

Various quantities in diffusion and mass transfer $cx_A = c_A = \frac{1}{M_A}(\rho_A) = \frac{1}{M_A}(\rho\omega_A)$ How much is present: $j_A \equiv \text{mass}$ flux of species A relative to a mixture's mass average velocity, \underline{v} $= \rho_A(\underline{v}_A - \underline{v})$ $j_A + j_B = 0$, i.e. these fluxes are measured relative to the mixture's center of mass $\underline{n}_A \equiv \rho_A \underline{v}_A = \underline{j}_A + \rho_A \underline{v} =$ combined mass flux relative to stationary coordinates $\underline{n}_A + \underline{n}_B = \rho \underline{v}$ $J_A^* \equiv$ molar flux relative to a mixture's molar average velocity, \underline{v}^* $= c_A(\underline{v}_A - \underline{v}^*)$ $J_A^* + J_B^* = 0$ $\underline{N}_A \equiv c_A \underline{v}_A = J_A^* + c_A \underline{v}^* =$ combined molar flux relative to stationary coordinates $\underline{N}_A + \underline{N}_B = c \underline{v}^*$ $\underline{v}_A \equiv$ velocity of species A in a mixture, i.e. average velocity of all molecules of species A within a small volume $\underline{v} = \omega_A \underline{v}_A + \omega_B \underline{v}_B \equiv$ mass average velocity; same velocity as in the microscopic momentum and energy balances $\underline{v}^* = x_A \underline{v}_A + x_B \underline{v}_B \equiv$ molar average velocity 52 © Faith A. Morrison, Michigan Tech U.

