Lecture 6 2/11/2019

Last time,
Dimensional Analysis for Heat Transfer

CM3120 Transport/Unit Operations 2

Dimensional Analysis
Towards Understanding

Unsteady State Heat Transfer
(and more)

Professor Foith A. Morrison

Department of Chemical Engineering
Michigan Technological University

‘www.chem.mtu_edu/~fmorriso/cm3120/cm3120 htm!
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CM3120 Trani pertiunit Open fens 2 Correlations for Forced Convection Heat Transfer Coefficients

To understand and more 10000
complex heat transfer

units, we turn now to...
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Summary

» Dimensional analysis works as well in heat transfer as
in momentum transfer

* We should use it (and probably also in mass transfer, but...)
» These dimensionless numbers are stacking up (and...)
* What do they really mean? 2
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Lecture 6

Dimensional

Analysis

Dimensionless numbers from the

Eq uations of Cha nge (microscopic balances)

Non-dimensional Navier-Stokes Equation

These numbers tell us about
the relative importance of the

terms they precede.

at* daz*

momentum

ov, . _. . oP*
—tv -V | =— +

Non-dimensional Energy Equation
o

o ¢

energy

mass

Re — Reynolds
Fr — Froude

Pe — Péclet;, = RePr
Pr — Prandtl

Pe — Péclet,, = ReSc
Sc — Schmidt

© Faith A. Morrison, Michigan Tech U.

Dimensionless Numbers

Dimensionless numbers from the
Equations of Change
Re — Reynolds = e _re

u v

V2
Fr — Froude = —
gD

, ¢,pVD VD

Pe — Péclet;, = RePr = P -
Pe — Péclet,, = ReSc = 2
DaB

[
Pr— Prandtl = 2£ =2
k a v

Sc — Schmidt = LePr = 24— = L
PDap  Dap

. a
Le — Lewis = —
DaB

thermal diffusivity a = —-
Cp

N

J

These numbers tell us about
the relative importance of
the terms they precede in the
microscopic balances
(scenario properties).

These numbers compare the
magnitudes of the diffusive
transport coefficients
v, a, D g (material properties).

4
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Lecture 6

These numbers are defined to
help us build transport data
correlations based on the
fewest number of grouped
(dimensionless) variables
Dimensionless numbers from the (scenario property).
Engineering Quantities of Interest

£ Dimensionless Force on the Wall (Drag) (Fanning) T
=] . .
2 — Friction Factor drag
S ’ 31),1 f’ auz f f =
2 ][ G @ L achect Ratio L2 ;
g el D p 7 pV A 2
[5}
(5}
- Newton’s Law of Cooling 'E
5 Nu — Nusselt N hD S
L . =—
5 — — Aspect Ratio u k 5
D =
. Dimensionless Mass Transfer Coefficient §
£ e 18 ax,, Sh — Sherwood kD 5
@ |Shr zm,ff e L_a t Rati Sh = =
o e 5 spect Ratio Dyp <
<
:‘é’
5 e
©
momentum
energy Dimensionless Numbers

mass

Re — Reynolds = e _ Yo
U v

VZ
Fr — Froude = —
gD

These numbers from the governing
equations tell us about the relative
importance of the terms they precede

i CppVD VD X . o
Pe — Péclet,, = RePr = ——=— in the microscopic balances
, VD 1 [
Pe — Péclet,, = ReSc = o (scenario properties).
AB

These numbers compare the
magnitudes of the diffusive
transport coefficients v, @, D
(material properties).

¢
Pr — Prandtl = 2£ =2
k a v

Sc — Schmidt = LePr = 2 =
pDaB AB

. a
Le — Lewis = —
Dap

7:drag

f — Friction Factor = o) These numbers are defined to help
ZPV Ac

us build transport data correlations
based on the fewest number of
grouped (dimensionless) variables
(scenario properties).

Nu — Nusselt = hTD

Sh — Sherwood = ];’"—D

AB

W_/\——Y~JL_Y__/

6
thermal diffusivity a =

k
ol © Faith A. Morrison, Michigan Tech U.
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Lecture 6

Unsteady State Heat Transfer: Dimensional Analysis NEW

Question: What now?

STUFF!

Answer: Let’s apply Dimensional Analysis to something new,
unsteady state heat transfer, to sort out the various effects.

Heat Transfer: Steady vs Unsteady

What are the various cases that are seen? .4--'
« If hyis large, the wall temp T = /
is justthe bulk temp {fast '
convection)

If k is large, the temp profile
is straight (quasi-steady
state in the slab) and the
convection works to keep up
{heatxfer limited by k;; fast
conduction in slab)

If neither mechanism

Engineering Modeling (complexsystems)

*Choose an idealized problem and solve it

*From insight obtained from ideal problem, identify
governing equations of real problem

*Nondimensionalize the governing equations; deduce
dimensionless scale factors (e.g. Re, Fr for fluids)

*Design experiments to test modeling thus far

*Revise modeling (structure of dimensional analysis,
identity of scale factors, e.g. add roughness lengthscale)

*Design additional experiments

dominates, it's complicated! B x ) .
«Iterate until useful correlations result
. . L 7
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Unsteady State Heat Transfer: Dimensional Analysis NEW

Question: What now?

STUFF!

Answer: Let’s apply Dimensional Analysis to something new,
unsteady state heat transfer, to sort out the various effects.

Heat Transfer: Steady vs Unsteady

What are the various cases that are seen? .4--'
« If hyis large, the wall temp T = /
is justthe bulk temp {fast '
convection)

If k is large, the temp profile
is straight (quasi-steady
state in the slab) and the
convection works to keep up
{heatxfer limited by k;; fast
conduction in slab)

If neither mechanism
dominates, it's complicated! B x

Engineering Modeling (complexsystems)

*Choose an idealized problem and solve it

*From insight obtained from ideal problem, identify
governing equations of real problem

*Nondimensionalize the governing equations; deduce
dimensionless scale factors (e.g. Re, Fr for fluids)

*Design experiments to test modeling thus far

*Revise modeling (structure of dimensional analysis,
identity of scale factors, e.g. add roughness lengthscale)

*Design additional experiments

SPOILER ALERT:
There’ll be some new
dimensionless numbers!

«Iterate until useful correlations result

—

8
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CM3120 Transport/Unit Operations 2

More complex Systems:
Unsteady State Heat Transfer

(Analytical Solutions) g/ "'

Professor Faith A. Morrison

Department of Chemical Engineering
Michigan Technological University

www.chem.mtu.edu/~fmorriso/cm3120/cm3120.html
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CM3120 Transport/Unit Operations 2

More complex Systems:

(Analytical Solutions)

Professor FaithA. Morrison
g Department of Chemical Engineering
Michigan Technological University

Unsteady State Heat Transfer

We model the dynamics of unsteady
state heat transfer because there are

very practical problems that we can
solve with such models.

10
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Lecture 6

Example: I

. T 229
When will my - o
pipes freeze? M. . 26

%o_umainQ =16

The temperature has been 35°F R

for a while now, sufficient to
chill the ground to this 1/30/19
temperature for many tens of
feet below the surface.
Suddenly the temperature
drops to -20°F. How long will it
take for freezing temperatures
(32°F) to reach my pipes, which
are 8 ft under ground?

onper arbof ! z

11
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Unsteady State Heat Transfer: Dimensional Analysis

Engineering Modeling (complexsystems)

*Choose an idealized problem and solve it.

*From insight obtained from ideal problem, identify
governing equations of real problem

*Nondimensionalize the governing equations; deduce
dimensionless scale factors (e.g. Re, Fr for fluids)

*Design experiments to test modeling thus far

*Revise modeling (structure of dimensional analysis,
identity of scale factors, e.g. add roughness lengthscale)

*Design additional experiments

elterate until useful correlations result

STEP ONE: el
Idealized problem:

1D heat transfer in a —
semi-infinite solid

12
© Faith A. Morrison, Michigan Tech U.

2/11/2019
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Unsteady State Heat Transfer: Dimensional Analysis

Example:
When will my

Develop a model: pipes freeze?

— The temperature has been 35°F
e 000 for 2 while now, sufficient to
chill the ground to this
temperature for many tens of
/'7— Suddenly the temperature
D drops to -20°F. How long will it
take for freezing temperatures
l {32°F) to reach my pipes, which
are 8 ft under ground?

feet below the surface.

Example 1: Unsteady Heat Conduction in a Semi-infinite solid

A very long, very wide, very tall slab is initially at a temperature
T,. Attimet = 0, the left face of the slab is exposed to a
vigorously mixed gas at temperature T;. What is the time-
dependent temperature profile in the slab?

© Faith A. Morrison, Michigan fl'iech u.

Unsteady State Heat Transfer
Example: Unsteady Heat Conduction in a Semi-infinite solid

H, D, very large

14
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Lecture 6

1D Heat Transfer: Unsteady State

Initial Condition:

15
© Faith A. Morrison, Michigan Tech U.

1D Heat Transfer: Unsteady State

General Energy Transport Equation
(microscopic energy balance)

As for the derivation of the microscopic momentum
balance, the microscopic energy balance is derived on
an arbitrary volume, V, enclosed by a surface, S.

dS ~

Gibbs notation:

~ (OT 2
pC, E+3-VT =kVT+S

see handout for
component notation

16
© Faith A. Morrison, Michigan Tech U.
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Lecture 6

1D Heat Transfer: Unsteady State

General Energy Transport Equation
(microscopic energy balance)

convection

A source

(energy

A oT 2 nerated
pCy| o+ VT |=kVT+S S

\ ) volume per
\_Y_} time)
rate of change conduction (all
directions)

velocity must satisfy

equation of motion,

equation of continuity see handout for
component notation

17
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Equation of €NEergy for Newtonian fluids of constant density, p, and
thermal conductivity, k, with source term (source could be viscous dissipation, electrical
energy, chemical energy, etc., with units of energy/(volume time)).

Source: R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Processes, Wiley, NY,
1960, page 319.

| www.chem.mtu.edu/~fmorriso/cm310/energy2013.pdf

Gibbs notation (vector notation)

A . k
thermal diffusivity a = —
[—‘ZW-VT]: kv, S Py
P r

Cartesian (xyz) coordinates:

+ +
o’ o o

or  or or or_ k (T 2T &T) s
pC,

EJH}‘EH)}’@M}ZE_T@F gL
Cylindrical (r6z) coordinates:

+—
oG,

+5—+
2 06° o

T  dT vydT = oT _ k (1a( T\, 10T &T) S
— iV, ——+L—+V,—=—=
o "or r ol oz oC,

= lrala
Spherical (r0¢) coordinates:

T, oT vy v 0T _ k [Lg[rzal} 1 a(smgalJ 1

et G0 rsin0 o pC, | 2 o ) 7 sing 90 7050 )T 2 g2 .
© Faith A. Morrison, Michigan Tech U.
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1D Heat Transfer: Unsteady State

Example 1: Unsteady Heat Conduction in a Semi-infinite solid

A very long, very wide, very tall slab is initially at a temperature
T,. Attimet = 0, the left face of the slab is exposed to a
vigorously mixed gas at temperature T;. What is the time-
dependent temperature profile in the slab?

Newton’s law of cooling BC’s:

|Qx| = hAlTbulk - Tsurface

S

s

R
S
S

£

by

i
ik
s

b
£
b

© Faith A. Morrison, Michigan Tech U.

1D Heat Transfer: Unsteady State

Microscopic Energy Equation in Cartesian Coordinates

or oT oT oT k (&°T &T &7 S
— VetV =— s+t |t—=
ot ox oy oz pC,\x" 0Oy 0z pC,

o= ~— =| thermal diffusivity

what are the boundary
conditions? initial conditions?

20
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Lecture 6

1D Heat Transfer: Unsteady State

Example: Unsteady Heat Conductionin a
Semi-infinite solid

Initial Conditio

T

AR

R
i

e

e

bbb
ettt

o

21
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1D Heat Transfer: Unsteady State

Unsteady State Heat

Conduction in a Semi-Infinite
Slab

oT  k (9°T 0°T thermal
— = |— =« el diffusivity
at  pC,\9x? 0x Lok

pCy

Initial condition: t=0 T=T, V«x

Boundary conditions:

qx ar
1 —ka—h(T1 T) t>0

&
I
(@]
|
I

X = 00 T=TO Vt

22
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Lecture 6

1D Heat Transfer: Unsteady State

Unsteady State Heat

Conduction in a Semi-Infinite

Slab
2 thermal
a_T =« a_T diffusivity
ot 0x? Lok
=e
Initial condition: t=0 T=T,
. “for all x”
Boundary conditions:
qx dT
=0 —=—-k—=h(Ty—1) t>0
X 2 dx (Ty )
“for all t”
X = T=T,

23
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1D Heat Transfer: Unsteady State

Unsteady State Heat

Conduction in a Semi-Infinite

Slab

The solution of
the PDE is
obtained by
combination
of variables.

See text WRF p284

i
Fassks
i
S

o
ekttt

ettt
ettt

ettt

oT (97T
ot~ “\ox?

t=0 T=T, Vx

Initial condition:
Boundary conditions:

o T T -1 >0
x= 1= ko= (T, —T)

X =00 T=T, vVt

hat __*
pet o

24
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Lecture 6

Unsteady State Heat Conduction
in a Semi-Infinite Slab

Solution:

T —T
—— 9 = erfc{ — eP@HB erfe(¢ + B)
=T

ﬁEhJ:Tz ¢=-

?“H

complementary — 1
error function of y erfc(y) = 1 — erf(y)

(a standard
function in Excel)

y
2
error function of y erf(y) = \/__f e—(yl)z dy'
T
0

thermal diffusivity a = -

(-7

(Ty = Ty)
(T —Tp)

N (Ty = To)

~
Il

* Geankoplis 4th ed.,
eqn 5.3-7, page 363

* WRF, eqn 18-21,
page 286

25
pCp © Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Conduction
in a Semi-Infinite Slab

Solution:

T —T

— 9 = erfc{ — eP@HB) erfe(7 + B)
T, — T,

ﬁEhJ:Tz ¢=-

?“H

complementary — lot it.
erfc(y) = 1 — erf P
error function of y (Y) (y)
2 4 _(M=1
) =
error functionof y  erf(y) = \/—_f e~ dy’ (Tl(;_TO% )
T 1-Y= 0
0 (Ty = Ty)
thermal diffusivity « = % © Faith A. Morrison, Michiganzg'ech u.

To make this solution
easier to use, we can

2/11/2019
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Lecture 6

Unsteady State Heat Conduction
in a Semi-Infinite Slab

This:

T —T

—— 2 = erfc{ — ePQUHB erfie(¢ + B)
T, =Ty

Versus this: ¢ = T

At various values of this:

_hyjat
'B_k

thermal diffusivity a = -
pCp

To make this solution
easier to use, we can

plot it.

_(M-7
Y:(Tl(TTTO%)
v — Iy
1oy (T, — Tp)

27
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Unsteady State Heat Conduction
in a Semi-Infinite Slab

Ly T—T,
T\T,-T,

01 +

_ (-7

= B =005
(T, = To)

increasing 8 Y

_ (T — TO) 0.01

Plot design after
Geankoplis 4t" ed., Figure
5.3-3, page 364

0.8 1.2 16

C Wt .

© Faith A. Morrison, Michigan Tech U.
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Lecture 6

1D Heat Transfer: Unsteady State Heat Conduction in a Semi-Infinite Slab

T—T,
T, —To

1-Y=

thermal diffusivity a = p%

With modern tools, we can plot the solution directly (evaluated in Excel)

Unsteady State Heat Conduction in a Semi-Infinite Slab

09
0.8
07 1
06 1
05 1

04 f

0.3 7

02 {

01

12

increasing time, t

time, hrs
—0.1
—0.2
0.5
1
—_—2
—5
—10
—20
—50
—100
—200
—500
btu
h=10—"57
_ ft?
a=1.0 bh
t
k=10 T“ ftF

10

29
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1D Heat Transfer: Unsteady State Heat Conduction in a Semi-Infinite Slab

Notice the
steady-state

~—
IS
1!
~ (e
~——
Il
>
I
-

thermal diffusivity a =

,
[

With modern tools, we can plot the solution directly (evaluated in Excel)

Unsteady State Heat Conduction in a Semi-Infinite Slab

08

04 f

0.3 7

02 {

01

oGy

SeF

effect of finite h.
0.9

increasing time, t

time, hrs
0.1
—0.2
0.5
1
—_—2
—5
—10
—20
—50
—100
—200
—500
btu
h=10—"57
_10ft
a=1.0 bh
t
k=10 T“ ftF

10

30
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Example: MA, ;,ZI

: T 229
When will my 7

pipes freeze? B e
L e i
The temperature has been 35°F IEEEESSIR &
for a while now, sufficient to m ia
chill the ground to this 1/30/13
temperature for many tens of

feet below the surface.

Suddenly the temperature

drops to -20°F. How long will it

take for freezing temperatures

(32°F) to reach my pipes, which

are 8 ft under ground?

31
© Faith A. Morrison, Michigan Tech U.

1D Heat Transfer: Unsteady State Heat Conduction in a Semi-Infinite Slab

Example:
When will my
pipes freeze?

The temperature has been 35°F

We need the
o g for a while now, sufficient to
appr0pr|ate phySICal chill the ground to this
temperature for many tens of
property data fOI" feet below the surface.
. Suddenly the temperature
the SO||_ drops to -20°F. How long will it
take for freezing temperatures
{32°F) to reach my pipes, which
are 8 ft under ground?

BTU
00—
hft °F

2
. =00184-
h

BTU
hft °F

thermal diffusivity a = X Geankoplis 4t ed.
Plp

k.. =0.5

N

32
© Faith A. Morrison, Michigan Tech U.
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Example: When will my pipes freeze?
1D Heat Transfer: Unsteady State Heat Conduction in
a Semi-Infinite Slab
T —T
—— 9 = erfc{ — eP@+B) erfe(7 + B)
Ty =Ty
( ; X \ TO =?
=—F Both ¢ T, =?
2\at and B T1_7
depend e R
/ on time ' i
IB = M T — TO S 3fer
k — =
\ / Tl - TO _T-7
S
_ — 1o
e m T
© Faith A. Morrison, Michigan33Tech u.

Example: When will my pipes freeze?

1D Heat Transfer: Unsteady State Heat Conduction in
a Semi-Infinite Slab

RSN G ]
LS ARESSS

T T. 0.40 P NN S
1700/ a0 SO IO semiinfinite solid ]
0.20 DO\
\\ \\
NN \
910 D NARNNA
OSOUARONONNN

n N
You t ry. “’\ AN AN NN

SR NNTINNNANNN

0.01~
o

Geankoplis 4t ed., Figure X
5.3-3, page 364

34
© Faith A. Morrison, Michigan Tech U.
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Lecture 6

Example: When will my pipes freeze?

1D Heat Transfer: Unsteady State Heat Conduction in

a Semi-Infinite Slab

1-v=(7=1)

T, —To

Solution:

Guess large 3)
(Interative solution)

Geankoplis 4t ed., Figure
5.3-3, page 364

1.00

0.80

0.30

SN

0.20

0.10

/

0.08

0.04

0.03

0.02

0.01o

35
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Example: When will my pipes freeze?

1D Heat Transfer: Unsteady State Heat Conduction in

a Semi-Infinite Slab

T —T,

——— =erfc{ — eF@+R erfc(¢ + B)

T, —To

Answer:

t = 480 hours = 20 days

s
e
s
i
e
ct

et

O semiinfinite solid

_ (T, =T1)
RS

U =Ty
LY=oy

36
© Faith A. Morrison, Michigan Tech U.
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Lecture 6

Example: When will my pipes freeze?

1D Heat Transfer: Unsteady State Heat Conduction in
a Semi-Infinite Slab

Or, use Excel. (How exactly?)

T —T

— 9 = erfc{ — eP@+B) erfe(7 + B)
T =Ty
/ﬁ

X

552—@
ﬂzh\/ﬂ

k
—

T0=
T1=
T=

h=
alpha=

X=

37
© Faith A. Morrison, Michigan Tech U.

Example: When will my pipes freeze?

1D Heat Transfer: Unsteady State Heat Conduction in
a Semi-Infinite Slab

With modern tools, we can plot
the evolution of the model directly
(evaluated in Excel)

0.9 h=

0.8 a =

k =

)

0.7 . .
Increasing

0.6 time, t

T—T,
T, —To

(

0.5

0.4 -

1-Y

0.3 -

0.2

20 i :22 hours
" hft2F 0s
2
0.0182- 1
—2
052%ft F —s

—10
—20
—50
——100
—200
—500

38
© Faith A. Morrison, Michigan Tech U.
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Example: When will my pipes freeze?

1D Heat Transfer: Unsteady State Heat Conduction in
a Semi-Infinite Slab

With modern tools, we can plot
the evolution of the model directly
(evaluated in Excel)

T(x, t) 40 8ft

[ |
I «——32°F
F) ®7 |
r : ——0.1 hours
r ! —0.2
20 + !
[ 1 0.5
r . . 1
r Increasing ! 1
r 1
10 t time, t ! —2
r | —5
r |
[ —10
0+ i
r h —20
[ | btu
L —50 = —_—
b , =20 hft2F
0 ! —100 Fe2
[ : —200 a = 00187
F ! —500 — bt
. ‘ ‘ et k=052"ftF
2 0 2 4 6 8 10

39
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Solution Summary:

Example:
When will my
pipes freeze?

The temperature has been 35°F
for a while now, sufficientto
chill the ground to this
temperature for many tens of
feet below the surface.
Suddenly the temperature
drops to-20°F. How long will it
take for freezing temperatures

{32°F) to reach my pipes, which
are 8 ft under ground?

T(x,t) a0

(°F)
Answer:

t =509 hours = 21 days

s s
o

increasing
time, t

—100

—s00

40
© Faith A. Morrison, Michigan Tech U.
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Lecture 6

We used unsteady state Solution Summary;
heat transfer modeling to | ===
solve one practical :
problem.

Answer:
t = 480 hours ~ 20 days

CM3120 TransportiUnit Operations 2

More complex Systems:

s s ns v What can we do to extend
Analytical Solutions 3 R
these methods to a wider

e AW class of problems? -

a1
© Faith A. Morrison, Michigan Tech U.

Heat Transfer: Steady vs Unsteady

|
o What are the various cases that are seen? &=, |
Back to this: . '

If b is large, the wall temp
is justthe bulk temp {fast
convection)

« If kislarge, the temp profile

What iS Our usual is straight (quasi-steady

state in the slab) and the

strategy for complex e
phenomena?

conduction in slab}

+ If neither mechanism I
dominates, it's complicated! B x

Answer: Dimensional o .
Engineering Modeling (complexsystems)

Ana IyS|S V| «Choose an idealized problem and solve it

\//-From insight obtained from ideal problem, identify
governing equations of real problem

‘ * Nondimensionalize the governing equations; deduce
dimensionless scale factors (e.g. Re, Fr for fluids)

v Let’s nondimensiona”ze *Design experiments to test modeling thus far
. *Revise modeling (structure of dimensional analysis,
the governing identity of scale factors, e.g. add roughness lengthscale)
equations and BCs. +Design additional experiments
\/ Let’s Sort Out the «lterate until useful correlations result

various unsteady cases. 42
© Faith A. Morrison, Michigan Tech U.
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Lecture 6

Let’s nondimensionalize the governing equations and BCs.

Let’s sort out the various cases.

1D Heat Transfer: Unsteady State

Unsteady State Heat
Conduction in a Semi-Infinite

Slab
oT _ k (9°T
ot pC, \9x?

_(o*T
=\ oxz

Initial condition:

Boundary conditions:

t=0 T=T, Vx

x=0 gqy,=hA(T,-T) t>0

X = To

vt

thermal
diffusivity

k
a=—
.2%%

(Review:

How did we do this before?)

43
© Faith A. Morrison, Michigan Tech U.

Method:

Identify the governing
equation(s)

Choose “typical” values
(scale factors)

Use them to scale the
equations

We’ll modify our solution for

Convective Heat Transfer

CM3110
REVIEW

Pipe flow Energy
non-dimensional variables:
non-dimensional variables:
driving oy
time: position: velocity: force: pOSItIOﬂZ temperature: source:
.tV . . . P _
tEE rE% VZELV': P = T T*Eﬁ T*=T 7;) S*Zi
P D - { _ ) -
«_Zz v «_ g 4 Zi TO So
z=—||ly=2_ g. =% zt=—
D Vv g D
Y
Vy 27‘}

44
© Faith A. Morrison, Michigan Tech U.
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We’ll modify our solution for

Convective Heat Transfer

~( b

Pipe flow Energy
non-dimensional variables:
non-dimensional variables:
driving oy
pysition: velocity: force: pOSItIOI’]Z temperature: source:
p . . P —
rE% vZEV—V: P = T T*EL T*=T 7;) S*Zi
P D - { ) -
«_Z v «_ g 4 Ti B T‘; 5o
z=—||yv=—2L]| |g. === zt=—
D"V c g D
.V
Vy 27‘}

Slight problem: We need to nondimensionalize t for
the unsteady case also, but there is no characteristic
velocity in thermal conduction in a solid.

45
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Choice:
We n.eed to. '
For the unsteady e noeadycsseabo,
) | I c h 00se a there is no characteristic Convective Heat Transfer
Ca Se We velocity.
characteristic time —

based on the thermal
diffusivity, a.

at
t* =
- D2 thermal
diffusivity
Y k (Appears in the
a=—
This dimensionless time is pC, energy balance)
called Fourier number Fo.
D? zpép

- = thermal diffusion time = L .

46
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Energy is diffusing
| | down the
Example: When will my pipes freeze?
1D Heat Transfer: Unsteady State Heat Conductionin te m pe ratu re
T(x, t) 20 VaSeml-InflnlteSIab gradlent
(’F)
[ ——0.1 hours
20 02
r 0.5
r increasing 1
10 I time, t —
—s
[ —10
O —+
: —20
h =202 10 AE _izo thermal
S wer U diffusivity
a=0018- r —200 .
k=052t fcF 50 Lol ] T €= —
2 0 2 4 6 8 10 PGy
x, ft 2p6,

D? . . \ D
- = thermal diffusion time = —

47
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Dimensional Analysis, Unsteady State Convection

Non-dimensionalize (eqns, BCs)

oT 02T oT
a(—) Gy = —k o = RA(T; — T)

et
i
P

ot - dx?2 0x

non-dimensional variables:

position: temperature: time:
D (T; — Ty) D2

This dimensionless time is
at called Fourier number Fo.

Fo — Fourier Number = D2

48
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Lecture 6

1D Heat Transfer: Unsteady State

Unsteady State Heat

Conduction in a Semi-Infinite

Slab

aY
ot*

0%Y
dx*2

Initial condition:

Boundary conditions: X

hD

Bi — Biot Number = a

=0 aY—B'Y

= a*_ 1
s
Tk

49
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temperature:
T, —T
(=)
(Ty = Ty)
t*>0

In dimensionless form,
we see that this
problem reduces to

Y = Y(%,Fo, Bi)

Dimensionless quantities:

1D Heat Transfer: Unsteady State

Unsteady State Heat

Slab

Conduction in a Semi-Infinite

ay _ a%y e
Freiaiewerd T -7
oat*  ox*? v=
(T =To)
Initial condition: t'=0 Y=1 vx’
Boundary conditions: x'=o Y=1 Vt'
ay .
x'=0 ——<=BiY t'>0

ax*

_ (-7 Y (dimensionless temperature interval)
(T1—Tp)
t* =Fo = g—z Fourier number (dimensionless time)
x* =2
"D Biot number (pronounced BEE-OH)
Bj = P Ratio of heat transfer resistance at the
k

boundary to resistance in the solid. Thisisa
transport issue.

50
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Lecture 6

Because we can solve this problem a
the dimensional analysis is correct:

Solution:

nalytically, we can confirm that

Unsteady State Heat Conduction
in a Semi-Infinite Slab

Solution:

- Ty
= — eB23+pB)
T, =T, erfc{ —e erfc(¢ +

patlet ceg

B

B

hD . at

Bi — Biot Number = — Fo — Fourier Number = D2
x1 1 SX\ | R x 1

1-Y = erfc BE—_ eBl(D)+B12FO erfc| VvFo [ Bi + EF_

51
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Unsteady State Heat Transfer in a Body

heat flux (by conduction, k) and
the rate of heat delivery to the
boundary (by convection, h)

7,
f — Friction Factor =

Nu — Nusselt = —~
Sh— Sherwood ="

These numbers are defined to help
us build transport data correlations
based on the fewest number of
grouped (dimensionless) variables
(scenario properties).

ara
sz2 Ac

4B

Two Additional
. - momentum . .
Dimensionless Ay Dimensionless Numbers
pVD vD
N u m bers Re = Reynolds Tw These numbers from the governing
Fr — Froude = — equations tell us about the relative
é pVD vp importance of the terms they precede
) Pe — Péclet), = RePr = in the microscopic balances
Bi L BiOt NumbeI‘ = Pe — Pédlety, = ReSc = Y2 (scenario properties).
e Pr — Prandtl G _v These numbers compare the
QUantlfleS the tradeoffs SZ Scr;;uit LePrz _ magnitudes of the diffusive
. DAE t rt coefficients v, a, D,
between the rate of internal e~ Lewis =~ O matertal properties),

Fo — Fourier Number = —

|
!

Scales the time evolution of the temperature profile relative
to the material’s thermal properties, @ = k/pép.

52
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Lecture 6

Dimensional Analysis in Unsteady State Heat Transfer

. Warning!
Note Two Different Numbers
with completely different purposes and meanings
but confusingly similar definitions

. . hD hD

Bi — Biot Number = ~— = —2%

k kbody

Quantifies the tradeoffs between the rate of internal heat flux (by conduction,
k) and the rate of heat delivery to the boundary (by convection, h) for a body

in contact with a moving fluid.

D kD
Nu — Nusselt Number = —— = —o¥
k kfruia

Dimensionless heat transfer coefficient in convection. Quantifies the physics in
the moving fluid and how this results in a resistance to heat transfer, captured
in the heat transfer coefficient.

53
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At high Bi, the surface temperature ngh BI'
equals the bulk temperature; heat

transfer is limited by conduction in low k’

the body. hlgh h

At moderate Bi, heat transfer is Moderate Bi:

affected by both conduction in the th
body and the rate of heat transfer to nether process

the surface. dominates

At low Bi, the temperature is .,
uniform in a finite body; heat Low Bi:
transfer is limited by rate of heat high k,
transfer to the surface (h).

low h

54
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Lecture 6

: : hD Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the
rate of heat delivery to the boundary (by
convection, h)

At high Bi, the surface temperature

When the temperature is uniform in the
body, we can do a macroscopic energy

balance to solve many problems of interest.

fo This is called a “lumped parameter analysis.”

the surface. dominates
I
ow Bi, the temperature is Low Bi: I

uniform in a finite body; heat
transfer is limited by rate of heat h|gh k,
transfer to the surface (h).

low h
/

55
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: : hD Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the
rate of heat delivery to the boundary (by
convection, h)

—_—
R

At high Bi, the surface temperature ngh BI:

equals the bulk temperature; heat

transfer is limited by conduction in low k’

\inno -

When the wall temperature and the bulk
MR temperature are equal, the microscopic
At low Bl energy balance is easier to carry out
uniform in (temperature boundary conditions).

transfer is limited by rate o
transfer to the surface (h).

56
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Bi — Biot Number = %D

When both processes affect the outcomes, the full
solution may be necessary. For uniform starting
temperatures, the solutions are published.

e poay.

Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the
rate of heat delivery to the boundary (by
convection, h)

| grirt |

At moderate Bi, heat transfer
affected by both conduction i

the surface.

is
n the

body and the rate of heat transfer to

e ——

—
Moderate Bi:
nether process

dominates _

e

At low Bi, the temperature is
uniform in a finite body; heat

transfer is limited by rate of heat

transfer to the surface (h).

Low Bi:
high k,
low h

57
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N EXT: Talk about the three cases

convection,

e WEETR  CQuantifies the tradeoffs between the rate of
LIS SEIULT bl internal heat flux (by conduction, k) and the

rate of heat delivery to the boundary (by

h)

At high Bi, the surface temperature High Bi:
equalsthe bulk temperature; heat
transfer is limited by conduction in low k,
the body. high h
At moderate Bi, heat transfer is Moderate Bi:
affected by both conduction in the
body and the rate of heat transfer to nether process
the surface. dominates
At low B, the temperature is .
uniform in a finite body; heat Low Bi:
transfer is limited by rate of heat h]gh k,
transfer to the surface (h). low h
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