CM3120: Module 4

Diffusion and Mass Transfer II

- I. Classic diffusion and mass transfer: d) EMCD
- II. Classic diffusion and mass transfer: e) Penetration model
- III. Unsteady macroscopic species A mass balances (Intro)
- IV. Interphase species A mass transfers—To an interface— k_x , k_c , k_p
- V. Unsteady macroscopic species A mass balances (Redux)
- VI. Interphase species A mass transfers—Across multiple resistances— K_L , K_G
- VII. Dimensional analysis
- VIII. Data correlations

Unsteady State Mass Transport

Unsteady State Diffusion in a Semi-Infinite Slab

$$\frac{\partial c_A}{\partial t} = \mathcal{D}_{AB} \left(\frac{\partial^2 c_A}{\partial z^2} \right)$$

The "diffusion equation"

Initial condition:

$$t = 0$$
 $c_A = c_{A0} \quad \forall \ z$

Boundary conditions:

$$x = 0 c_A = c_{As} t > 0$$

$$x = \infty$$
 $c_A = c_{A0}$ $\forall t$

WRF, p534

© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer: Lecture 6

Earlier

We've seen this mathematics problem before.

Example:

When will my pipes freeze?

The temperature has been 35°F for a while now, sufficient to chill the ground to this temperature for many tens of feet below the surface. Suddenly the temperature drops to -20°F. How long will it take for freezing temperatures (32°F) to reach my pipes, which are 8 ft under ground?

Example 1: Unsteady Heat Conduction in a Semi-infinite solid

A very long, very wide, very tall slab is initially at a temperature T_0 . At time t=0, the left face of the slab is exposed to a vigorously mixed gas at temperature T_1 . What is the time-dependent temperature profile in the slab?

Unsteady State Mass Transport **Summary of Unsteady Diffusion:** The microscopic balances of energy and mass of species A are quite similar mathematically: $\left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T\right) = \alpha \nabla^2 T + S_e$ $\left(\frac{\partial \omega_A}{\partial t} + \underline{v} \cdot \nabla \omega_A\right) = \mathcal{D}_{AB} \nabla^2 \omega_A + r_A$ → Some of the boundary conditions are also similar, e.g.: T or $\omega_A = \text{known value}$ © Faith A. Morrison, Michigan Tech U. $z=0,\infty$ T or $\omega_A = \text{known value}$ $z=0,\infty$ $\frac{\partial T}{\partial z}$ or $\frac{\partial \omega_A}{\partial z}=$ known value $\frac{\partial T}{\partial z}$ or $\frac{\partial \omega_A}{\partial z}$ = linear driving force expression (h or k_c) → Literature results for heat transfer can be Conduction repurposed for species A mass transfer Solids → Intuition for heat transfer is plausible to use for species A mass transfer

Dimensional analysis and data correlations

Now that we have solved an idealized problem of a system of interest (mass transfer of species A in a semi-infinite slab) we can pursue the dimensionless groups to use in creating data correlations

© Faith A. Morrison, Michigan Tech U.

What do we do to understand complex flows? Same strategy as: Turbulent tube flow flows Noncircular conduits Find a simple problem that allows us to identify the physics Drag on obstacles 2. Nondimensionalize **Boundary Layers** Explore that problem Forced-convection heat 4. Take data and correlate heat transfer transfer coefficients 5. Solve real problems Natural-convection heat transfer coefficients Solve Real Problems. Problems with multiple kinds of physics Powerful. 16 © Faith A. Morrison, Michigan Tech U.

Solve Real Problems. Powerful. mass transfer? What do we do to understand complex flows? Same strategy as: From fluid to plate Turbulent tube flow To a falling film Noncircular conduits *In pipes and ducts* Drag on obstacles Past submerged objects **Boundary Layers** To/from bubbles, drops Forced-convection heat *In agitated systems* heat transfer transfer coefficients *In fixed and fluidized beds* • Natural-convection heat In packed 2-phase transfer coefficients contactors (absorption, *Problems with multiple* distillation, cooling kinds of physics towers) © Faith A. Morrison, Michigan Tech U.

Let's review our review of dimensional analysis...

© Faith A. Morrison, Michigan Tech U.

Dimensional Analysis in Mass Transfer

Returning to our question:

What do we do to understand complex <u>mass transfer</u>?

- 1. Find a simple problem that allows us to identify the physics
- 2. Non-dimensionalize:
 - a. Choose characteristic values
 - b. Produce a non-dimensional governing equation
 - Produce a non-dimensional engineering quantity of interest
- 3. Explore that problem
- Take data and correlate (confirm D.A. for chosen problem)
- 5. Solve real problems with the correlation

27 © Faith A. Morrison, Michigan Tech U.

Dimensional Analysis in Mass Transfer

Example 15: What is the mass transfer through the walls of a permeable tube (laminar or turbulent flow)?

Assumptions:

- 1. Isothermal
- 2. Steady flow
- 3. Uniform inlet composition x_{A1}
- 4. Constant interfacial liquid composition of x_{A0}
- 5. ρ, μ, c, D_{AB} all constant
- 6. Radial mass flux (negative)

Total mass in
$$= \int_{0}^{L} \int_{0}^{2\pi} + c \mathcal{D}_{AB} \frac{\partial x_{A}}{\partial r} \Big|_{r=R} R d\theta dz$$

$$= k_{x} (2\pi R L) (x_{A0} - x_{A1})$$

BSL2 p679

Dimensional Analysis

These numbers tell us about the relative importance of the terms they precede in the governing equations.

Dimensionless numbers from the Equations of Change (microscopic balances)

Non-dimensional Navier-Stokes Equation
$$\begin{pmatrix} \frac{\partial v_z^*}{\partial t^*} + \underline{v}^* \cdot \nabla^* v_z^* \end{pmatrix} = -\frac{\partial P^*}{\partial z^*} + \underbrace{1}_{\text{Re}} (\nabla^{*2} v_z^*) + \underbrace{1}_{\text{Fe}} y^*$$

Re – Reynolds Fr - Froude

$$\left(\frac{\partial T^*}{\partial t^*} + \underline{v}^* \cdot \nabla^* T^*\right) = \frac{1}{\text{RePr}} (\nabla^{*2} T^*) + S^*$$

 $Pe - Péclet_h = RePr$ Pr - Prandtl

$$\left(\frac{\partial x_A^*}{\partial t^*} + \underline{v}^* \cdot \nabla^* x_A^*\right) = \left(\frac{1}{\text{ReSc}} (\nabla^{*2} x_A^*)\right)$$

 $Pe - Péclet_m = ReSc$ Sc – Schmidt

molar average velocity; sorry! ef: BSL1, p581, 644

37

© Faith A. Morrison, Michigan Tech U.

Dimensionless Numbers

Dimensionless numbers from the **Equations of Change**

$$Re - Reynolds = \frac{\rho VD}{\mu} = \frac{VD}{\nu}$$

$$Fr - Froude = \frac{V^2}{gD}$$

$$\begin{aligned} & \text{Re} - \text{Reynolds} = \frac{\rho VD}{\mu} = \frac{VD}{\nu} \\ & \text{Fr} - \text{Froude} = \frac{V^2}{gD} \\ & \text{Pe} - \text{P\'eclet}_h = \text{RePr} = \frac{\hat{C}_p \rho VD}{k} = \frac{VD}{\alpha} \\ & \text{Pe} - \text{P\'eclet}_m = \text{ReSc} = \frac{VD}{D_{AB}} \end{aligned}$$

$$Pe - Péclet_m = ReSc = \frac{VD}{D_{AB}}$$

These numbers tell us about the relative importance of the terms they precede in the microscopic balances (scenario properties).

$$\Pr - \text{Prandtl} = \frac{\hat{c}_p \mu}{k} = \frac{\nu}{\alpha}$$

$$\begin{aligned} & \Pr{-\operatorname{Prandtl}} = \frac{\hat{c}_p \mu}{k} = \frac{\nu}{\alpha} \\ & \operatorname{Sc} - \operatorname{Schmidt} = \frac{\operatorname{LePr}}{\mu} = \frac{\mu}{\rho \mathcal{D}_{AB}} = \frac{\nu}{\mathcal{D}_{AB}} \\ & \operatorname{Le} - \operatorname{Lewis} = \frac{\alpha}{\mathcal{D}_{AB}} \end{aligned}$$

Le – Lewis =
$$\frac{\alpha}{D_{AB}}$$

These numbers compare the magnitudes of the diffusive transport coefficients ν , α , \mathcal{D}_{AB} (material properties).

Dimensionless Numbers

Dimensionless numbers from the **Equations of Change**

$$\begin{aligned} & \text{Re} - \text{Reynolds} = \frac{\rho VD}{\mu} = \frac{VD}{\nu} \\ & \text{Fr} - \text{Froude} = \frac{V^2}{gD} \\ & \text{Pe} - \text{P\'eclet}_h = \text{RePr} = \frac{\hat{C}_p \rho VD}{k} = \frac{VD}{\alpha} \\ & \text{Pe} - \text{P\'eclet}_m = \text{ReSc} = \frac{VD}{D_{AB}} \end{aligned}$$

$$Pe - Péclet_h = \frac{\hat{c}_p \rho VD}{k} = \frac{VD}{\alpha}$$

$$\frac{\text{Pe} - \text{P\'eclet}_m = \text{ReSc} = \frac{VD}{D_{AB}} }{}$$

These numbers tell us about the relative importance of the terms they precede in the microscopic balances (scenario properties).

Pr – Prandtl =
$$\frac{\hat{c}_p \mu}{k} = \frac{\nu}{\alpha}$$

Sc – Schmidt = LePr = $\frac{\mu}{\rho \mathcal{D}_{AB}} = \frac{\nu}{\mathcal{D}_{AB}}$

Le – Lewis = $\frac{\alpha}{\mathcal{D}_{AB}}$

These numbers compare the magnitudes of the diffusive transport coefficients $\nu, \alpha, \mathcal{D}_{AB}$ (material properties).

Transport coefficients

$$v \equiv \frac{\mu}{\rho} = \text{kinematic viscosity}$$

© Faith A. Morrison, Michigan Tech U.

Dimensional

Dimensionless numbers from the **Engineering Quantities of Interest** These numbers are defined to help us build transport data correlations based on the fewest number of grouped (dimensionless) variables (scenario properties).

$$f - Friction Factor$$

$$\frac{L}{R} - Aspect Ratio$$

$$f = \frac{\mathcal{F}_{drag}}{\left(\frac{1}{2}\rho V^2\right)A_c}$$

Nu – Nusselt
$$\frac{L}{D} - \text{Aspect Ratio}$$

$$St_h = \frac{h}{\rho V \hat{C}_p} = \frac{h}{\sqrt{N}} \frac{1}{2} \frac{1}{2$$

Sh - Sherwood $\frac{L}{D}$ - Aspect Ratio $St_m =$

$$Sh = \frac{k_c D}{D_{AB}}$$

St - Stanton

