Homework 4

CM4650 Spring 2020

Due: Wednesday 4 March 2020, in class

Please do not write on the back side of the pages. Please write legibly and large. Thank you.

- 1. (30 points) Please answer in your own words (i.e. don't quote me directly in your answer; don't quote the internet).
 - a. Give an example of a fluid exhibiting a memory effect. Explain why we use the word "memory" to describe this kind of behavior.
 - b. Many materials exhibit "rate-dependent effects" in their rheological response. Give an example of such an effect.
 - c. Why are memory and rate-dependent effects interesting or important?
- 2. (20 points)
 - a. What are the "rate-based" material functions in shear? In elongation?
 - b. What are the "strain-based" material functions in shear? In elongation?
- 3. (10 points)
 - a. For *general* shear flow, derive the rate-of-deformation tensor $\dot{\underline{\gamma}}$. What does the rate-of-deformation tensor become for *steady* shear flow?
 - b. Derive the magnitude of the rate-of-deformation tensor for steady shear flow.
- 4. (10 points)
 - a. For *general* uniaxial elongational flow, derive the rate-of-deformation tensor $\dot{\underline{\gamma}}$. What does the rate-of-deformation tensor become for steady uniaxial elongational flow?
 - b. Derive the magnitude of the rate-of-deformation tensor for steady uniaxial elongational flow.
- 5. (20 points) Calculate the shear strain $\gamma_{21}(t_{ref}, t)$ for the flows associated with the following material functions:
 - a. Steady shear, use $t_{ref} = 0$
 - b. Start-up of steady shear, use $t_{ref} = -\infty$