Lumped parameter analysis
(macroscopic energy balance,
unsteady); Bi = hV /kA < 0.1

46
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Summary

High Bi: dominated by internal
temperature variation = solve
with temperature boundary
conditions; Bi = hDpqr/k
(D¢par varies with the problem)

Moderate Bi: The limits for
“moderate” are 0.1 < Bi <
10. When Bi is in this range, a
more complete solution may
be necessary; Bi = hD 4 /k.
(Dchar varies with the
problem)

Low Bi: no internal
temperature variation =
Lumped parameter analysis
(macroscopic energy balance,
unsteady); Bi = hV /kA < 0.1

Unsteady State Heat Transfer

Bi — Biot Number = hTD

Bi:D/k boundary (1/h)
1/h

At high Bi, the surface temperature High Bi:
equals the bulk temperature; heat
transfer is limited by conduction in low k’
the body. high h
At moderate Bi, heat transfer is Moderate Bi:
affected by both conduction in the th
body and the rate of heat transfer to netner process
the surface. dominates
At low Bi, the temperature is .
uniform in a finite body; heat Low Bi:
transfer is limited by rate of heat high k,
transfer to the surface (h). |0W h

Quantifies the tradeoffs between the
resistance to heat flow (due to conductivity,
D/k) and the resistance to heat flow at the

@acteristic length scale

We use D;p = /A only for the lumped parameter
analysis. We use different D.pq; in other cases.

47
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Unsteady State Heat Transfer to a Sphere

. . Bi = hRsphere e
First Eigenvalue, Heat Transfer to Sphere 1= k
E + Incropera and DeWitt
R/’{l [ x FAM calculation
[ ——modelfit
Dominated
Negligible
1t byexternal gls
. external —»
r resistance . )
[ Neither resistance .
(k = ) - )
I mechanism (h = ) 5
Bi<0.1 dominat @
ominates Bi>10 g
01 + 0.1 <Bi<10 a0
; S
4 =
L c
r [e]
2
2
0.01 ey iy s
0.001 0.01 0.1 1 10 100 1000 <
Bi ks
©
Fit by Faith A. Morrison 31 Jan 2019 48
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Unsteady State Heat Transfer to a Sphere

If we know RA4,, and we're
determining Bi (i.e. h), we use
the characteristic equation
directly.

If we know h (and hence, Bi) we
need to find A4 R from an
iterative solution of the
characteristic equation.

Or use a table or
correlation for the
calculated roots.

>

@
Characteristic Equation:
RA, )
——4+Bi—1=0
tan R4,
Unsteady State Heat Transfer to a Sphere
=
Mg | @] ¥
o First Eigenvalue, Heat Transfer to Sphere Bi=—p

001 +
0.001 001 01 1 10 100 1000
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Unsteady State Heat Transfer to a Sphere

First Eigenvalue, Heat Transfer to Sphere

RA, =

92(a;Bi)?z
(1 + (a2Bi)P?)

91(a; B>
~ (14 (ayBDPY)

1 2
g 1131 2.066
a 3.684 0.684
b 0.539 1.035

E + Incropera and DeWitt
R/’{l [ x FAM calculation
[ ——modelfit
1+
0.1 +
0.01 t t
0.001 0.01 0.1

Fit by Faith A. Morrison 1/31/2019

(matches true
within 1.2%)

10 100

Bi

1000
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Unsteady State Heat Transfer to a Sphere

First Eigenvalue, Heat Transfer to Sphere
0+

+ Incropera and DeWitt

R/-{l x FAM calculation
—model fit

91(a; B 92(a;Bi)P2

Rﬂ.l =

(matches true
within 1.2%)

0.1 +

Fit by Faith A. Morrison 1/31/2019

0.01 + + + + 1
0.001 0.01 0.1 1 10 100 1000

Bi

For a fixed Bi, Fo > 0. 2:

£(0,Fo) ~ Cye iR*Fo

" (1 + (a;Bi)PL) (1 + (a,Bi)b2)

1 2
g 1131 2.066

a 3.684 0.684
b 0.539 1.035

B 4[sin(A4R) — A1 R cos(A1R)]

=C =

2A4R —sin244R

51
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CM3120 Transport/Unit Operations 2

Unsteady State Heat Transfer

Summary

* Unsteady state heat transfer is very common

More complex Systems:
Unsteady State Heat Transfer
(Analytical Solutions)

in the chemical process industries

what initiates the heat transfer (usually
something at the boundary)

* Internal resistance (D, /k) can be limiting,

* External resistance (1/h) can be limiting
irrelevant, or one among many resistances

* Dimensional analysis, once again, organizes
the impacts of various influences (Bi, Fo)

* Temperature distributions depend strongly on T

irrelevant, or one among many resistances To-

also decreases

Alleft
. decreases

ith time

ax

Alright

with time i sz

52
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Unsteady State Heat Transfer

Summary (continued)

* Intransport phenomena, we have
dimensionless numbers that represent
three important aspects of situations that
interest us:

1. The relative importance of
individual terms in the equations
of change

2. The relative magnitudes of the
diffusive transport coefficients
Vv, &, Dyp

3. Scaled values of quantities of
interest, e.g. wall forces, heat
transfer coefficients, and mass
transfer coefficients (data
correlations)

CM3120 Transport/Unit Operations 2

More complex Systems: %
Unsteady State Heat Transfer

(Analytical Solutions)

omantm
enery Dimensionless Numbers

Re — Reynolds = 22 = X2 .
AT These numbers from the governing
Fr — Froude =¥ equations tell us about the relative
§ O _Gevo_w importance of the terms they precede
Pe — Péclety = RePr === =" in the microscopic balances
Pe — Péclet,, = Resc = Y2 (scenario properties).
" Das

Pr — Prandd = &% =¥ These numbers compare the
_ Schmidt = LePr o A = ¥ magnitudes of the diffusive

S¢ = Schmidt a'“m PDaz ~ Da transport coefficients v, @, Dz

L~ Lewis = 7 (material properties).

£ — Friction Factor = 2 These numbers are defined to help

GPV?)Ac us build transport data correlations

Nu = Nusselt =22 based on the fewest number of

ke grouped (dimensionless) variables

$h = Sherwood =70 (scenario properties).

53
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Unsteady State Heat Transfer

Summary (continued)

* If we can develop a model situation for
questions of interest, the solutions of the
models are often in the literature

Our responsibility in 215

CM3120 Transport/Unit Operations 2

More complex Systems: "%
Unsteady State Heat Transfer
(Analytical Solutions)

century:

* Learn to develop models Conduction
that will allow us to of Heat in
estimate or determine S ol

answers to the questions
that interest us

SECOND EDITION

* Learn to use published
solutions (tables, charts) t® . s carsLaw md
answer questions that g
interest us

omantm
enery Dimensionless Numbers

mas;

Re — Reynolds = 22 = X2 .
A These numbers from the governing

Fr — Froude = ¥ equations tell us about the relative
o importance of the terms they precede.

N _ nepy — CoVD _ VD
Pe — Péclety, = RePr == = - in the microscopic balances

Pe — Péclety, = ReSc= 22 (scenario properties).

Pr— Prandd = Ekﬂ‘ =L These numbers compare the

Se— Schmidt = Lopr oot _ ¥ magnitudes of the diffusive
€ Semidt= L= oy transport coefficients v, @, Dz

Le — Lewis = 7 (material properties).

Nu = Nusselt =22 based on the fewest number of
grouped (dimensionless) variables
(scenario properties).

$h— Sherwood = 422

@ Das.
f — Friction Factor = - These numbers are defined to help
o us build transport data correlations
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VI.

/ Unsteady State Heat Transfer

VII.

Introduction

Unsteady Microscopic Energy Balance—(slash and burn)
Unsteady Macroscopic Energy Balance

Dimensional Analysis (unsteady)—Biot number, Fourier
number

Low Biot number solutions—Lumped parameter analysis
Short Cut Solutions—(initial temperature Ty; finite h),
Gurney and Lurie charts (as a function of position, m =

1 . .
BY and Fo); Heissler charts (center point only, as a

function of m = 1/Bi, and Fo)
Full Analytical Solutions (stretch)

Module 2 DONE!

55
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N EXT: Module 3 Diffusion & Mass Transfer

Diffusion and
Mass Transfer

o) professor Foith A Morrson
M Ocpartment of Chemical Engineering

Michigan Technological University

www.chem mtu _edu/~fmormiso/cm3120/cm3120 html
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