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Figure 6.14: Because we have chosen a coordinate system that simplifies the velocity vector,
the gravity vector is slightly more complicated than it might be with another choice of
coordinate system.

To apply the free-surface boundary condition, we need to differentiate the result
to obtain dv,/dz.

dv, —
v _ {—WCOSB] z+C (6.241)
dx 1

If we choose x = 0 at the free surface, C; becomes zero, simplifying the

algebra for determining the integration constants. If we choose x = H at the free
surface, we must perform more complex manipulations to obtain Cj.

Because of this advantage, it is customary to choose the origin for this problem
at the free surface. When there is a symmetry plane or line of symmetry in a
problem there will also be a boundary condition in terms of a derivative and the
same logic applies.

6.2.3 Engineering Quantities from Velocity and Stress Fields

A final topic that may be of help to the student is a discussion of how to calculate engineering
quantities from velocity and stress fields. Four important engineering quantities are: force
on a surface, torque to produce a rotation, flow rate, and velocity/stress maxima.
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6.2.3.1 otal Force on a Wa

One reason that fluids are used in devices is to transfer forces. An example of this that
we have already discussed is the hydraulic lift (section 4.2.4.2), in which the fluid is used
to amplify forces. Another example of fluids mediating forces is when a fluid is introduced
between two solid parts as a lubricant to reduce the amount of force transferred (Figure 6.15).
Sometimes force transfer is not the goal, for example when the transportation of the fluid

lubricating
oil

Mg

Figure 6.15: When two metal parts move relative to one another, such as in the journal
bearing sketched above, a lubricant is used to reduce the stress transferred from one part to
the other. The total force on a surface in contact with a lubricant can be calculated with
the equations of this section.

itself is the engineering goal. In this case the forces of the fluid on the wall must be overcome
with a pump or other device. In fast-moving equipment, the forces can be quite large and
the consequences of failure disastrous.

In all of these examples, the design of the apparatus depends on knowing the total
force that a fluid exerts on the wall. If the stress distribution in the fluid is obtained using
the microscopic momentum balance, then the total force on any surface may be calculated
by evaluating the fluid stress at each point on that surface and summing the product of
stress and area over the entire surface.

We have dealt with such a sum over a surface before; the result is a surface integral. The
force due to the fluid at one piece of the wall tangent plane AS; is given by equation 4.265.

Fluid force

on sur.fa,ce AS; = [ﬁ _ ﬂ} AS; (6.242)
with unit normal n =l (wivizi)
at point (z;, Y, 2;)
where II is the total stress tensor, and [ﬂ . ﬂ} is the stress on AS; at x;,y;, 2. To get

the force on the entire wall, we sum all the pieces that make up the surface, and take the
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limit as AS = AA/(n - é,) goes to zero (appendix C.2.1).

Total fluid force
on a surface S

i=1

lim
AA—0

IRs
-

=

N

- (miyizi)AA‘
- N+ €, ‘

I

]at surface dA

A

n-é,

1

:i| at surface

as

Total fluid force
on a surface S

S AL

(6.243)

(6.244)

(6.245)

(6.246)

(6.247)

We previously introduced this expression in equation 4.288, and we use it extensively

throughout the text.

We can try out equation 6.247 by calculating the total force on the incline in our

falling-film example.

EXAMPLE 6.8 What is the total vector force on the incline in the falling-

film example (Figure 6.10)%

SOLUTION The total force on a surface in a fluid is given by equation 6.247.

Total fluid force
on a surface S

-l

[ﬁ : ﬁ} ds
—J at surface

(6.248)

The unit normal to the incline surface written in the chosen flow coordinate
system (Figure 6.10) is 7 = ¢é,, and this unit normal vector is the same at
every location on the surface of the incline. The stress tensor Il = —pl + 7 was

solved for in pieces in previous examples; the result for II can be constructed

from equations 6.160 and 6.155. The final force then can be calculated with a

straightforward integration of equation 6.248.
The total stress tensor II by definition is

1=

= “PLAI

—p(z) 0
0 —p(x
Te2 () 0

Yz

(6.249)

(6.250)



We solved previously for the two missing pieces of information, p(x) and 7,.,.

P(&) = Dam + pgH sin 3 (1 - %) (6.251)

Te-(x) = pgcos B(H — x) (6.252)

The surface of the incline is located at = 0, and the unit normal to the entire
surface is 1 = é,. To use equation 6.248 we need 7 - II at the incline surface.

LA I LS (6.259)
—p(0) 0 7.(0)
= (100),, 0 —p0) 0
= (=p(0) 0 72(0)), . (6.254)
—Patm — ng Sinﬂ
= 0 (6.255)

pgH cos 8 vy
Note that in the last step above we switched the vector from a row vector to a
column vector for convenience.

The surface integral in equation 6.248 can be carried out by identifying dS
for our surface and coordinate system. The surface of the incline is flat and
rectangular, and therefore we write dS = dydz. We now complete the integration.

Total force
on the - / / [n - ﬂ} ds (6.256)
incline surface S - at surface
L w —Patm — ng Sinﬁ
= / / 0 dydz (6.257)
0 Jo pgH cos 3 -

The limits of the integrals are chosen to cover the entire surface of the inclined
plane. The quantities L and W are the length and the width of the incline. After
integration the result is

Total force —Patm — pgH sin 3
on the = LW 0 (6.258)
incline surface pgH cos

Yz

= (=LWpaum — LW Hpgsin §) é, + pgH cos é, (6.259)

The integration was easy since nothing in the integral varies with y or z.
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Looking back at the geometry of the falling-film problem and at the form of
the solution in equation 6.258, we notice that we can rewrite our solution in a
form that helps us to grasp its meaning.

Total fluid force —gsin Datm
on the = p(LWH) 0 — LW 0

incline surface \ gcosp /. \ 0 /.. (6.260)

= p(LWH)g — (LW )patmn

We see from this final way of writing the result that the force on the incline is just
the weight of the fluid plus the force due to atmospheric pressure (Figure 6.16).

Figure 6.16: The force on the incline is a combination of the weight of the fluid and the force
due to atmospheric pressure.

In the example 6.8 and with many calculations of this sort, we need to carry out
a surface integration. The surface differential d.S in equation 6.248 must be interpreted
according to the specific case under consideration. As a convenience we assemble several
common cases in Figure 6.17.

For the simple case of the flow down an incline, it appears that we could have arrived
at the total force result by doing a straightforward force balance instead of performing the
integration in equation 6.248. The surface-integration method is general, however, and is
useful in more complex situations, including situations involving intricate wall shapes. We
discuss a case involving spherical coordinates in example 6.9, and we discuss more flow
examples in Chapters 7 and 8.




Coordinate system surface differential dS
Cartesian (top, n = é,) dS = dxdy
Cartesian (side a, n = é,) dS = dxdz
Cartesian (side b, n = é&,,) dS = dydz
Cylindrical (top, n = é,) dS = rdrdf
Cylindrical (side, n = é,.) dS = Rdfdz
Spherical, i = é, dS = R?sinfdfd¢
Coordinate system volume differential dV'
Cartesian dV = dzxdydz
Cylindrical dV = rdrdfdz
Spherical dV = r?sinfdrdfde
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Figure 6.17: To carry out a surface or volume integration, the surface element dS or volume
element dV must be written specifically for the coordinates in use, Cartesian, cylindrical, or

spherical and for the surface under consideration.

EXAMPLE 6.9 What is the total vector force on a sphere in creeping flow
around a sphere, the flow shown in Figure 6.187

SOLUTION In Chapter 8 we discuss the solution for the velocity and stress
fields for flow around a sphere. We can calculate the total force on the sphere
from the results for v and II = 7 — pI obtained there.

We begin with equation 6.247.

Total fluid force

inaflud = // [nﬂ] ds (6.261)
S —Jl at surface

on a surface S

As we stated above, we need ﬁ = 7 — pl solved for with the microscopic momen-
tum balance. If we presume that we have this result, then we can calculate the
total force from equation 6.261. The surface in which we are interested is located
at r = R and has a outwardly pointing unit normal vector n = é,, where we are
using the spherical coordinate system as shown in Figure 6.18. The differential
surface element dS on the surface of the sphere can be written in the spherical
coordinate system as dS = R?sinfdfd¢ (Figure 6.17). The total force is then
given by

Total fluid force U N 5
on the sphere /0 /o [er -H} e R sin 0dfd¢ (6.262)
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(r.6.9)

Figure 6.18: Flow around a sphere is important in droplet flow and in settling flows in

suspensions.

The limits on the integrations are chosen to cover the entire surface of the sphere.

The velocity has nonzero components in the r and 6 directions, but there is

no swirling component in the ¢-direction.

Uy Ur
v = Vg = Vg

Yo / o 0

(6.263)

The stress tensor in spherical coordinates is given in Table C.8, equation C.8-3.
In this flow, there is symmetry in the ¢-direction, which allows us to eliminate
velocity derivatives with respect to ¢ in equation C.8-3. Also, vy = 0; thus, four
components of 7 are zero. With these simplifications, equation C.8-3 becomes

Trr 7:7"9 7:7"(# 7:7"7" 7~_7"9 0

Tor Too Tog =1 Tor To0 O (6.264)

|19
I

7~—¢>r 7~'¢9 7~'¢)¢ 0 0 0 7~'¢¢ 0
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We can now write ﬁ-gz e - (T —pl) as

e 0
a-l=é -0 = (100), - 7 Fw—p O (6.265)
0 0 Foop / o
= (Fr=p T 0),, (6.266)
Tor =P
= Fro (6.267)
0

rfo

Substituting this result into equation 6.262, we obtain the expression that we
must evaluate in order to get the force on the sphere.

Total fluid force S U )
on the sphere /0 /0 [er g] L R” sin 6dfd¢ (6.268)

2 T %7'7'|R_p|R
= / / Trolp R? sin 0d0d¢(6.269)
0 0

0 r0¢

Without the microscopic-balance results for the components of v, this is as
far as we can go in our solution for the total force on the sphere. The solution
to the flow around the sphere problem for creeping flow (slow flow) is given in
Chapter 8. It turns out that 7,, is equal to zero at the surface r = R, and thus
the final expression to evaluate for force is that given below.

Total fluid force 2w P | '
on the sphere /0 /0 Troln R?sin 0ddg (6.270)
0

rf¢

We complete this calculation in Chapter 8.

Working on a more complex problem such as calculating the forces in the flow around
a sphere is made considerably easier by having the general rule, equation 6.247, and then
knowing how to apply it. There are more examples of the utility of equation 6.247 in the
chapters ahead. In complex flows equation 6.247 is evaluated numerically with computer
code[27, 173].

6.2.3.2 Torque

We worked briefly with torque in Chapter 1 (see example 1.17) and in Chapter 4 (exam-
ple 4.20). As we saw in example 4.20, when parts turn in fluids, torque is needed or generated
by the motion, and thus torque is an engineering quantity of interest in fluid mechanics.
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Torque is the amount of effort to produce a rotation in a body; the definition of torque
is the cross product of lever arm and the tangential force. The lever arm is the distance from
the point of application of the force to the axis of rotation.

T = (lever arm) x (force) (6.271)
— Rxf (6.272)

We calculate torque on a finite surface in a flow beginning with the fluid force on a infinites-
imal surface given by equation 4.282.

Molecular fluid force
on surface AS;
with unit normal n f ’AS
at point (z;, yi, 2;)

B

} AS; (6.273)
— (ziyiz)

The total torque is the sum of the infinitesimal torques on small pieces of the surface:

[N
Total torque )
on a surface § ABEO Z] Rl 5q, % [n H] e AS; (6.274)
R|, [n ﬂ]( |
= i - @Yz '
= o Zl A - &, A4, (6.275)

R X n H
— // ]at surface dA (6276)

n-é,

= // R x ﬁ,-ﬂ] as (6.277)
S —/ J1at surface

Total torque -
on a surface S /s [E x <n ' E)Lt Curface ds (6.278)

The torque may thus be calculated from the stress tensor, which, as usual, may be ob-
tained from the solution of the momentum balance. We practice applying equation 6.278 in
example 6.10.

EXAMPLE 6.10 A compact device that may be used to measure viscosity
and other flow properties of fluids is the parallel-plate rheometer (Figure 6.19).
In this device, the gap between two circular disks is filled with fluid and one of
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the disks is turned. The design is such that the velocity field in the gap is given
by

Q0 O

0
v = : =%, (6.279)

<

om‘
i

rfz

The wviscosity is related to the torque that is required to turn the disk. For
a Newtonian fluid in such an apparatus, how is the viscosity related to the total
torque to turn the top disk?

-

Figure 6.19: An incompressible, Newtonian fluid is confined between two circular disks of
diameter D. The gap between the plates is H and the top plate rotates with a constant
angular velocity €2 as shown in the figure.

SOLUTION The total torque on a surface in a fluid is given by equa-

tion 6.278:
Total torque _ [R y <ﬁ ‘ ﬁ)} S (6.280)
on a surface S s =/ ] at surface '

To apply this equation to calculate the torque in the current problem we identify
each of the quantities in the equation and carry out the integration. Torque is
needed to turn the top plate because the flat circular surface at z = H is in
contact with the fluid. The surface in the fluid in contact with the top plate has
a unit normal n = é,. The lever arm vector R is a vector from the axis of rotation
to a point experiencing torque. The points on the surface experiencing torque
are all the locations on the top fluid surface, and thus the lever arm is variable.
We choose a small area dS = rdfdr, which is located a distance r from the axis
of rotation. For this piece of area, the lever arm vector R = ré,. Equation 6.280
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ecomes

Total torque on the
) 2 D/2 ~
top fluid surface _ / / [E % (ﬁ . E)} ds (6.281)
0 0 —/ Jat z=H

in the parallel-plate
2 D/2 R
_ / / [rér X (éz ﬂ)} rdrdf (6.282)
0 0 . at z=H

rheometer
The stress tensor g comes from the Newtonian constitutive equation. Since we
know that the velocity field (equation 6.280), we can calculate the expression we
need directly from the constitutive equation, equation 5.103.

I = —pl+7 (6.283)
= —pl+np (Vy + (VQ)T> (6.284)

In cylindrical coordinates, the Newtonian constitutive equation is given in equa-
tion 5.105. We can immediately simplify equation 5.105 because v, = v, = 0 and
vg is not a function of . With these simplifications, the Newtonian constitutive
equation becomes

0 p(Ge =) 0
S (2 _ uo) o 0 Lo (6.285)
o K\, r o M5, )
0 ’u% 0 rfz

Carrying out the partial derivatives of v, using the velocity field given and as-
sembling II we obtain,

i = —pl+p(Vot (Vo)) (6.286)
-»n(GE=) 0
= | g% —w) —p e (6.287)
0 lu% -p rfz
) -p 0 0
I = 0 —p p (6.288)
0 'M% -p rlz

The next steps are to carry out the dot product and then the cross product



in equation 6.282.

Total torque on the

top fluid surface P/ ~
. - [rér X <éz : ﬂ)] rdrdf  (6.289)
in the parallel-plate o Jo =/ lat z=H
rheometer
. -p 0 0
el = (001), - 0 —p pff (6.290)
0 M% -P rfz
= (0 pug —p),. (6.291)
} r 0
ré, X (e g) = (o] x| 2 (6.202)
rfz -p rlz
0
= rp (6.293)
r’pQ
H rlz

where we have used equation 1.188 to evaluate the cross product. The integral
to evaluate thus becomes

Total torque on the /
top fluid surface B m pDf2 L
in the parallel-plate /0 0 [Te’" X (62 'Eﬂat s rdrdf (6.294)
rheometer

27 D/2 0
- / / rp | rdrdo (6.295)
0 0

r2pQ
H rlz

o D/2 3,0
_ / / {rzpég—l—r a éz] drdf (6.296)
0 0 H

The basis vector égy is a function of #; thus we convert to Cartesian coordinates
before evaluating the integral.

Total torque on the

top fluid surface B 2 rD/2 1 ,
in the parallel-plate /0 ; _7“ peg + 7 é.| drdf
rheometer

21 D/2r1 3 0
= / / r?p (— sin 0é, + cos 0é,) + léz drdf
o Jo H

The 0-integral results in the é, and é, terms dropping out leaving the €, com-
ponent as the only nonzero component of torque. The details of the remaining

995

(6.297)

(6.298)
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steps are left to the reader. The final result for torque is

Total torque on the

top fluid surface TOuR! 0 0
in the parallel-plate T = e, = 0 = 0 (6.299)
(Newtonian) !

We can therefore calculate the viscosity p from a measurement of the torque as

Viscosity from torque
2H
in parallel-plate W= 2T (6.300)
. QR
Newtonian

6.2.3.3 Flow Rate and Average Velocity

Forces and torques are two types of engineering variable; another important quantity is flow
rate. Flow rate, or volume flow per unit time, may be calculated directly from a velocity
profile. To calculate the flow rate through a finite surface S when the velocity varies across
the surface, we once again calculate a surface integral.

The flow rate through one piece of the surface AS; is given by equation 3.91 at that
point.

Flow rate through

surface AS; .
with unit normal n N@iyizs

at point (x;, v, 2;)

| AS; (6.301)

To get the total flow rate, we sum all the pieces that make up the surface S, and take the
limit as AS goes to zero (appendix C.2.1).

Total flow rate . N
out through vV = AHEO Z [ 0] (i) DS (6.302)
surface S | i=1
(& [ )
o . (xzyzzz
= lim_ ;—n ;. AA; (6.303)

— / / L i at surface 7 (6.304)

V = // [/ﬁ’ 'Q]at surface ds (6305)
S
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Total flow rate

out through V= // (7 V)t urface @S (6.306)
surface S o

To calculate the average velocity, we divide the total flow rate by the cross-sectional area of
the flow.

Average VQIOCity V // [TAL ) Q]at surface ds
out through = £22 (6.307)

- <“Mw [ s

We used this expression in equation 7?7 in the pipe-bend problem. We can try out these
expressions by calculating the total flow rate and average velocity down the incline in our
falling-film example.

E E 6.11 at are the flow rate and average velocity in the steady
drag flow between parallel plates (see Example 6.4)7

SOLUTION We begin with equation 6.306.

Total flow rate

out through = // (7 V)t surtace A5 (6.308)
surface S S

We need to identify 7, v, and the surface over which we wish to integrate. The
flow rate in the drag-flow-between-infinite-plates problem is the same at every
x1-position throughout the flow, and therefore we can chose as our calculation
surface any plane perpendicular to the flow; we choose the exit, x1 = L. The
unit normal of our calculation surface is n = é;, and the velocity vector is given
in equation 6.181 as v = (V/H)x9é;. The dot of these two vectors is

1 |4

H"r2 Vv
n-v=1_0 : 0 = —To (6.309)
0 0 i
123 123

The surface S is a rectangle in the 23-plane; thus dS = draodrs (Figure 6.17)
and the location of the surface is ; = L. The flow rate V' is then given by

v - //S -0, _, dS (6.310)

w H v

WHV
= — (6.312)
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The details of the integration are left to the reader (see problem 6.7). The average
velocity is just V/HW.

Average velocity / / .
: d
out through s [n y]at surface S
(v) = (6.313)
surface S s
in drag flow B
V
=~ W H (6.314)
/ / dxidxy
o Jo
v
D) (6.315)

6.2.3.4 Velocity and Stress Extrema

In some engineering problems, the maximum or minimum velocity or force is of interest. For
example, if a fluid jet hits a surface, the maximum value of the force would be important to
know in designing the surface to withstand the impact. The location of the maximum force
is also important when designing a bracing system for such a device.

To locate the maximum or minimum of any function (for example velocity or stress
component), we calculate the first derivative of the function and set it equal to zero (sec-
tion 1.3.1)[148].

af

dr
Solving equation 6.316 for Zyin/mas gives us the location of the minimum or maximum. To
determine if the extrema located is a minimum or a maximum, we calculate the second
derivative[148].

At the maximum/minimum of f(z): 0 (6.316)

&/ >0 = minimum (6.317)
dx?|

Trmin/maz
il <0 = maximum (6.318)
dx? '

LTmin/mazx

EXAMPLE 6.12 A Newtonian fluid flows steadily between two long, wide
plates under an imposed pressure difference Ap = py — pr (Figure 6.20). In
addition, the top plate moves at a velocity V. The velocity field may be found



by using the methods of Chapter 7, and the solution for v.(y) in the coordinate
system of Figure 6.20 is given below.

vely) = W [(%)2 - 1] + % (% +1) (6.319)

What is the location of the velocity mazimum as a function of the imposed pressure
difference?

y
x=0 vi(y) x;=L
p=p0 p=pL

SOLUTION To find the location ¢4, at which the velocity function v, (y)
attains its maximum value, we need to find the location where the first derivative
of v, with respect to y goes to zero.

oay) = LPL = P0) {(i)Q - 1} L (% +1) (6:320)

2uL H 2
location do
of _d—x =0 (6.321)
maximum: Y ly=ymaz

To simplify the algebra, we define the constant B as

H? (pr — po)
B = ——— 322
oL (6.322)
which allows us to write the velocity as
2 V V
wly) = BL B+~ y+— (6.323)

H?2 207 " 2
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Figure 6.20: Combined pressure and drag flow of a Newtonian fluid through a wide, long slit
may be modeled as shown.
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We now take the first derivative of v,(y) and solve for the value of y that makes

this zero.
% _ %lzgﬁ% (6.324)
0 = QFBQZ/WM-#L% (6.325)
Ymaz = % (6.326)
uwLV

max — 6.327
I = 3 (oo — po) (0:327)

We can verify that this is in fact a maximum rather than a minimum by calcu-
lating the second derivative of v, (y).

d*v, 2B
d*v, pL — Do

= <0 6.329
% i (6.329)

Since the upstream pressure is higher than the downstream pressure (py > pr),
equation 6.329 tells us that the second derivative is negative throughout the flow;
thus, the extremum we have found is a maximum (compare to equation 6.318).

6.3 Summary

In this chapter we have derived and used the microscopic mass and momentum balances. For
fluids in general, the microscopic momentum balance is the Cauchy momentum equation,
equation 6.127. For incompressible, Newtonian fluids, the microscopic momentum balance
is the Navier-Stokes equation, equation 6.169. We have shown how to apply these equations
to a problem with which we are familiar, the flow of a thin film down an inclined plane. We
have also discussed two topics that are needed to effectively apply the microscopic balances:
flow boundary conditions and methods for calculating macroscopic engineering properties
from the microscopic results.

We have laid the groundwork for performing microscopic balances on a wide variety
of flows. In the next two chapters we discuss microscopic solutions in three important
flow classes, internal flows, external flows, and boundary-layer flows. In those chapters we
apply the microscopic balances to simple cases, we apply the microscopic balances to more
complicated cases, and we discuss how to use dimensional analysis to modify the microscopic
analysis when a detailed microscopic solution is impractical or unnecessary.



