CM3120 Transport/Unit Operations 2

Unsteady State Heat Transfer

Professor Faith A. MorrisonDepartment of Chemical Engineering
Michigan Technological University

www.chem.mtu.edu/~fmorriso/cm3120/cm3120.html

© Faith A. Morrison, Michigan Tech U.

Where to start?

We seek to study unsteady state heat transfer.

Let's start by looking over several subjects that form the foundation for what we hope to study.

CM3120 Transport/Unit Operations 2

Unsteady State Heat Transfer

www.chem.mtu.edu/~fmorriso/cm3120/cm3120.html

These basic concepts are familiar. Cycling back can deepen our understanding (and help us put new concepts in context)

2

CM3120 Transport/Unit Operations 2

Energy Balance Review

Professor Faith A. MorrisonDepartment of Chemical Engineering
Michigan Technological University

www.chem.mtu.edu/~fmorriso/cm3120/cm3120.html

CM2110/CM2120 - Review

Review:

How do we decide what equations to use for what?

- · Closed system E-bal (first law of thermo)
- Open system E-bal (H = U +PV, flowing systems)
- Mechanical energy balance (SISO, steady, isothermal, no rxn, no phase change, little heat transferred)

Knowing what assumptions we are making means we understand our models. See handout for summary: Macroscopic Energy Balances Open system energy balance $\Delta E_p + \Delta E_k + \Delta H = Q_{in} + W_{s,on}$ Closed system energy balance $\Delta E_p + \Delta E_k + \Delta U = Q_{in} + W_{on}$ MEB: $\frac{\Delta p}{\rho} + \frac{\Delta(v^2)}{2\alpha} + g\Delta z + F = \frac{W_{s,on}}{\dot{m}}$

Notes:

- 1. Δ has different meanings in the three e-balances

$$\Delta H = \sum_{outs} m_i \widehat{H}_i - \sum_{ins} m_i \widehat{H}_i$$
 3. Use MEB if you can (easy); but

not if it does not appy!

www.chem.mtu.edu/~fmorriso/cm310/Energy Balance Notes 2008.pdf

© Faith A. Morrison, Michigan Tech U.

What *physics*

determines how rapidly the heat transfers from the outside stream to the inside stream?

Fourier's Law of Heat Conduction

$$\frac{q_x}{A} = -k \frac{dT}{dx}$$

(for a homogeneous phase)

 $\frac{q_x}{4}$ -heat flux=energy/area time)

 $\frac{1}{k}$ - thermal conductivity

 $\frac{dT}{dx}$ –temperature gradient

(the driving physics is Brownian motion: energy transports down ∇T due to Brownian motion)

4

Microscopic Energy Balance

CM3110 REVIEW

The Equation of Energy for systems with constant $m{k}$

Microscopic energy balance, constant thermal conductivity; Gibbs notation

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T \right) = k \nabla^2 T + S$$

Microscopic energy balance, constant thermal conductivity; Cartesian coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + S$$

Microscopic energy balance, constant thermal conductivity; cylindrical coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) + S$$

Microscopic energy balance, constant thermal conductivity; spherical coordinates

$$\begin{split} \rho \hat{\mathcal{C}}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial T}{\partial \phi} \right) \\ &= k \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2} \right) + \mathcal{S} \end{split}$$

http://pages.mtu.edu/~fmorriso/cm310/energy_equation.html

© Faith A. Morrison, Michigan Tech U.

Fourier's Law of Heat Conduction

CM3110 REVIEW

Fourier's law of heat conduction, Gibbs notation: $\tilde{q} = -k\nabla T$

Fourier's law of heat conduction, Cartesian coordinates:
$$\begin{pmatrix} \tilde{q}_x \\ \tilde{q}_y \\ \tilde{q}_z \end{pmatrix}_{xyz} = \begin{pmatrix} -k \frac{\partial T}{\partial x} \\ -k \frac{\partial T}{\partial y} \\ -k \frac{\partial T}{\partial z} \end{pmatrix}_{xy}$$

Fourier's law of heat conduction, cylindrical coordinates:
$$\begin{pmatrix} \tilde{q}_r \\ \tilde{q}_\theta \\ \tilde{q}_z \end{pmatrix}_{xyz} = \begin{pmatrix} -k \frac{\partial T}{\partial r} \\ -\frac{k}{r} \frac{\partial T}{\partial \theta} \\ -k \frac{\partial T}{\partial z} \end{pmatrix}_{r\theta z}$$

Fourier's law of heat conduction, spherical coordinates:
$$\begin{pmatrix} \tilde{q}_r \\ \tilde{q}_\theta \\ \tilde{q}_\phi \end{pmatrix}_{xyz} = \begin{pmatrix} -k \frac{\partial T}{\partial r} \\ -\frac{k}{r} \frac{\partial T}{\partial \theta} \\ -\frac{k}{r \sin \theta} \frac{\partial T}{\partial \phi} \end{pmatrix}_{r\theta\phi}$$

http://pages.mtu.edu/~fmorriso/cm310/energy_equation.html

Example 3: Heat Conduction with Generation What is the steady state temperature profile in a wire if heat is generated uniformly throughout the wire at a rate of S_e W/m³ and the outer radius is held at T_w ? What is the flux? $S_e = \text{energy}$ production per unit volume

Example 4: Wall heating of laminar flow

We need to solve this partial differential equation:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(\frac{\partial T}{\partial r}r\right) + \frac{\partial}{\partial z}\left(\frac{\partial T}{\partial z}\right) - \frac{\rho\hat{C}_p}{k}v_z(r)\frac{\partial T}{\partial z} = 0$$

with

$$v_z = \frac{\Delta p}{4\mu L} (R^2 - r^2)$$

and with the appropriate boundary conditions. To see the solution go to:

- R. Siegel, E. M. Sparrow, T. M. Hallman, Appl. Science Research A7, 386-392 (1958)
- R. B. Bird, W. Stewart, and E. Lightfoot (BSL), Transport Phenomena, Wiley, 1960, p295.

28

We need to solve this partial differential equation:

$$\frac{1}{r}\frac{\partial}{\partial r} \bigg(\frac{\partial T}{\partial r} r \bigg) + \frac{\partial}{\partial z} \bigg(\frac{\partial T}{\partial z} \bigg) - \frac{\rho \hat{\mathcal{C}}_p}{k} \, v_z(r) \frac{\partial T}{\partial z} = 0$$

with

$$v_z = \frac{\Delta p}{4\mu L} (R^2 - r^2)$$

solution go to:

and with the appr What are the earch

 R. Siegel, E. M. A7, 386-392 (19

R. B. Bird, W. Stewart, and E. Lightfoot (BSL), Transport Phenomena, Wiley, 1960, p295.

© Faith A. Morrison, Michigan Tech U.

Example 4: Wall heating of laminar flow

$$r = 0$$
 $T = finite$
 $r = R$ $\frac{q_r}{A} = \frac{q_1}{A}$
 $z = 0$ $T = T_0$

1D, steady heat transfer

CM3110 REVIEW

SUMMARY

- · Microscopic energy balance
- Transport law
- Newton's law of cooling (fluid boundary)
- Know the assumptions that simplify the model of the problem
- · Solve with appropriate boundary conditions
- Check that assumptions are valid when using the solution

31

