

Forced Convection Mass Transfer

Pipe flow

non-dimensional variables:

mass flux ↓ mass flux 🛊

time:

position:

$$r^* \equiv \frac{r}{r}$$

$$z^* \equiv \frac{z}{D}$$

velocity:

$$v_z^* \equiv \frac{v_z}{V}$$

$$v_r^* \equiv \frac{v_r}{V}$$

$$v_{\theta}^* \equiv \frac{v_{\theta}}{V}$$

driving force:

$$t^* \equiv \frac{tV}{D} \qquad r^* \equiv \frac{r}{D} \qquad v_z^* \equiv \frac{v_z}{V} \qquad P^* \equiv \frac{P}{\rho V^2}$$
$$z^* \equiv \frac{z}{D} \qquad v_r^* \equiv \frac{v_r}{V} \qquad g_z^* \equiv \frac{g_z}{g}$$

$$g_z^* \equiv \frac{g_z}{g}$$

- Choose "typical" values (scale factors)
- Use them to scale the equations
- Deduce which terms dominate

© Faith A. Morrison, Michigan Tech U.

Dimensional Analysis in Mass Transfer

Forced Convection Mass Transfer

Species A Mass

Microscopic species A mass balance (no reaction):

$$c\left(\frac{\partial x_A}{\partial t} + v_r \frac{\partial x_A}{\partial r} + \frac{v_\theta}{r} \frac{\partial x_A}{\partial \theta} + v_z \frac{\partial x_A}{\partial z}\right) = cD_{AB}\left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial x_A}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 x_A}{\partial \theta^2} + \frac{\partial^2 x_A}{\partial z^2}\right)$$

non-dimensional variables:

position:

$$r^* \equiv \frac{r}{D}$$
$$z^* = \frac{z}{D}$$

composition

$$r^* \equiv \frac{r}{D}$$

$$z^* \equiv \frac{z}{D}$$

$$x_A^* = \frac{(x_A - x_{A0})}{(x_{A1} - x_{A0})}$$

Choose:

 x_A –use a characteristic interval

Dimensional Analysis in Mass Transfer—Forced Convection

Non-dimensional Species A Mass Equation

$$\begin{pmatrix}
\frac{\partial x_A^*}{\partial t^*} + v_r^* \frac{\partial x_A^*}{\partial r^*} + \frac{v_\theta^*}{r^*} \frac{\partial x_A^*}{\partial \theta} + v_z^* \frac{\partial x_A^*}{\partial z^*} \end{pmatrix} = \underbrace{\frac{1}{\text{Pe}_m}} \begin{pmatrix} 1}{r^*} \frac{\partial}{\partial r^*} \left(r \frac{\partial x_A^*}{\partial r^*} \right) + \frac{1}{r^{*2}} \frac{\partial^2 x_A^*}{\partial \theta^2} + \frac{\partial^2 x_A^*}{\partial z^2} \end{pmatrix} \\
\text{Non-dimensional Navier-Stokes Equation}$$

$$\frac{Dv_z}{Dt} = -\frac{\partial P}{\partial z}^* + \underbrace{\frac{1}{Re}} \left(\nabla^2 v_z \right)^* + \underbrace{\frac{1}{Fr}} g^* \\
\text{Sc} = \frac{\mu}{\rho D_{AB}}$$
Non-dimensional Continuity Equation

$$\frac{\partial v_x}{\partial x}^* + \frac{\partial v_y}{\partial y}^* + \frac{\partial v_z}{\partial z}^* + = 0$$
Schmidt number

(a material property)

$$\frac{Dv_z}{\partial t} = \frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z}$$
© Faith A. Morrison, Michigan Tech U.

These numbers tell us about the relative importance of the terms they precede.

Dimensionless numbers from the **Equations of Change** (microscopic balances)

Non-dimensional Navier-S $\left(\frac{\partial v_z^*}{\partial v_z^*} + v_z^* \cdot \nabla^* v_z^*\right)$

$$\frac{\partial P^*}{\partial z^*} + \frac{1}{\text{Re}} (\nabla^{*2} v_z^*) + \frac{1}{\text{Fr}} y^*$$

Re — Reynolds Fr — Froude

Non-dimensional Energy Equation

$$\left(\frac{\partial T^*}{\partial t^*} + \underline{v}^* \cdot \nabla^* T^*\right) = \frac{1}{\text{RePr}} (\nabla^{*2} T^*) + S^*$$

 $Pe - Péclet_h = RePr$ Pr - Prandtl

Non-dimensional Continuity Equation (species A)

$$\left(\frac{\partial x_A^*}{\partial t^*} + \underline{v}^* \cdot \nabla^* x_A^*\right) = \underbrace{\frac{1}{\text{ReSc}}}_{\text{ReSc}} (\nabla^{*2} x_A^*)$$

 $\frac{\text{Pe} - \text{P\'eclet}_m = \text{ReSc}}{\text{Sc} - \text{Schmidt}}$

35

© Faith A. Morrison, Michigan Tech U.

ref: BSL1, p581, 644

Dimensional Analysis

These numbers tell us about the relative importance of the terms they precede in the governing equations.

Dimensionless numbers from the **Equations of Change** (microscopic balances)

Non-dimensional Navier-Stokes Equation

$$\left(\frac{\partial v_z^*}{\partial t^*} + \underline{v}^* \cdot \nabla^* v_z^*\right) = -\frac{\partial P^*}{\partial z^*} + \underbrace{\frac{1}{\text{Re}}}_{\text{Re}} (\nabla^{*2} v_z^*) + \underbrace{\frac{1}{\text{Fr}}}_{\text{Fr}} g^*$$

Re – Reynolds Fr – Froude

Non-dimensional Energy Equatio

 $Pe - Péclet_h = RePr$ Pr - Prandtl

Non-dimensional Continuity Equation (species A

$$\frac{\partial x_A^*}{\partial t^*} + \underline{v}^* \cdot \nabla^* x_A^* = \underbrace{\frac{1}{\text{ReSc}}}_{\mathbf{ReSc}} (\nabla^{*2} x_A^*)$$

 $\begin{array}{c} \operatorname{Pe}-\operatorname{P\'eclet}_m=\operatorname{ReSc} \\ \operatorname{Sc}-\operatorname{Schmidt} \end{array}$

ef: BSL1, p581, 644

Oops! This is dimensionless \underline{v} , NOT molar average velocity; sorry!

36

6

Dimensionless Numbers

Dimensionless numbers from the

Equations of Change

Re – Reynolds =
$$\frac{\rho VD}{\mu} = \frac{VD}{\nu}$$

Fr – Froude = $\frac{V^2}{gD}$
Pe – Péclet_h = RePr = $\frac{\hat{C}_p \rho VD}{k} = \frac{VD}{\alpha}$
Pe – Péclet_m = ReSc = $\frac{VD}{D_{AB}}$

$$Pe - Péclet_h = \frac{\hat{c}_p \rho VD}{k} = \frac{VD}{\alpha}$$

$$Pe - Péclet_m = ReSc = \frac{VD}{D_{AB}}$$

Pr – Prandtl =
$$\frac{\hat{c}_{p}\mu}{k} = \frac{\nu}{\alpha}$$

Sc – Schmidt = LePr = $\frac{\mu}{\rho D_{AB}} = \frac{\nu}{D_{AB}}$
Le – Lewis = $\frac{\alpha}{D_{AB}}$

Sc – Schmidt = LePr =
$$\frac{\mu}{\rho D_{AB}} = \frac{\nu}{D_{AB}}$$

Le – Lewis = $\frac{\alpha}{D_{AB}}$

These numbers tell us about the relative importance of the terms they precede in the microscopic balances (scenario properties).

These numbers compare the magnitudes of the diffusive transport coefficients ν , α , D_{AB} (material properties).

© Faith A. Morrison, Michigan Tech U.

Dimensionless Numbers

Dimensionless numbers from the **Equations of Change**

Re – Reynolds =
$$\frac{\rho VD}{\mu} = \frac{VD}{\nu}$$

$$Fr - Froude = \frac{V^2}{gD}$$

Re – Reynolds =
$$\frac{\rho VD}{\mu} = \frac{VD}{\nu}$$

Fr – Froude = $\frac{V^2}{gD}$
Pe – Péclet_h = RePr = $\frac{\hat{C}_p \rho VD}{k} = \frac{VD}{\alpha}$
Pe – Péclet_m = ReSc = $\frac{VD}{D_{AB}}$

$$\frac{\text{Pe} - \text{P\'eclet}_m = \frac{VD}{D_{AB}}}{D_{AB}}$$

These numbers tell us about the relative importance of the terms they precede in the microscopic balances (scenario properties).

Pr – Prandtl =
$$\frac{\hat{c}_p \mu}{k} = \frac{\nu}{\alpha}$$

Sc – Schmidt = LePr = $\frac{\mu}{\rho D_{AB}} = \frac{\nu}{D_{AB}}$
Le – Lewis = $\frac{\alpha}{N}$

Sc – Schmidt = LePr =
$$\frac{\mu}{\rho D_{AB}} = \frac{\nu}{D_{AB}}$$

Le – Lewis =
$$\frac{\alpha}{D_{AB}}$$

These numbers compare the magnitudes of the diffusive transport coefficients ν, α, D_{AB} (material properties).

Transport coefficients

38

These numbers are defined to help us build transport data correlations based on the fewest number of grouped (dimensionless) variables (scenario property).

Dimensionless numbers from the **Engineering Quantities of Interest**

 $\frac{f}{R}$ - Friction Factor - Aspect Ratio

$$f = \frac{\mathcal{F}_{drag}}{\left(\frac{1}{2}\rho V^2\right)A_c}$$

Newton's Law of Cooling
$$\frac{1}{2\pi L/D} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{\partial T^{*}}{\partial r^{*}} \Big|_{r^{*}=1/2} dz^{*} d\theta$$

 $\frac{\text{Nu} - \text{Nusse.}}{\frac{L}{D} - \text{Aspect Ratio}}$ $\text{St}_{h} = \frac{h}{\rho V \hat{C}_{p}} = \frac{\text{Nu}}{\text{RePr}}$ Nu – Nusselt

Dimensionless Mass Transfer Coefficient

$$Sh = \frac{1}{2\pi} \frac{D}{k_{\perp}} \int_{0}^{\infty} \left(-\frac{\partial x_{\perp}^{*}}{\partial r^{*}} \right) d\theta dz^{*}$$

Sh - Sherwood $\frac{L}{D} - \text{Aspect Ratio}$ $St_m = \frac{k_c}{V} = \frac{Sh}{ReSc}$

$$Sh = \frac{k_c D}{D_{AB}}$$

St – Stanton

© Faith A. Morrison, Michigan Tech U.

Dimensionless Numbers

Re – Reynolds =
$$\frac{\rho VD}{\mu} = \frac{VD}{\nu}$$

Fr – Froude = $\frac{V^2}{gD}$

$$Fr - Froude = \frac{V^2}{aD}$$

$$\begin{aligned} & \text{Pe} - \text{P\'eclet}_h = \underset{n}{\text{RePr}} = \frac{\hat{c}_{p\rho VD}}{k} = \frac{VD}{\alpha} \\ & \text{Pe} - \text{P\'eclet}_m = \underset{n}{\text{ReSc}} = \frac{VD}{D_{AB}} \end{aligned}$$

$$Pe - P\'{e}clet_m = ReSc = \frac{VD}{D_{AB}}$$

These numbers from the governing equations tell us about the relative importance of the terms they precede in the microscopic balances (scenario properties).

$$\begin{aligned} & \text{Pr} - \text{Prandtl} = \frac{\hat{c}_p \mu}{k} = \frac{\nu}{\alpha} \\ & \text{Sc} - \text{Schmidt} = \frac{\text{LePr}}{\rho D_{AB}} = \frac{\nu}{D_{AB}} \\ & \text{Le} - \text{Lewis} = \frac{\alpha}{D_{AB}} \end{aligned}$$

These numbers compare the magnitudes of the diffusive transport coefficients ν , α , D_{AB} (material properties).

$$f$$
 – Friction Factor = $\frac{\mathcal{F}_{drag}}{\left(\frac{1}{2}\rho V^2\right)A_c}$

 $\frac{\text{Nu} - \text{Nusselt} = \frac{hD}{k}}{\text{Sh} - \text{Sherwood}} = \frac{k_c D}{D_{AB}}$

These numbers are defined to help us build transport data correlations based on the fewest number of grouped (dimensionless) variables (scenario properties).

$$St_h = Nu/Pe_h, St_m = Sh/Pe_m - Stanton$$

Theoretical

- Based on a model of the situation; can be solved for flux, and thus for k_r
- All models have assumptions; how good the assumptions are determine how good the correlations are
- The heat-transfer analogy counts as a theoretical pathway

Semi-empirical

- Shortcomings in theoretical models may be "fixed" by adjusting a theoretically derived coefficient or exponent to achieve a better fit to the data
- The theoretical underpinnings give some hope that extrapolation outside the range of the data fit may be valid

Empirical

- A pure fit to the data is a convenient way to use data directly in downstream calculations
- With no theoretical underpinnings it is extremely unwise to use empirical correlations outside the range of the data fit

© Faith A. Morrison, Michigan Tech U.

Dimensional Analysis in Mass Transfer

Theoretical

- · Based on a model of the situation; can be solved for flux, and thus for
- All models have assumptions; how good the assumptions are determine how good the correlations are
- The heat-transfer analogy counts as a theoretical pathway

Semi-empirical

- Shortcomings in theoretical models may be "fixed" by adjusting a theoretically derived coefficient or exponent to achieve a better fit to
- The theoretical underpinnings give some hope that extrapolation outside the range of the data fit may be valid

Empirical

- A pure fit to the data is a convenient way to use data directly in downstream calculations
- With no theoretical underpinnings it is extremely unwise to use empirical correlations outside the range of the data fit

Semi-Empirical Pathway to Mass Transfer Coefficients

Inspired by theoretical results and a model (a picture of how the mass transfer may be explained), correlations may be created that are then fine-tuned to match the data

Routes to Mass Transfer Correlations

Semi-Empirical

- Shortcomings in theoretical models may be "fixed" by adjusting a theoretically derived coefficient or exponent to achieve a better fit to the data
- The theoretical underpinnings give some hope that extrapolation outside the range of the data fit may be valid

For example, Colburn's extension of the Reynolds analogy

BSL2 p681

© Faith A. Morrison, Michigan Tech U.

Dimensional Analysis in Mass Transfer

Reynolds Analogy, Colburn's, Prandtl's extensions

- Reynolds noted the similarities in mechanism between energy and momentum transfer
- He derived, for restrictive conditions (Pr = 1, no form drag), the following equation:

$$\frac{h}{\rho V_{\infty} \hat{\mathcal{C}}_p} = \operatorname{St}_h = \frac{f}{2} \qquad \text{(Stanton number for heat transfer)}$$

 Coleburn modified the Reynolds result to work at more values of Pr and proposed the following:

$$St_h Pr^{2/3} = \frac{f}{2}$$

Routes to Mass Transfer Correlations

Semi-Empirical

- Shortcomings in theoretical models may be "fixed" by adjusting a theoretically derived coefficient or exponent to achieve a better fit to the data
- The theoretical underpinnings give some hope that extrapolation outside the range of the data fit may be valid
- This improved relationship does a better job of predicting heat transfer coefficients and
- Separating the turbulent core from the laminar sublayer in boundary layer flow allows it to be extended to mass transfer (Prandtl), resulting in a refined empirical correlation (WRF eqn 28-54)

BSL2 p681: WRF p580

Routes to Mass Transfer Correlations

Theoretical

- Based on a model of the situation; can be solved for flux, and thus for $k_{\scriptscriptstyle X}$
- All models have assumptions; how good the assumptions are determine how good the correlations are
- The heat-transfer analogy counts as a theoretical pathway

Semi-empirical

- Shortcomings in theoretical models may be "fixed" by adjusting a theoretically derived coefficient or exponent to achieve a better fit to the data
- The theoretical underpinnings give some hope that extrapolation outside the range of the data fit may be valid

Empirical

- A pure fit to the data is a convenient way to use data directly in downstream calculations
- With no theoretical underpinnings it is extremely unwise to use empirical correlations outside the range of the data fit

© Faith A. Morrison, Michigan Tech U.

Dimensional Analysis in Mass Transfer

Empirical Pathway to Mass Transfer Coefficients

Inspired by looking at data from a variety of systems, correlations may be created that are fine-tuned to match the data.

These may be based purely on dimensional analysis or there may be a model that the researchers have in mind.

Empirical models are judged by how accurately they represent the data.

Routes to Mass Transfer Correlations

<u>Empirical</u>

- A pure fit to the data is a convenient way to use data directly in downstream calculations
- With no theoretical underpinningsit is extremely unwise to use empirical correlations outside the range of the data fit

BSL2 p681

