Lecture 7

Last time,
Unsteady State Heat Transfer

CM3120 Transport/Unit Operations 2

More complex Systems:
Unsteady State Heat Transfer
(Analytical Solutions)

Professor FaithA. Morrison
Department of Chemical Engineering
Michigan Technological University ‘I
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Solution Summary:

Example:
When will my
pipes freeze?

The temperature has been 35°F
for a while now, sufficientto
chill the ground to this
temperature for many tens of
feet below the surface.
Suddenly the temperature
drops to-20°F. How long will it
take for freezing temperatures
{32°F) to reach my pipes, which

are 8 ft under ground? T(x,t) a Bwft
(or) ©{ 777 Vs C E
Answer: Y N
t = 509 hours ~ 21 days increasing | i
10 time, t i —?
0 I
10 ' :jZ”
. —s00
-2 0 2 a4 6 8 10
x, ft
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Lecture 7

Dimensional Analysis, Unsteady State Convection

Non-dimensionalize (eqns, BCs)

oT 92T oT
R = —k—=hA(T, =T
at a(ax2> qx ax ( 1 )

non-dimensional variables:

position: temperature: time:
D (T; — Ty) D2

This dimensionless time is
at called Fourier number Fo.

Fo — Fourier Number = Dz 3

© Faith A. Morrison, Michigan Tech U.

In dimensionless form, .
. Conduction in a Semi-Infinite
we see that this Siab
ay a9y
problem reduces to ar =07
Initial condition: t'=0 Y=1 vx*
x . Boundary conditions X=w Y=1 Vt"
Y = Y(B, FO, Bl) x'=0 %:Bi}’ t°>0

Dimensionless quantities:

_ (-7 Y (dimensionless temperature interval)
(T1—Tp)
t*=Fo = g—z Fourier number (dimensionless time)
x* =2 Biot number (pronounced BEE-OH)
;:D Ratio of heat transfer at the boundary to heat
Bi = " transfer within the solid. This is a transport

issue.
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Lecture 7

Bi — Biot Number = hTD

Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the

rate of heat delivery to the boundary (by
convection, h)

At high Bi, the surface temperature
equals the bulk temperature; heat
transfer is limited by conduction in
the body.

At moderate Bi, heat transfer is
affected by both conduction in the
body and the rate of heat transfer to
the surface.

At low Bi, the temperature is
uniform in a finite body; heat
transfer is limited by rate of heat
transfer to the surface (h).

High Bi:
low k,
high h

Moderate Bi:
nether process

dominates

Low Bi:
high k,
low h
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Bi — Biot Number = hTD

Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the

rate of heat delivery to the boundary (by
convection, h)

At high Bi, the surface temperature

When the temperature is uniform in the
body, we can do a macroscopic energy
balance to solve many problems of interest.

This is called a “lumped para

meter analysis.”
U O -

ow Bi, the temperature is
uniform in a finite body; heat
transfer is limited by rate of heat
transfer to the surface (h).

Low Bi:
high k,

low h
/
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Lecture 7

: : hD Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the
rate of heat delivery to the boundary (by
convection, h)

—_—
e

At high Bi, the surface temperature ngh BI:

equals the bulk temperature; heat

transfer is limited by conduction in low k’

When the wall temperature and the bulk
WA temperature are equal, the microscopic
At low Bl energy balance is easier to carry out
uniform in (temperature boundary conditions).

transfer is limited by rate o
transfer to the surface (h).

7
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: : hD Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the
rate of heat delivery to the boundary (by
convection, h)

When both processes affect the outcomes, the full
solution may be necessary. For uniform starting
temperatures, the solutions are published.

e poay. | mgirrr |
I —
—
At moderate Bi, heat transfer is Moderate Bi:

affected by both conduction in the

body and the rate of heat transfer to nether process

the surface. dominates
/
At low Bi, the temperature is Low Bi:

uniform in a finite body; heat
transfer is limited by rate of heat h|gh k,
transfer to the surface (h).

low h

8
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Lecture 7

4/24/2019

1. Lumped
parameter analysis

Low Bi:
high k,
low h

3 q hD Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the
rate of heat delivery to the boundary (by
convection, h)

At high Bi, the surface temperature High Bi:
When the temperature is uniform in the
body, we can do a macroscopic energy

balance to solve many problems of interest.
§ This is called a “lumped parameter analysis.”

the surface. dominates

AT Tow Bi, the temperature is

uniform in a finite body; heat Low Bi:
transfer is limited by rate of heat h|gh k,
transfer to the surface (h).

low h

At low Bi, the temperature is
uniform in a finite body; heat
transfer is limited by rate of heat
transfer to the surface (h).

This is always the Dy, we use for the
lumped parameter analysis. We use
different D.pq, in other cases, however.
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This topic is part of a more general subject:

Unsteady Macroscopic
Energy Balance

Professor FaithA. Morrison

Department of Chemical Engineering
Michigan Technological University
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Lecture 7

Unsteady State Heat Transfer: Low Biot Number

Example: Quench cooling of a manufactured part.

If a piece of steel with T = T, is dropped into a large, well stirred
reservoir of fluid at bulk temperature T,,, what is the temperature of
the steel as a function of time?

* k = large, which means that
there is no internal resistance to T=T()
heat transfer in the part

» Therefore, we are NOT
calculating a temperature profile
(internal T is uniform)

+ = Use Unsteady, Macroscopic

O EELETED Fluid temperature= T,,

11
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Unsteady State Heat Transfer: Low Biot Number

Unsteady Macroscopic Energy Balance

see Felder and Rousseau or Himmelblau
balance over

time interval At W At Macroscopic

s,0n

control volume

2
n%in(H +%+ ng At

mn

2
n'qom[H +% + gz] At
out

G J
Y Y
amount of amount of
energy that Q,-nAt energy that exits
enters with the with the flow
flow between t between t and
and t + At t+ At
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Lecture 7

Unsteady State Heat Transfer: Low Biot Number

Unsteady Macroscopic Energy Balance

accumulation = input — output

d
E (Usys + Ek,sys + Ep,sys) = —AH — AE} — AEp + Qi + VVs,on

Background:
pages.mtu.edu/~fmorriso/cm310/IFMWeb

AppendixDMicroEBalanceMorrison.pdf © Faith A. Morrison, Michigan T1630h u.

Unsteady State Heat Transfer: Low Biot Number

Unsteady Macroscopic Energy Balance

accumulation = input — output

d
a (Usys + Ek,sys + Ep,sys) = —AH — AEk - AEp + Qin + I/Vs,on

T =T(t)
How do we apply
this balance to our
current problem?

Fluid temperature= T,

14
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Lecture 7

Unsteady State Heat Transfer: Low Biot Number

Unsteady Macroscopic Energy Balance

accumulation = input — output

d
a (Usys + Ek,sys + Ep,sys) = —AH — AEk - AEp + Qin + I/Vs,on

You try.

T =T(t)

Fluid temperature= T,

15
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Unsteady State Heat Transfer: Low Biot Number

Unsteady Macroscopic Energy Balance

accumulation = input — output

T=T()

Fluid temperature= T,

d
a (Usys +>¥y5 +§S\sys) = _R_I - A&ﬁ_ A&&"' Qin + Nﬂ.

negligible

For negligible changes in E,, and
E}, no flow, no phase change, no
chemical rxn, and no shafts:

~

C, = (:'p for liquids, solids

no flow no shafts
Usys _
dt mn
. dT.
stysz dStyS = Qin

16
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Lecture 7

Unsteady State Heat Transfer: Low Biot Number

Unsteady Macroscopic Energy Balance

How do we quantify the
heatin Q;;,?

Fluid temperature= T,

T=T()

%(Usys +}>sz +}>\sys) = —\3{1 - &ﬁ_ A\K %&n

negligible

For negligible changes in E,, and
E}, no flow, no phase change, no
chemical rxn, and no shafts:

~

C, = (:'p for liquids, solids

no flow

no shafts

AUsys
dt

. dT,
stys v% -

= Qin

= Qin

17
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Unsteady Macroscopic Energy Balance

accumulation =

inpu

t — output

Q;n = Heat into the chosen macroscopic control volume

d
& (Usys + Ek,sys + Ep,sys) = —AH — AEk - AEp + Qin + VVs,on

@ Y.i Qin,i cOMes from a variety of sources:

* Thermal conduction: q;, = —kA%

* Convection heat xfer: q;,, = hA(T, — T)

* Radiation: ¢q;;, = SO-A(Tstrroundings - Ts‘tu“face)
* Electric current: q;, = I?RgjocL
* Chemical Reaction: qin = SyxnVsys

energy

S[=1

pages.mtu.edu/~fmorriso/cm310/IFMWebAppendixDMicroEBalanceMorrison.pdf

Incropera and DeWitt, 6t edition

time volume

18
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Lecture 7

Unsteady Macroscopic Energy Balance accumulation =

input — output

Q;n = Heat into the chosen macroscopic control volume

d
& (Usys + Ek,sys + Ep,sys) = —AH — AEk - AEp + Qin + VVs,on

‘ Qin = X Qin,i cOmMes from a variety of sources:

, . dT
Signs must mmsp ¢ Thermal conduction: q;, = —kAd—
match transfer x
from outside ™=+ Convection heat xfer: q;, = hA(T, — T)

(bulk fluid) to

o _ 4 4
inside (metal) ==+ Radiation: q;, = SGA(Tsurroundings - Tsurface)
* Electric current: q;, = I?RgjocL

* Chemical Reaction: qin = SyxnVsys
energy
S[=1

time volume

pages.mtu.edu/~fmorriso/cm310/IFMWebAppendixDMicroEBalanceMorrison.pdf

Incropera and DeWitt, 6t edition 9

© Faith A. Morrison, Michigan Tech U.

d
Unsteady Macroscopic Energy Balance T (Usys + Eksys + Epsys

= —AH - AEy, — AE, + Wi on

Qin = Xi qin,i comes from a variety of sources:

. dr
* Thermal conduction: q;, = _kAE

e.g. device held by bracket; a solid phase that extends through
boundaries of control volume

* Convection heat xfer: q;,, = hA(T, — T)

e.g. device dropped in stirred liquid; forced air stream flows past,
natural convection occurs outside system,; phase change at boundary

e L _ 4 _ 4

* Radiation: din = gdgA (Tsurroundings Tsurface) S-B constant:
e.g. device at high temp. exposed to a gas/vacuum; hot enough to o= 5-6‘; 6 X
produce nat. conv.=possibly hot enough for radiation 1078 oy

* Electric current: q;, = I’R,..L

e.qg. if electric current is flowing within the device/control volume/
system

Chemical Reaction: q;, = S;xnVsys

e.g. if a homogeneous reaction is taking place throughout the

device/ control volume/system "

© Faith A. Morrison, Michigan Tech U.
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Lecture 7 4/24/2019

accumulation =

Unsteady Macroscopic Energy Balance '
input — output

Q;n = Heat into the chosen macroscopic control volume

d
E (Usys + Ek,sys + Ep,sys) = —AH — AEk - AEp + Qin + VVs,on

Qin = X Qin,i cOmMes from a variety of sources:

X ¢ Thermal conduction: gq;;, = —kA%

v/« Convection heat xfer: Qin = hA(T, — T)

X « Radiation: ¢q;, = SO-A(Tstrroundings - Ts4urface)
X « Electric current: q;, = I?Rgj0cL
X * Chemical Reaction: qj, = SyxnVsys

energy

S[=1

pages.mtu.edu/~fmorriso/cm310/IFMWebAppendixDMicroEBalanceMorrison.pdf
Incropera and DeWitt, 6t edition

time volume

21
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Unsteady State Heat Transfer: Low Biot Number T =T(t)
Unsteady Macroscopic Energy
Balance Applied to cooling steel part:
Fluid temperature= T,
. dToys
stys 14 dt - Qin
\ J
The temperature
changes in the part The heat loss depends on
are due to the heat the heat-transfer
loss coefficient from the part to
the environment
Qi =Ah(T —T)
C, ~ €, for liquids, solids © Faith A. Morrison, Michigan Tech U.
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Lecture 7

Unsteady State Heat Transfer: Low Biot Number

T=T()

Unsteady Macroscopic Energy
Balance Applied to cooling steel part:

. dTyys
Playslo =g
\ J
The temperature Y

changes in the part
are due to the heat

Fluid temperature= T,

= Qin

The heat loss depends on
the heat-transfer

loss coefficient from the part to
the environment

Qi =Ah(T —T)

You solve.

23
© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer: Low Biot Number

T =T()

Unsteady Macroscopic Energy
Balance Applied to cooling steel part:

Fluid temperature=T,,

(Too — TO) a

hA
T =T) _ e_<pépv> ‘ Vigs =V

| ((TOO—T)>__< hA ) .
. (Too_TO) B pépV

24
© Faith A. Morrison, Michigan Tech U.

4/24/2019

12



Lecture 7

Unsteady State Heat Transfer: Low Biot Number T=T()

Unsteady Macroscopic Energy
Balance Applied to cooling steel part:

Fluid temperature= T,

hA
=1 _ i) -
(Too - TO)

(=)~ (ar)
NTe-To)) ™ " \0Gv

In dimensionless form? M)

25
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Unsteady State Heat Transfer: Low Biot Number T=T()

Unsteady Macroscopic Energy Balance
Applied to cooling steel part:

hA Fluid temperature= T,
To=T) _ e‘<—pépv> t
(Too - TO)

&= (0)6e) ()= o)« () =
—=-)—=])l=]|t= a = BiFo
pCpV k ,DCp 4 Dchar Dchar

__volume V  thermal
Depar = " area = A diffusivity

. . hD
Bi — Biot Number = —<har I
k pC,
: at
Fo — Fourier Number = — 26
char © Faith A. Morrison, Michigan Tech U.
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Lecture 7

Unsteady State Heat Transfer: Low Biot Number T=T()

Unsteady Macroscopic Energy Balance
Applied to cooling steel part:

Fluid temperature= T,

_ Tx—=T) _ _BiFo

=TT

Lumped parameter
analysis

WRF p279

__volume V  thermal

Lumped parameter analysis: Dcpar = - — = A diffusivity
. . hD k
Bi — Biot Number = —<ar = a=—
k pCy
. at
Fo — Fourier Number = — 7
Dchar © Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer

Summary

q A hD Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the
rate of heat delivery to the boundary (by
convection, h)

At high Bi, the surface temperature
equalsthe bulktempe o ho

When the temperature is uniform in the

body, we can do a macroscopic energy
balance to solve many problems of interest.
§ This is called a “lumped parameter analysis.”

the surface. dominates

Low Bi: nointernal

temperature variation = AT Tow Bi, the temperature is Low Bi:

. uniform in a finite body; heat .
Lumped parameter analysis wanste s limited by rate o heat high k,
(macroscopic energy balance, transfer to the surface (h). low h

unsteady); Bi = hV /kA < 0.1

28
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Lecture 7

2. Negligible
Surface Resistance

High Bi:
low k,
high h

q q hD Quantifies the tradeoffs between the rate of
Bi — Biot Number = e internal heat flux (by conduction, k) and the

rate of heat delivery to the boundary (by

convection, h)
At high Bi, the surface temperature High Bi:
equalsthe bulk temperature; heat
transfer is limited by conduction in low k’
high h

When the wall temperature and the bulk
pAwaN  temperature are equal, the microscopic
energy balance is easier to carry out
At low B, t|

uniform in (temperature boundary conditions).
transfer is limited by rate of heat
transfer to the surface (h).

At high Bi, the surface temperature

equals the bulk temperature; heat

transfer is limited by conduction in
the body.

29
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Negligible Surface
Resistance

High Bi:
low k,
high h

q q hD Quantifies the tradeoffs between the rate of
Bi — Biot Number = e internal heat flux (by conduction, k) and the

rate of heat delivery to the boundary (by

convection, h)
At high Bi, the surface temperature High Bi:
equalsthe bulk temperature; heat
transfer is limited by conduction in low k’
high h

At moderatgRizha acfaci o Ri.
Restly  When the wall temperature and the bulk

temperature are equal, the microscopic
energy balance is easier to carry out
(temperature boundary conditions).

transfer is limited by rate of heat
transfer to the surface (h).

At high Bi, the surface temperature

equals the bulk temperature; heat

transfer is limited by conduction in
the body.

lim [Ty — Twaul =0
h—o

= Twau = Thuik

We have done many
examples with
constant temperature
boundary conditions.

30
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Lecture 7

Unsteadv State Heat Transfer

Summary

High Bi: dominated by internal
temperature variation = solve
with temperature boundary
conditions; Bi = hDpqr/k
(Dchar varies with the problem)

q 0 hD Quantifies the tradeoffs between the rate of
Bi — Biot Number = e internal heat flux (by conduction, k) and the

rate of heat delivery to the boundary (by
convection, h)

At high Bi, the surface temperature High Bi:
equalsthe bulk temperature; heat low k,

transfer is limited by conduction in

When the wall temperature and the bulk
pAwaN  temperature are equal, the microscopic

energy balance is easier to carry out
At low B, t|

uniform in (temperature boundary conditions).
transfer is limited by rate of heat
transfer to the surface (h).

Low Bi: nointernal
temperature variation =
Lumped parameter analysis
(macroscopic energy balance,
unsteady); Bi = hV /kA < 0.1

31
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3. No Mechanism
Dominates

Moderate Bi:
nether process
dominates

- . hD Quantifies the tradeoffs between the rate of
Bi — Biot Number = T internal heat flux (by conduction, k) and the

rate of heat delivery to the boundary (by
convection, h)

When both processes affect the outcomes, the
At
ec

full solution may be necessary; for uniform

tri starting temperatures there are charts.
the poay. | mgn ‘

At moderate Bi, heat transfer is Moderate Bi:
affected by both conductionin the h

body and the rate of heat transfer to nether process
the surface. dominates

At low Bi, the temperature s .
uniform in a finite body; heat Low Bi:
transfer is limited by rate of heat high k,
transfer to the surface (h).

low h

At moderate Bi, heat transfer is
affected by both conduction in the
body and the rate of heat transfer to
the surface.

32
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Lecture 7

3. No Mechanism

.
Dom | nates When both processes affect the outcomes, the
A full solution may be necessary; for uniform
tri starting temperatures there are charts.
the voay. L
Moderate Bi:
. At moderate Bi, heat transfer is Moderate Bi:
affected by both conductionin the nether process
nether process body and the rate of heat transfer to p
the surface. dominates
At low Bi, the temperatureis .
dom I nates uniform in a finite body; heat Low Bi:
transfer is limited by rate of heat high k,
transfer to the surface (h).
low h

At moderate Bi, heat transfer is
affected by both conduction in the
body and the rate of heat transfer to This is the most
the surface.

complicated set of
cases.

33
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Unsteady State Heat Transfer: Intermediate Biot Number

No Mechanism
-

Example: Measure the convective heat-transfer coefficient for heat
being transferred between a fluid and a sphere.

* We need to devise an experiment

 Both internal (k) and external (h)
resistances are important

T=T(rt)

» We need to match measurable
quantities with calculable
quantities

* = Microscopic Energy Balance

* = Uncertainty considerations
Fluid bulk

temperature= Ty,

34
© Faith A. Morrison, Michigan Tech U.
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Lecture 7

Unsteady State Heat Transfer: Intermediate Biot Number

D

Example: Measure the convective heat-transfer coefficient for heat
being transferred between a fluid and a sphere.

* We need to devise an experiment
 Both internal (k) and external (h)

resistances are important

* We need to match measurable

quantities with calculable
quantities

* = Microscopic Energy Balance

* =Uncertainty considerations

T=T(rt)

Fluid bulk
temperature= Ty,

35
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No Mechanism

Thinking
* Create an unsteady state
heat transfer situation...
* Measure...?
* Compare...?
* Consider uncertainty in
measurements...?

Unsteady State Heat Transfer: Intermediate Biot Number

Example: Measurethe convective heat-transfercoefficient for heat
being transferred between a fluid and a sphere

+ Weneed o devise an expenment
« Both internal (k) and extemal (h)

« We need to match measurable

« = Microscopic Energy Balance

T =T(t)

resistances are important

quantities with calculable
quantities

* = Uncertainty considerations

Fluid bulk

' temperature= T,

You try.

36
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Lecture 7

Unsteady State Heat Transfer: Intermediate Biot Number

Measuretne conwcive heat-ransier cosficent br heat
being rans krecbetueena kid anda sphere.

- Weneed to devse an eperment

Experiment: Measure T(t) at the center of a sphere (r = 0): e e e
Initially: Suddenly: ST
t>t,
T=T(rt)=T(0,t)

y -

Unsteady state
heat transfer
takes place.

37
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Unsteady State Heat Transfer: Intermediate Biot Number

Experiment: Measure T(t) at the center of a sphere (r = 0):

Initially:

A\

=~ of
A
~ ot

es T(t) at
the center of the
sphere

Suddenly:

t>t,

T=T(rt)=T(0,t)

y -

Excel:

t(s) |T(C)

9.50E-02 7.46E+00
2.11E-01 7.44E+00
3.09E-01 7.44E+00
4.09E-01 7.57E+00
5.24E-01 7.46E+00
6.23E-01 7.49E+00
7.39E-01 7.53E+00
8.37E-01 7.46E+00
9.54E-01 7.59E+00
1.05E+00 7.53E+00
1.15E+00 7.58E+00
1.27E+00 7.48E+00
1.37E+00 7.57E+00

38
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Lecture 7

Unsteady State Heat Transfer: Intermediate Biot Number

Experiment: Measure T (t) at the center of a sphere (rr = 0):
Initially: Suddenly:
t<ty t=tg
T=T, T =T(r,t) =T(0,t)
T-couple Excel:
measures T(t) at
the center ofthe 0,
sphere ) |TCC)
9.50€-02 7.46E400
2.11E-01 7.44E400
3.09€-01 7.44E400
4.09e-01 7.57E400
5.24g-01 7.46E400
. 6.23e-01 7.496400
Modeling =n (S
8.37e-01 7.46E400
9.54E-01 7.59€400
1056400 7.53E400
What are the heary || e
. 137E+00 7.57E400
modeling
equations?
. . L 39
© Faith A. Morrison, Michigan Tech U.
Unsteady State Heat Transer: Biot Number nitia Suddenly:

Example: Measure the convective heat-transfer coefficient for heat t
being transferred between a fluid and a sphere ~— T

- We need to devise an experiment

- Bothinternal (k) and external (h)
resistances are important

- We need to match measurabie
quantities with calculable
quantities.

i
- = Microscopic Energy Balance @
« =Uncertainty considerations

Fluid bulk

’ temperature= T, Y

T =T(r,t)

Can we meet our objective?

To determine h:

* Measure center-point temperature as a function of time

* Compare with model predictions, accounting for
uncertainty in measurements

* Deduce h

40
© Faith A. Morrison, Michigan Tech U.
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Lecture 7

Unsteady State Heat Transfer: Intermediate Biot Number

Experiment: Measure T (t) at the center of a sphere (rr = 0):
Initially: Suddenly:

t<ty t=tg
T=T, T=TG,t) =T(0t)

T-couple Excel:
measures T(t) at
the center ofthe t(s T(°C
e ) |TCC)
9.50€-02 7.46E400
2.11E-01 7.44E400
3.09€-01 7.44E400
4.09e-01 7.57E400
5.24g-01 7.46E400
. 6.23e-01 7.496400
Modelin i |
8.37e-01 7.46E400
9.54E-01 7.59€400
1056400 7.53E400
1 15E400 7.58£400
What are the 127E400 | 7.48£400
. 1.37E400 7.57E400
modeling
equations?

You ftry.

a1
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Unsteady State Heat Transfer: Intermediate Biot Number

o (0T OT Wil s G\ (10 (L0F\ 1 0 ory 1
Pp ot U ar r 00 ' rsin0op) r2 or " or 2 sin @ 90 s 00 r2sin? 0 dg?

Microscopic Energy Balance

Microscopic energy balance, constant thermal conductivity; Gibbs notation

pCy (% +u- W) =kVAT + S
2

Microscopic energy balance, constant thermal conductivity; Cartesian coordinates

G (T2 2 IT) L (PO P s
Por o T T ey T8 ) T\ 022 Ty T a2 ) TF

Microscopic energy balance, constant thermal conductivity; cylindrical coordinates

é (@+I,@+E@ﬂ,£>,k lﬁ(r£)+iﬁﬂ+@2T +5
Poo\ar T T oe 0z ) T \rar Uor ) Ti2oez T o2 ) T

Microscopic energy balance, constant thermal conductivity; spherical coordinates

0’7

)+s

www.chem.mtu.edu/~fmorriso/cm310/energy2013.pdf

42
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Lecture 7

Unsteady State Heat Transfer to a Sphere

Microscopic energy balance in the sphere: | &0

a

Indiay Suddeny.

oT 19 (,0T
Jat 267‘ " or e Unsteady

* Solid (v =0)
*  6,¢ symmetry

. * No current, no rxn
Boundary conditions:

q aT
r =R, Zr:_kazh(T(r)_Tbulk) t>0
qr
= —=0
r=20, 1 vt
Initial condition:
t=0, T = Tiitiat vr

© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer to a Sphere

Microscopic energy balance in the sphere: | &0

a

Indiay Suddeny.

oT 19 (,0T
Jat 267‘ " or e Unsteady

* Solid (v =0)
* 6,¢ symmetry

. * No current, no rxn
Boundary conditions:

q aT
r =R, Zr:_kazh(T(r)_Tbulk) t>0

r=0, —=0

t=0, T = Tiitiat

Initial condition:

(“v” means “for all”)

© Faith A. Morrison, Michigan Tech U.
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Lecture 7

Unsteady State Heat Transfer to a Sphere

Indiay Suddeny.

Microscopic energy balance in the sphere:

*Now,

LR

r=20,

Initial condition:

t=0,

I
S

kX1 0 ( 0T
= (N2 m
pCy\p2or\’  or

T = Tiitiat

Unsteady
Solid (v = M

Solve
.

(“v” means “for all”)

45

© Faith A. Morrison, Michigan Tech U.

Indiay Suddeny.

Unsteady State H

Microscopic ener:;

Boundary conditio

r=R,

r=20,

Initial condition:

t=0,

Conduction
of Heat 1n
Solids

SECOND EDITION

AT THE CLARENDON PRESS

H.S. CARSLAW and
J. C. JAEGER

Unsteady

Solid (v = 0)

6, ¢ symmetry

No current, no rxn

t>0

vt

Vr

46

© Faith A. Morrison, Michigan Tech U.
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Lecture 7

Unsteady State Heat Transfer to a Sphere

Indiay Suddeny.

H T(r,t)—T,
Solution: £(r,t) = 0 = Touik
Tinitial - Tbulk

hR at
Bi=— Fo=—
k
Bi = Biot number;

Fo = Fourier number
(o]

T-=T, - Z Fo(i,R)? (ST Ay \ (sinRAy, (RA,)? + (Bi — 1)?
5= T,—T, 'L° T RA, (RA,)? + Bi(Bi — 1)

n=1

where the eigenvalues 4,, satisfy this equation:

(R1) = RA
f " tanRA

Characteristic Equation

+Bi—1=0

(Carslaw and Yeager, 1959, eqn 10, p238)
Incropera and DeWitt, 7t ed, eqn 5.51a, p303

47
© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer to a Sphere

Indiay Suddeny.

H T(r,t)—T,
Solution: £(r,t) = 0O = Touik
Tinitial - Tbulk

Depends on
material (a =
k/pfp), and heat
transfer processes at
surface (h)

B1§7

Bi = Biot number;

Fo = Fourier number
(o]

£= T-T, 2Bi Z o=FoUnR)? (sin rln> (sin R/ln> < (RA,)? + (Bi — 1)? >

Ti — Tb Tﬂn

n=1

where the eigenvalues 4,, satisfy this equation:

(R1) = RA
f " tanRA

Characteristic Equation

+Bi—1=0

(Carslaw and Yeager, 1959, eqn 10, p238)
Incropera and DeWitt, 7t ed, eqn 5.51a, p303

R1,

(RA,)? + Bi(Bi — 1)

We're interested in
T(r,t) at the center of
the sphere, r = 0.

48
© Faith A. Morrison, Michigan Tech U.
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Lecture 7

Suddeny.

Unsteady State Heat Transfer to a Sphere

What does this

£(0,Fo) = =T _ ZBii e—Fo(AnR)? sinRA,\ [ (R2,)* + (Bi — 1)?
’ =Ty 1 R, J\(R4,)? + Bi(Bi—1)
n=

where the eigenvalues A,, satisfy this equation

RA . _
f(RA) =tanR/1+Bl_1 =0
Characteristic Equation
Let’s plot it to find

out. (Excel)

look like? :

49
© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer to a Sphere

hR =
; Bi=— ® L]
Eigenvalues are the roots of the k <
characteristic equation -
Bi = 1.00
30 ] %
y x Characteristic Equation:
4 X X x
— 20 1 X _ .
| 1 " XX « % f(R/l)_tanR/1+Bl_1
— E X X
T : X X X
< 1 X X 3 %
~] =R %&/ %% >% 3
g o i&%% ' * The 4, are the roots (zero
I ! % o % £15 crossings) of the
~ 1 X X X >><< >><< om0 "
= a0 X X X X X characteristic equation
— ] % X X X X .
< x x X * They depend on Biot
X .
1 x x x number Bi
-20 X x
X % "
-30 1
RA
50
© Faith A. Morrison, Michigan Tech U.
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Lecture 7

Unsteady State Heat Transfer to a Sphere

4/24/2019

Eigenvalues are the roots of the

-30

welf | |
” & =
characteristic equation e
Bi = 1.00
30 ] <
% o x Characteristic Equation:
' i . RA
— 20 x x _ .
% x X X fRY) = tan RA @ 1
X

X 5 X

* The A, are the roots (zero
crossings) of the
characteristic equation

* They depend on Biot

number Bi

RA
© Faith A. Morrison, Michigan Tesclh u.
Let’s plot it to find out: Bi = hR -l S
what are the variables? Tk ~ R? s
-
Solution: -
£(0, Fo) = T=Ty _ 0 Z J—Fonr? (51 RAn (RA,)? + (Bi — 1)?
’ T,— T, . R, J\(RA4,)? + Bi(Bi— 1)
n=
Exponential decay with Fo (scaled time)
T—-T, N 2 bunch of terms
= = 72Bi —(Fo)(AnR)
§(0,Fo) T, — Tp 2 Z € (that vary with Bi and An(Bi))
n=
A, (Bi) varies only with Bi and n:
RA, If we choose a fixed Bi,
AL TBIm1=0

then & only varies with Fo
Characteristic Equation

52
© Faith A. Morrison, Michigan Tech U.
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Lecture 7

If we choose a fixed Bi, Bi = h_R Fo = at P e
then & only varies with Fo Tk ~ R? S
For a fixed Bi:
T—T - sinRA,\ [ (RA,)? + (Bi — 1)2
£(0,Fo) = ? = 2Bi Z e~FoUnR)? n) (B4) (_ _ )
T, — Ty : R, (R2,)? + Bi(Bi— 1)
n=
Exponential decay with Fo (scaled time)
T-T, = 2 bunch of terms
= = i —(Fo)(AnR)
§(0, Fo) T, —T, 2Bi Z € (that vary with Bi and /ln(Bi))
n=1
N J
Y
An infinite sum of decaying exponentials
* whose argument is Fourier number scaled by
something that depends on Biot number and n
* with a prefactor that also depends on Biot number
andn
© Faith A. Morrison, Michigan Te5c3h u.
If we choose a fixed Bi, . _hR _at T
then & only varies with Fo = Fo = R2 i
ol
For a fixed Bi: 96

£(0,Fo) = Z C"ne—lﬁRzFo
n=1

An infinite sum of decaying exponentials

+ (,depends on n through 1,,
* A, are calculated (numerically)
from the roots of this equation:

FRA) = +Bi—1=0

tan RA

Let’s plot £(0, Fo)

54
© Faith A. Morrison, Michigan Tech U.

4/24/2019

27



Lecture 7

Unsteady State Heat Transfer to a Sphere

Solution:

(10

first term only

sum of 9 terms

Fo=0.2

S

—nine
terms

—first
term

1 B ——

T(0,t) — Thuk
Tinitiar — Thuik
o
N

0.01

£(0,Fo)

0.001
0.0

0.2

0.6 0.8 1.0

55
© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer to a Sphere

Solution:

(10

first term only

sum of 9 terms

Fo = 0.2

S

X
—nine
terms
—first
term

:
|

* Plotted log-linear, the

p— solution is linear for
Fo > 0.2

* The slope exhibited at
high Fo depends only
on Biot number

= =
2l 8
S
1|1
ol 3 0.1
= =
SAN-
=
1]
~ 001
o
F
=)
—
SV
0.001
0.0

0.2

q hR
Bi = T
1 k
Bi ~ nr
0.6 0.8 1.0
at
R?

56
© Faith A. Morrison, Michigan Tech U.
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4/24/2019

Unsteady State Heat Transfer to a Sphere

Solution:

e
J

(10

first term only Fo=0.2

sum of 9 terms

1o
£2
Mo
—nine
terms
—first
term

:
|

T

\

p—— Fo > 0.2

* Plotted log-linear, the
solution is linear for

* The slope exhibited at

T(0,t) — Thuik
Tinitial — Touik
o
N

k J .
AVa high Fo depends only
I Above Fo = 0.2, there is no on Biot number
< 001 1 difference between using just one —— Bi= "R
:; termn = 1 and all the terms of Tk
N the infinite sum! 1 _ k
Bi ~ nr
0.001 ! ! !
0.0 0.2 0.4 0.6 0.8 1.0
_at
Fo = ﬁ

57
© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat What are all those higher order terms
Transfer to a Sphere . . q
contributing to the solution?
I Fo = 0.2
L fixed Bi
1.2 - term n=1 B — T_"\'_; ——second term .
@ . third ¢ = fixed h, R, k
ol J o _— erm
§ E 1.0 l\ t 49 ——fourth term
E" [T / \ ——fifth term
0.8 sixth term
’4:‘ E Q \ seventh term )
S| E 067 (sumof9terms) eighth term 2
~ I~ \ ninth term _'?Cﬁ
I 0.4 1 ‘-
i~ s
£ 02 : =
8 K term n=3 5
M 0.0 —— T —at’ B
( 0.1 0.2 03 04 Fo=— S
-0.2 RZ z
(e}
0.4 =
<
S
0.6 K
58
©
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Lecture 7

Unsteady State Heat Transfer to a Sphere

Fo = 0.2 I, 2l =
14 —— =Biot numbers ML
—first term
12 T For Fo > 0.2, the higher-order
10 terms make no contribution to
' ] ~ ‘ the solution
x| X 0.8 sixth term
3| 3
S seventh term
SIS 0.6 result | eighth term
1 (9 terms) !
G ,§ 04 ninth term
= -
S| E
~ |2 0.2
N
i~ 0.0 - —— ‘ - :
2 ()/ o1 02 03 0F po=X
3 _ | T = p2
S 0.2 R
M =3
0.4 47
$ <>
06 I e KL
Fo = 0.2

59
© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer to a Sphere

Fo = 0.2 I, 2l -8

=Biot numbers

1.4 Mo
—first term
1.2 T For Fo > 0.2, the higher-order
10 m / terms make no contribution to
A Z : ‘ the solution
0.8 ) | sixth term
result seventh term
0.6 (9 terms) | eighth term
o ]
0.4 The higher-order terms are

02 ,/\\ working to get the solution right
K for shorter and shorter times
i (low Fo)

T(0,8) — Thui
Tlnmal - Tbulk

£(0,Fo)

0.
()/ 01 0.2 03 0l4
« ‘ 1

0.4 ks
\/ $ e

Fo=10.2

60
© Faith A. Morrison, Michigan Tech U.
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Unsteady State Heat Transfer to a Sphere -
= | Q | oQ 3
14 +— =Biot numbers ML
—first term
1.2 T For Fo > 0.2, the higher-order
10 m / terms make no contribution to
\ Z : ‘ the solution
x| X 0.8 sixth term
g 8 th t
SIS 06 reSUIt S:V::h e
11 (9 terms) '8
~ 1
S| g o4 The higher-order terms are
el = working to get the solution right
We already know the short- for shorter and shorter times
time behavior, T is constant (low Fo)
at the initial temp; we thus 0.2 03 0,4
concentrate on long times to ' ' g 51
fit the data (and therefore o | [
need only one term of the YA
summation) —
Fo =0.2
61
© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer to a Sphere
_hR
. Bi=— @
Eigenvalues are the roots of the k
characteristic equation
Bi = 1.00
30 ] X
% o X Characteristic Equation:
] x x
— 20 « « « RA
RA) = +Bi)- 1
@ ] x X % % fRA) tan RA @
10 - XX X % >><<
< ] % >§($ . q
b %%E % % * The 1, eigenvalue is
8 o ‘
i ] % ’;%( 10 % %15 the one that
g L % 3 X % % dominates at long
= T T time
X X
20 ] * x B * The value of 1,
1 X .
] x x depends on Biot
30 number Bi
RA
62
© Faith A. Morrison, Michigan Tech U.
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Unsteady State Heat Transfer to a Sphere - m—
@ N °Q 1
first term only Fo = 0.2 ! ——nine
i terms
sum of 9 terms —first
term
1 / —— i -

o2 \ * Plotted log-linear, the
5 S " ~— solution is linear for
| 3 0.1 * The slope exhibited at
S § high Fo depends only
il on Biot number

1]
~ 001 e
o ] = —
= Bi = .
(e}
vt 1_k
0.001 Bl nr
0.0 0.2 0.4 0.6 0.8 1.0
_at
Fo = ﬁ
63
© Faith A. Morrison, Michigan Tech U.
Unsteady State Heat Transfer to a Sphere hR
. Bi=—
No Mechanism
Dominates s
Summary °=%Re
*For a fixed Bi the results are only a function of Fo.
*Solution is an infinite sum of terms. So, actually, it

turns out all we

*Each term corresponds to one eigenvalue, 4, p 0
need are those

*The first term n = 1 (1,) is the dominant term

slopes as a
*The n > 1 terms alternate in sign (positive and negative) function of Biot
*Higher terms are “fixing” the short time behavior number.

*At fixed Biot number, the time-dependence is an
exponential decay (for Fo > 0.2); this is linear on a log-
linear plot versus Fo

Question: How do various values of Biot
number affect the heat transfer that occurs?

© Faith A. Morrison, Michigan Tech U.
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Unsteady State Heat Transfer to a Sphere

are the roots of the

characteristic equation

w Bi = 1.00
Characteristic Equation:
hR o FRD) = 1
Bi = T @ . 3 ] tanR/l
= E % § *The 4, eigenvalue is
Fooe o i the one that
2 . % % § dominates at long
14.0 g R o
20 : ) x L * The value of 4,
xIX XX XX ) depends on Biot
12.0 x T 0 . number Bi
R
XX XXX XX XXX XX XX XXXX /14'
10.0 }
\
I3
§ 8.0 Az
l * The 4, are the roots of the
6.0 gunEEEERES characteristic equation
ot I Ay high Bi is * They depend on Biot
]
4.0'""'“"'“"l | low k, high h number Bi
4»“"4"” 0 Atllov§/ (Bi<0.1) and.hlgh
20 [ towBis high S 1., LU Bi (Bi > 10) the solution
' k, low h ‘."' 1 becomes independent of Bi
*
00 dalaall} oot ‘
0001 001 01 1 10 100 1000
Biot Number .
© Faith A. Morrison, Michigan Tech U.
Unsteady State Heat Transfer to a Sphere .
! P Low Bi:
high k,
pi= low h
Tk
14.0 \
\ AN Jf x| Characteristic Equation:
1270 1)y 1 Rln .
XX XX < x[3¢[k >\l x[X[5% XX 4 —+Bl—1=0
tanRA,
0.0 i
\
8.0 Az
\ \ * The A, are the roots of the
6.0 At low Bi, the temperature is characteristic equation
uniform in the sphere; heat * They depend on Biot
ao |mmmmam=asa==Fl transfer is limited by rate of heat ~ number Bi
transfer to the surface (h). * Atlow (Bi < 0.1) and high
o 1 low Biis high 4T 1. L Bi (Bi > 10) the solution
\ k, low h JIbN 1 becomes independent of Bi
A
0.0 A...‘lo"’) | |
0. 001 JSo1 1 10 100 1000

Biot Number

66
© Faith A. Morrison, Michigan Tech U.
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Unsteady State Heat Transfer to a Sphere

RA,

At high Bi, the surface
temperature equals the bulk
temperature; heat transfer is

High Bi: |
low k, pe

high h i

limited by conduction in the \
sphere. / XXJFXXXX Characteristic Equation:
12.0 e
X A R/ln .
s X3 (¢ 4k < e ok < fEE 4 —4+Bi—1=0
100 | tan R,
: \
\
8.0 Az
l * The A, are the roots of the
6.0 gunEEEERES characteristic equation
) _-" Ay high Bi is * They depend on Biot
4.0'""'“"'“"l | low k, high h number Bi
w“‘#“" * At low (Bi < 0.1) and high
20 |[lowBiis high ot 1. LI Bi (Bi > 10) the solution
' k, low h ‘."' \ 1 becomes independent of Bi
L o® ‘
0.0 AQQO‘LQ"" ‘ /
0001 001 01 1 1 100 /1000

Biot Number

67
© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer to a Sphere

RA,

At moderate Bi, heat transfer is affected by
both conduction in the sphere and the rate of

heat transfer to the surface.

14.0 /\

Moderate Bi:
nether process

dominates

12.0 /
XX X|X ></><><Z
10.0

8.0

6.0

Characteristic Equation:

RA, .
———+Bi—1=0
tan RA,

* The A, are the roots of the
characteristic equation

* They depend on Biot
number Bi

\ amne® high Bi is
40 FEENENNREEEEEE | 77”t7 |0Wk,h|ghh

\ ,"‘ PRIt AR AR
2.0 H lowBiis high 2 -+ Ag

k, low h ‘.'
00
0.0 A...‘io"\‘ !
0.001 0.01 0. 1 10 100 1000
i umber

* At low (Bi < 0.1) and high
Bi (Bi > 10) the solution
becomes independent of Bi

68
© Faith A. Morrison, Michigan Tech U.
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Lecture 7

What were we trying to do?

Example: Measure the convective heat-transfer coefficient for heat
being transferred between a fluid and a sphere.

Where are we in the
process?

v" We have the model

* We need the measured center-point
temperature as a function of time

* We need to compare the two to

Flid bulk
temperature=T,,

Can we meet our objective?

To determine h:
« Measure center-point temperature as a function of time

* CompareQith model predictions, accounting for

uncertainty in measurements

deduce h. * Deduceh
69
© Faith A. Morrison, Michigan Tech U.
. at Fee
The solution o ., Fo = = ~
of the model;  $(0-F0) = Z Coe ™R ==
n=1 . _hR ba oq
Bi = T
Use to interpret data. =

For a fixed Bi, Fo > 0. 2:

£(0,Fo) ~ Cre~iR*ro

. From the model solution...

1.0 | Characteristic Equation:

= +Bi—1=0
In£(0, Fo) = In(C;) — A2R%Fo 100 tan RA;
| < oo LTI TR LTS, T
From experiments... l
7 7 6.0 guENEERE
—Ib o
P|Ot ln§=ln VS FO T T /‘12
T; —T, 4.0 L
! t99 ey
I ot
X ’0 l S
=> slope = —A2R? —'---50-"""":'.""' !
00 4eslealpsetl?
0.001 0.01 0.1 ! 1 10 100 1000
Blot Number
1
= Once we know Bi, we can Bi = h_R
calculate h from Bi Tk 20

© Faith A. Morrison, Michigan Tech U.
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Lecture 7

. k=1092L
Experimental Data K
R =0.0127m
From experiments...
= Tb 1+
: Iné=1
Plot: In¢ H(Ti _Tb) vs Fo e
—limit of detection
‘ => slope = —AZR? —fit
01 +
~| X F
33
=
[N
o 3 0.01 +
S|z
Slope= —0.74656 & I&
1R =+0.74656 = 0.864039 0.001 +
Characteristic Equation:
RA4 . x
+Bi—1=0 0.0001 : :
tan R, 0 5 10 15
at
R W Fo = ﬁ
= Bi=—=10.2621919,h = 2300 —=
k meK
71
© Faith A. Morrison, Michigan Tech U.
Recap: Measure convective heat-transfer
coefficienl%ror heat being transferred
What was the between a fluid and a sphere.
process?

1. Create the scenario
and the model of the
scenario

mﬁ?-»<25}§7

4. Calculate h.

C

Characteristic Equation:

R4 iBi—1=0
tan RA, ! -

To determine h:

* Deduce h

Can we meet our objective?

* Measure center-point temperature as a function of time
« Compare with model predictions, accounting for

uncertainty in measurement ts

°
2

T(0,) = Touwk
Tinitiat = Touik

0.001

0.0001

L slope = —A%2R?

72
© Faith A. Morrison, Michigan Tech U.

2.Take data
of center-
point T(t)

.Plot the datain a

way that we can
match it to the
model to deduce Bi

4/24/2019
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Lecture 7

Summary

High Bi: dominated by internal
temperature variation = solve
with temperature boundary
conditions; Bi = hDpqr/k
(D¢par varies with the problem)

Moderate Bi: The limits for
“moderate” are 0.1 < Bi <
10. When Bi is in this range, a
more complete solution may
be necessary; Bi = hD 4 /k.
(Dchar varies with the
problem)

Low Bi: nointernal
temperature variation =
Lumped parameter analysis
(macroscopic energy balance,
unsteady); Bi = hV /kA < 0.1

Unsteady State Heat Transfer

. . hD Quantifies the tradeoffs between the rate of
internal heat flux (by conduction, k) and the
rate of heat delivery to the boundary (by
convection, h)

At high Bi, the surface temperature
equalsthe bulk temperature; heat
transfer is limited by conduction in

the bod

At moderate Bi, heat transfer is Moderate Bi:
affected by both conductionin the th

body and the rate of heat transfer to nether process
the surface. dominates

t low Bi, the temperature is

uni 4.3 finite body; heat Low Bi;
transfer is limited by ra' Igh k,

transfer to the surface (h). | h
ow

73
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Summary

High Bi: dominated by internal
temperature variation = solve
with temperature boundary
conditions; Bi = hDpqr/k
(D¢par varies with the problem)

Moderate Bi: The limits for
“moderate” are 0.1 < Bi <
10. When Bi is in this range, a
more complete solution may
be necessary; Bi = hD 4, /k.
(Dchar varies with the
problem)

Low Bi: nointernal
temperature variation =
Lumped parameter analysis
(macroscopic energy balance,
unsteady); Bi = hV /kA < 0.1

Unsteady State Heat Transfer

. . hD Quantifies the tradeoffs between the rate of
Bi— Biot Number = T internal heat flux (by conduction, k) and the

rate of heat delivery to the boundary (by

convection, h)

At high Bi, the surface temperature High Bi:
equals the bulk temperature; heat
transfer is limited by conduction in low k’
the body. hlgh h
At moderate Bi, heat transfer is Moderate Bi:
affected by both conductionin the th
body and the rate of heat transfer to nether process
the surface. dominates
At low Bi, the temperature is N

¢ Low Bi:

uniform in a finite body; heat
transfer is limited by rate of heat h|gh k,
transfer to the surface (h).

low h

@acteristic lengthscale

We use D_p,r = V /A only for the lumped parameter
analysis. We use different D.pq; in other cases.

74
© Faith A. Morrison, Michigan Tech U.
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Unsteady State Heat Transfer to a Sphere

. . P hRsphere e
First Eigenvalue, Heat Transfer to Sphere 1= k {
10 + M
E + Incropera and DeWitt
R/’{l E x FAM calculation
— model fit
Dominated
Negligible
1t byexternal gls
— . external —»
r resistance . .
L Neither resistance .
(k > o0) i S
- mechanism (h = ) 5
Bi<0.1 dominat @
ominates Bi>10 o
. ©
0.1 + 0.1 <Bi<10 i
; S
¢ =
L c
I 2
I 5
001 Y Y S UV 3
0.001 0.01 0.1 1 10 100 1000 <
Bi g
(@]
Fit by Faith A. Morrison 31 Jan 2019 75
Unsteady State Heat Transfer to a Sphere
@
If we know RA4,, and we’re )
determining Bi (i.e. h), we use
the characteristic equation o )
directly. Characteristic Equation:
RA, .
. ——4+Bi—1=0
If we know h (and hence, Bi) we tan R4,
need to find ;R from an
iterative solution of the
characteristic equation, ) Unsteady State Heat Transfer to a Sphere \
Rgnere | & | ¥
First Eigenvalue, Heat Transfer to Sphere Bi=—— %

Or use a table or
correlation for the
calculated roots.

Dominated
by external
resistance
(k = o)
Bi<0.1

Neither
mechanism
dominates

0.1 <Bi<10

001 +
0.001 001 01 1

© Faith A. Morri
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Unsteady State Heat Transfer to a Sphere

@
First Eigenvalue, Heat Transfer to Sphere
10 + -
E + Incropera and DeWitt
R/’{l [ x FAM calculation
[ ——modelfit
T
RL = g1(a;Bi) g2(azBi)?2
» T (1 (aBDPY) T (1 + (apBD)P?)
01 + 1 2
E g 1131 2.066
i a 3.684 0.684
H b 0.539 1.035
0.01 -y } } } 5 |
0.001 0.01 0.1 1 10 100 1000
Bi

(matches true

Fit by Faith A. Morrison 1/31/2019 o
within 1.2%)

77
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Unsteady State Heat Transfer to a Sphere

First Eigenvalue, Heat Transfer to Sphere

+ Incropera and DeWitt

Rll X FAM calculation

— model fit

(matches true

@
_ 91(a;Bi)” g2(a;Bi)??
" (1 + (ayBi)PL) T (1 + (@,Bi)b2)
1 2

g 1131 2.066
a 3.684 0.684
b 0.539 1.035

01+ within 1.2%)
Fit by Faith A. Morrison 1/31/2019
0.01 Ay t t t t
0.001 0.01 0.1 1 10 100

Bi
For a fixed Bi, Fo > 0.2:

Ly
1000

E(O, FO) = Cle—l%RzFO

B 4[sin(A4R) — A1 R cos(A1R)]

=C =

2A4R —sin244R
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Unsteady State Heat Transfer to a Sphere

Reasonable estimates of the sphere ® LLE
(slab, cylinder) solutions may also be
obtained from the “Heisler Charts”

Heisler charts @racteristic Ie@

See: For the Heisler chart for spheres, we use Dyq = R. Note this
is not the same as what is used in lumped parameter analysis

Geankoplis
Wikipedia

Welty, Rorrer, and Foster
(appendix F)

— thhar
k

Bi

Dehar = %1 = R (sphere)
R (cylinder)
B (slab of thickness 2B)

© Faith A. Morrison, Michigan Tech U.

From Geankpolis, 4" edition, page 374

Literature solutions to Unsteady State Heat Transfer to a Sphere
Heisler charts (Geankoplis; see also Wikipedia)
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FIGURE 5.3-10.  Chart for determining the temperature at the center of a sphere for unsteady-staie
heat conduction. [From H. P. Heisler, Trans. A.SM.E. 69, 227 (1947). With

permission.] 80
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. . >
Literature solutions to Unsteady State Heat Transfer to a Sphere <
Heisler charts (Geankoplis; see also Wikipedia) B e
— — - - - ~ B &
T j T 2
'- A 5
= | sohere | =
N L | c
R o
‘ N | £
v T . . [ = 5 ;
WA AN The Heisler Chart is a catalog of 3 |
it VAL . — e o=
sl all the Y, = £(t) long-time 5 K
STV Y shapes for various values of [N\ | ©
11\ \ \ |
0.01 1Y h\ . . hR 1 k,..\ L
0.008 kY » Biot number Bi = — = —. CORR
k m AAYATAN
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FIGURE 5.3-10. Chart for determining the temperature ai tie center of a sphere for unsteady-siate
heat conduction. [From H. P. Heisler, Trans. A.SM.E., 69, 227 (1947). With
permission.] 81

From Geankpolis, 4 edition, page 374

Literature solutions to Unsteady State Heat Transfer to a Sphere

Heisler charts (Geankoplis; see also Wikipedia)
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Lecture 7

Note also: think of it as
4 separate graphs

Heisler charts (Geankoplis; see also Wikipedia)
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CM3120 Transport/Unit Operations 2

Unsteady State Heat Transfer

More complex Systems:
Unsteady State Heat Tra nsfer
(Analytical Solutions)

Summary

* Unsteady state heat transfer is very common
in the chemical process industries

Temperature distributions depend strongly on T
what initiates the heat transfer (usually
something at the boundary)

,,,,,,,,,,,,,,,,,,,,

left !
«-decreases !
ith time

* Internal resistance (1/k) can be limiting,
irrelevant, or one among many resistances Ty - N

* External resistance (1/h) can be limiting
irrelevant, or one among many resistances

x
Alright

» Dimensional analysis, once again, organizes alsodecreases g - S
. . . . i Ty
the impacts of various influences (Bi, Fo)

84
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Lecture 7

Unsteady State Heat Transfer

Summary (continued)

* Intransport phenomena, we have
dimensionless numbers that represent
three important aspects of situations that
interest us:

1. The relative importance of
individual terms in the equations
of change

2. The relative magnitudes of the
diffusive transport coefficients
V,a, Dyp

3. Scaled values of quantities of
interest, e.g. wall forces, heat
transfer coefficients, and mass
transfer coefficients (data
correlations)

CM3120 Transport/Unit Operations 2

More complex Systems:
Unsteady State Heat Transfer

(Analytical Solutions)

omantm
erery Dimensionless Numbers

Re — Reynolds = 22 = X2 .
AT These numbers from the governing
Fr — Froude =¥ equations tell us about the relative
§ O _Gevo_w importance of the terms they precede
Pe — Péclety = RePr === =72 in the microscopic balances
Pe — Péclet,, = Resc = Y2 (scenario properties).
" Das

_ idt = Su v magnitudes of the diffusive
Se - Sehmidt = LePr =2, ) =5, transport coefficients v, @, Dyg
Le — Lewis = 7= (material properties).

Pr— Prandtl = %“ =t These numbers compare the
5

Nu = Nusselt =22 based on the fewest number of
B Lep grouped (dimensionless) variables
Sh = Sherwood = (scenario properties).

Dan

f — Friction Factor = - These numbers are defined to help
o us build transport data correlations

85
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Unsteady State Heat Transfer

Summary (continued)

* If we can develop a model situation for
questions of interest, the solutions of the
models are often in the literature

* Our responsibility in 21

CM3120 Transport/Unit Operations 2

More complex Systems: W
Unsteady State Heat Transfer
(Analytical Solutions)

century: Learn to develop
models that will allow us t6  (nduction
estimate or determine . .o

. of Heat in
answers to the questions

that interest us Solids

SECOND EDITION

1. S. CARSLAW and
1. C. JAEGER

omantm
eneroy Dimensionless Numbers

mas;

Re — Reynolds = 22 = X2 .
AT These numbers from the governing

Fr — Froude =¥ equations tell us about the relative
o importance of the terms they precede.

N _ nepy — CoVD _ VD
Pe — Péclety, = RePr == = - in the microscopic balances

Pe — Péclety, = Resc = 22> (cenaro/propeliiss)]

Pr — Prandd = &% =¥ These numbers compare the
_ Schmidt = LePr oA = ¥ magnitudes of the diffusive

S¢ = Schmidt a'“m PDaz ~ Da transport coefficients v, @, Dz

L — Lewis = 7 (material properties).

Nu = Nusselt =22 based on the fewest number of
grouped (dimensionless) variables
(scenario properties).

f — Friction Factor = - These numbers are defined to help
o us build transport data correlations

Sh — Sherwood =

86
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N EXT: Diffusion and Mass Transfer

CM3120 Transport/Unit Operations 2

Diffusion and
Mass Transfer

Professor Faith A. Morrison

Department of Chemical Engineering
Michigan Technological University

www.chem mtu _edu/~fmormiso/cm3120/cm3120 html
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