

Deformation-gradient
tensor
$$d\underline{r}' = d\underline{r} \cdot \underline{F}$$

$$\underline{F}(t,t') = \begin{pmatrix} \frac{\partial x'}{\partial x} & \frac{\partial y'}{\partial x} & \frac{\partial z'}{\partial x} \\ \frac{\partial x'}{\partial y} & \frac{\partial y'}{\partial y} & \frac{\partial z'}{\partial y} \\ \frac{\partial x'}{\partial z} & \frac{\partial y'}{\partial z} & \frac{\partial z'}{\partial z} \\ \frac{\partial x'}{\partial z} & \frac{\partial y'}{\partial z} & \frac{\partial z'}{\partial z} \\ \frac{\partial x'}{\partial z} & \frac{\partial y'}{\partial z} & \frac{\partial z'}{\partial z} \\ \frac{\partial x'}{\partial z} & \frac{\partial y}{\partial z} & \frac{\partial z}{\partial z} \\ \frac{\partial x'}{\partial x'} & \frac{\partial y}{\partial x'} & \frac{\partial z}{\partial x'} \\ \frac{\partial x'}{\partial y'} & \frac{\partial y'}{\partial y'} & \frac{\partial z}{\partial y'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial y'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial y'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial y'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z'}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z'}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z'}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial z'}{\partial z'} & \frac{\partial z'}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial y'}{\partial z'} & \frac{\partial z'}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'} \\ \frac{\partial x'}{\partial z'} & \frac{\partial x'}{\partial z'$$

tensor	shear in 1-direction with gradient in 2-direction	uniaxial elongation in 3-direction	$\begin{array}{c} \text{cew rotation} \\ \text{around} \ e_{\mathbf{S}} \end{array}$	Table 9.3			
$\underline{F}(t, t')$	$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ -\gamma & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)_{123}$	$ \begin{pmatrix} e^{\frac{\ell}{2}} & 0 & 0 \\ 0 & e^{\frac{\ell}{2}} & 0 \\ 0 & 0 & e^{-\epsilon} \end{pmatrix}_{123} \\$	$ \begin{pmatrix} \cos\psi & -\sin\psi & 0\\ \sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{pmatrix}_{123} $				
$\underline{F}^{-1}(t', t)$	$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ \gamma & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)_{123}$	$\left(\begin{array}{ccc} e^{-\frac{\epsilon}{2}} & 0 & 0 \\ 0 & e^{-\frac{\epsilon}{2}} & 0 \\ 0 & 0 & e^{\epsilon} \end{array}\right)_{123}$	$ \begin{pmatrix} \cos\psi & \sin\psi & 0 \\ -\sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{pmatrix}_{123} , \label{eq:phi}$				
$\underline{\underline{C}}(t,t')$	$ \begin{pmatrix} 1 & -\gamma & 0 \\ -\gamma & 1+\gamma^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}_{123} $	$\left(egin{array}{ccc} e^{\epsilon} & 0 & 0 \\ 0 & e^{\epsilon} & 0 \\ 0 & 0 & e^{-2\epsilon} \end{array} ight)_{123}$	Ī				
$\underline{\underline{C}}^{-1}(t',t)$	$\left(\begin{array}{ccc}1+\gamma^2&\gamma&0\\\gamma&1&0\\0&0&1\end{array}\right)_{123}$	$\left(\begin{array}{ccc} e^{-\epsilon} & 0 & 0 \\ 0 & e^{-\epsilon} & 0 \\ 0 & 0 & e^{2\epsilon} \end{array}\right)_{123}$	Ī				
$\underline{\gamma}^{[o]}(t,t')$	$\left(\begin{array}{ccc} 0 & -\gamma & 0 \\ -\gamma & \gamma^2 & 0 \\ 0 & 0 & 1 \end{array}\right)_{123}$	$\left(\begin{array}{ccc} e^{\epsilon}-1 & 0 & 0 \\ 0 & e^{\epsilon}-1 & 0 \\ 0 & 0 & e^{-2\epsilon}-1 \end{array}\right)_{123}$	Q				
$\underline{\underline{\gamma}}_{\mathrm{joj}}(t,t')$	$\left(\begin{array}{ccc} -\gamma^2 & \gamma & 0 \\ \gamma & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)_{123}$	$\left(\begin{array}{ccc} e^{-\epsilon}-1 & 0 & 0 \\ 0 & e^{-\epsilon}-1 & 0 \\ 0 & 0 & e^{2\epsilon}-1 \end{array}\right)_{123}$	Ω				
γ = 1	$\gamma = \gamma(t', t) = \int_{t'}^{t} \dot{\gamma}(t'') dt'' \qquad \qquad \psi \text{ is the angle from } \underline{r}' \text{ to } \underline{r} \text{ in ccw}$ rotation around $\hat{\theta}_{\pi}$						
E = 1	$\epsilon(r,t) = \int_{B} \epsilon(r') dr$	at		26			

TABLE D.1 Comparison of Nomenclature f	or Strain Tensor	s Used in the Lit	erature			
Name	This Text	Larson [138]	DPL [26]	Macosko [162]	Middleman [179]	
Stress tensor	$\underline{\Pi} = \underline{\mathbf{r}} + p\underline{\mathbf{l}}$	$-\underline{T} = -\underline{\sigma} + p\underline{I}$	$\underline{\Pi} = \underline{\tau} + p\underline{I}$	$-\underline{\underline{T}} = -\underline{\underline{r}} + p\underline{\underline{I}}$	$-\underline{\underline{T}} = -\underline{\underline{\tau}} + p\underline{\underline{I}}$	
Gradient of a vector	$\nabla \underline{w} = \frac{\partial w_p}{\partial x_k} \hat{e}_k \hat{e}_p$	$\nabla \underline{w} = \frac{\partial w_p}{\partial x_k} \hat{e}_k \hat{e}_p$	$\nabla \underline{w} = \frac{\partial w_p}{\partial x_k} \hat{e}_k \hat{e}_p$	$\tilde{\nabla}\underline{w} = \frac{\partial w_p}{\partial x_k} \hat{\epsilon}_p \hat{\epsilon}_k$	$\bar{\nabla}_{\underline{w}} = \frac{\partial w_p}{\partial x_k} \hat{e}_p \hat{e}_k$	
Deformation-gradient tensor	Ē	Ē	$\underline{\Delta}^{T}$	(E ⁻¹) ⁷	-	
Inverse deformation-gradient tensor	<u>F</u> ⁻¹	<u>E</u> ⁻¹	$\underline{\underline{E}}^{\tau}$	Ĕ	·	
Cauchy tensor	<u>C</u>	<u>c</u>	<u>B</u> ⁻¹	<u>B</u> ⁻¹	-	
Finger tensor	$\underline{\underline{C}}^{-1}$	\underline{C}^{-1}	<u>B</u>	B		
Finite strain based on Cauchy	<u>×</u> ^[0]	<u>⊆</u> – <u>I</u>	<u>×</u> [0]	$\underline{\underline{B}}^{-1} - \underline{\underline{I}}$	-	
Finite strain based on Finger	<u>×</u> 101	$\underline{I} - \underline{C}^{-1}$	<u>γ</u> [0]	- <u>E</u>	-	
Rate-of-strain tensor	ż	2 <u>D</u>	Ý	2 <u>D</u>	≙	
Green tensor	$\underline{F}^{-1} \cdot (\underline{F}^{-1})^T$	$\underline{F}^{-1} \cdot (\underline{F}^{-1})^T$	$\underline{E}^T \cdot \underline{E}$	C	-	

$$\begin{aligned} \mathbf{Result:} \\ \underline{\underline{C}}^{-1}(t',t) &= \begin{pmatrix} 1-2CS\gamma + C^{2}\gamma^{2} & (C^{2}-S^{2})\gamma + SC\gamma^{2} & 0\\ (C^{2}-S^{2})\gamma + SC\gamma^{2} & 1+2CS\gamma + S^{2}\gamma^{2} & 0\\ 0 & 0 & 1 \end{pmatrix}_{xyz} \end{aligned}$$

$$\begin{aligned} \mathbf{Lodge \ Model \ prediction \ in \ stationary \ frame:} \\ \underline{\underline{\tau}} &= -\int_{-\infty}^{t} \frac{\eta_{0}}{\lambda^{2}} e^{-\frac{(t-t')}{\lambda}} \begin{pmatrix} 1-2CS\gamma + C^{2}\gamma^{2} & (C^{2}-S^{2})\gamma + SC\gamma^{2} & 0\\ (C^{2}-S^{2})\gamma + SC\gamma^{2} & 1+2CS\gamma + S^{2}\gamma^{2} & 0\\ 0 & 0 & 1 \end{pmatrix}_{xyz} dt' \\ \underline{S} &= \sin \Omega t \quad C = \cos \Omega t \\ S' &= \sin \Omega t' \quad C' &= \cos \Omega t' \\ \gamma &= \gamma_{0}(t-t') \end{aligned}$$

$$\begin{aligned} \mathbf{To \ compare \ to \ previous \ result, must \ consider \ shear \\ coordinate \ system, \ e.g. \ t=0 \\ 38 \\ @ \ Faith \ A. \ Morrison, \ Michigan \ Tech \ U. \end{aligned}$$

Note on the total derivative/substantial derivative:

$$\frac{d\underline{\tau}(t, x_1, x_2, x_3)}{dt} = \frac{\partial \underline{\tau}}{\partial t} + \frac{\partial \underline{\tau}}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial \underline{\tau}}{\partial x_2} \frac{\partial x_2}{\partial t} + \frac{\partial \underline{\tau}}{\partial x_3} \frac{\partial x_3}{\partial t}$$

$$\frac{d\underline{\tau}}{dt} = \frac{\partial \underline{\tau}}{\partial t} + \sum_{m=1}^3 \frac{\partial \underline{\tau}}{\partial x_m} \frac{\partial x_m}{\partial t}$$
If the path along which we are taking the derivative is a particle path (which we have already assumed when defining the Finger tensor), then

$$\frac{d\underline{\tau}}{dt} = \frac{\partial \underline{\tau}}{\partial t} + \sum_{m=1}^3 \frac{\partial \underline{\tau}}{\partial x_m} \frac{\partial \underline{\tau}}{\partial t} = \frac{\partial \underline{\tau}}{\partial t} + \sum_{m=1}^3 \frac{\partial \underline{\tau}}{\partial x_m} v_m = \frac{\partial \underline{\tau}}{\partial t} + \underline{v} \cdot \nabla \underline{\tau} = \frac{D\underline{\tau}}{Dt}$$
44
(θ Faith A. Morrison, Michigan Tech U.

	$\eta \cdot (c, y)$	$\eta_0 (1 - e^{-\frac{1}{2}})$	
	$\Psi_1^+(t,\dot{\gamma})$	$2\eta_0 \lambda \left[1 - e^{\frac{-1}{2}} \left(1 + \frac{t}{\lambda}\right)\right]$	
	$\Psi_2^+(t,\dot{\gamma})$	0	
Steady	$\eta(\dot{\gamma})$	$\eta_0 = G_0 \lambda$	
1	$\Psi_1(\dot{y})$	$2G_0\lambda^2 = 2\eta_0\lambda$	
	$\Psi_2(\hat{\gamma})$	0	
Cessation	$\eta^-(t, \dot{\gamma})$	$\eta_0 e^{\frac{-1}{2}}$	
	$\Psi_1^-(t, \dot{\gamma})$	2λη ₀ e ⁻ ⁻ / ₂	
	$\Psi_2^-(t,\dot{\gamma})$	0	
Step shear strain	$G(t, \gamma_0)$	$G_0e^{-\frac{1}{2}}$	
	$G_{\Psi_1}(t, \gamma_0)$	$G_0e^{-\frac{1}{2}}$	
	$G_{\Psi_2}(t, \gamma_0)$	0	
2. Extension			
Startup Uniaxial $(b = 0, i_0 > 0)$	$\bar{n}^+(t, \hat{\epsilon}_0)$	70 (0 00 -10 0 -18)	
or biaxial $(b = 0, \dot{\epsilon}_0 < 0)$	or $\bar{\eta}_B^+(t, \hat{\epsilon}_0)$	$\frac{1}{\mathcal{AB}} \left(3 - 2Be^{-1} - Ae^{-1} \right)$	
		$\mathcal{A} = 1 - 2\epsilon_0 \lambda$ $\mathcal{B} = 1 + \dot{\epsilon}_0 \lambda$	
Planar ($b = 1, \hat{e}_0 > 0$)	$\bar{\eta}_{P_1}^+(t, \hat{\epsilon}_0)$	$\frac{2\eta_0}{2\pi} \left(2 - \mathcal{A}e^{-\frac{C_1}{2}} - Ce^{-\frac{3k}{2}}\right)$	
		$\mathcal{A} = 1 - 2i_0\lambda$ $C = 1 + 2i_0\lambda$	
	$\bar{n}^{\pm}(t, \hat{n})$	270 (2)	
	1000	$\frac{1}{C}(1-e^{-\frac{1}{2}})$	
Steady	2(2.)	200 200	
or biaxial $(b = 0, e_0 > 0)$	or $\tilde{\eta}_B(\hat{\epsilon}_0)$	$\frac{3\eta_0}{(1-2\lambda \hat{e}_0)(1+\lambda \hat{e}_0)} = \frac{3\eta_0}{AB}$	
Planar $(b = 1, \dot{e}_0 > 0)$	$\bar{\eta}_{P_1}(\hat{\epsilon}_0)$	470 470	
		$\frac{1}{1-4\dot{\epsilon}_0^2\lambda^2} = \frac{1}{\mathcal{A}C}$	
	Steady Cessation Step shear strain 2. Extression Startup Uniaxial ($b = 0, i_0 > 0$) or biaxial ($b = 0, i_0 < 0$) Planar ($b = 1, i_0 > 0$) Steady Uniaxial ($b = 0, i_0 > 0$) or biaxial ($b = 0, i_0 > 0$) Planar ($b = 1, i_0 > 0$)	$\begin{split} & \psi_2^{\pi}(t,\dot{y}) \\ & \psi_1(\dot{y}) \\ & \psi_2(\dot{y}) \\ \end{split}$ Cessation $& \eta^{-}(t,\dot{y}) \\ & \psi_2^{-}(t,\dot{y}) \\ \end{bmatrix}$ Step shear strain $& G(t,y_0) \\ & G\phi_1(t,y_0) \\ & G\phi_1(t,y_0) \\ \end{bmatrix}$ Step shear strain $& G(t,y_0) \\ & G\phi_1(t,y_0) \\ & G\phi_2(t,y_0) \\ \end{bmatrix}$ 2. Extension $& G\phi_1(t,\dot{y}) \\ & Uriaxial(b=0,\dot{x}_0>0) \\ & \bar{\eta}_{\mu}^{+}(t,\dot{x}_0) \\ & \psi_1(t,\dot{y}_0) \\ & \psi_2(t,\dot{y}_0) \\ & & \varphi_1(t,\dot{y}_0) \\ & & & & \\ & & & & \\ & & & \\ & & $	$\begin{array}{c} & \psi_{2}^{*}(r,\dot{\gamma}) & 0 \\ \\ \text{Steady} & \eta(\dot{\gamma}) & \eta_{0} \equiv G_{0}\lambda \\ & \psi_{1}(\dot{\gamma}) & 2G_{0}\lambda^{2} = 2\eta_{0}\lambda \\ & \psi_{2}(\dot{\gamma}) & 0 \\ \end{array}$ Cessation & $\eta^{-}(r,\dot{\gamma}) & \eta_{0}e^{\frac{\tau}{4}} \\ & \psi_{1}(r,\dot{\gamma}) & 2\lambda_{0}e^{\frac{\tau}{4}} \\ & \psi_{1}^{-}(r,\dot{\gamma}) & 2\lambda_{0}e^{\frac{\tau}{4}} \\ & \psi_{1}^{-}(r,\dot{\gamma}) & 0 \\ \end{array}$ Cessation & $\eta^{-}(r,\dot{\gamma}) & \eta_{0}e^{\frac{\tau}{4}} \\ & \psi_{1}^{-}(r,\dot{\gamma}) & 0 \\ \end{array}$ Step shear strain & $G(r,\eta_{0}) & G_{0}e^{-\frac{1}{4}} \\ & G_{0}(r,\eta_{0}) & G_{0}e^{-\frac{1}{4}} \\ & G_{0}(r,\eta_{0}) & 0 \\ \end{array}$ 2. Extension Sterp Duraxial $(b=0,t_{0}>0) & \bar{\eta}^{+}(r,t_{0}) & \frac{\eta_{0}}{\mathcal{A}\mathcal{B}} \left(\frac{1-2\mathcal{B}e^{-\frac{1}{4}}-\mathcal{A}e^{-\frac{Q}{4}}}{\mathcal{A} = 1-2t_{0}\lambda} \\ & \mathcal{B} = 1-t_{0}\lambda \\ \mathcal$

White-				
Metzner	TABLE D.5			
	Predictions of White–Metzne 1. Shear Startup	r Equation in She $\eta^+(t, \dot{\gamma})$	ar and Extensional Flows [26]* $n(\hat{y}) \left(1 - e^{-\frac{1}{2}y_2}\right)$	
		$\Psi_1^+(t, \dot{\gamma})$ $\Psi_2^+(t, \dot{\gamma})$	$\frac{2\eta(\dot{\gamma})\lambda(\dot{\gamma})\left[1-e^{-\chi[\dot{\gamma}]}\left(1+\frac{i}{\lambda(\dot{\gamma})}\right)\right]}{0}$	
	Steady	$\eta(\dot{\gamma}) \\ \Psi_1(\dot{\gamma}) \\ \Psi_2(\dot{\gamma})$	$\eta(\dot{y}) \\ 2\eta(\dot{y})\lambda(\dot{y}) \\ 0$	
	2. Extension Steady			
	Uniaxial ($b = 0$, $\hat{\epsilon}_0 > 0$) or biaxial ($b = 0$, $\hat{\epsilon}_0 < 0$)	$\tilde{\eta}(\dot{e}_0)$ or $\tilde{\eta}_B(\dot{e}_0)$	$ \begin{array}{c} \frac{3\eta(\dot{\gamma})}{\left[1-2\lambda(\dot{\gamma})\dot{\epsilon}_{0}\right]\left[1+\lambda(\dot{\gamma})\dot{\epsilon}_{0}\right]} = \frac{3\eta(\dot{\gamma})}{\mathcal{R}(\dot{\gamma})\mathcal{B}(\dot{\gamma})} \\ \mathcal{R}(\dot{\gamma}) = 1-2\dot{\epsilon}_{0}\lambda(\dot{\gamma}) \\ \mathcal{B}(\dot{\gamma}) = 1+\dot{\epsilon}_{0}\lambda(\dot{\gamma}) \end{array} $	
	Planar $(b=1, \dot{\epsilon}_0 > 0)$	$\tilde{\eta}_{P_l}(\hat{\epsilon}_0)$	$\frac{4\eta(\dot{\gamma})}{1-4t_0^2\lambda(\dot{\gamma})^2} = \frac{4\eta(\dot{\gamma})}{\mathcal{R}(\dot{\gamma})C(\dot{\gamma})}$ $\frac{\mathcal{R}(\dot{\gamma})}{\mathcal{L}(\dot{\gamma})} = 1-2\dot{\epsilon}_0\lambda(\dot{\gamma})$ $C(\dot{\gamma}) = 1+2\dot{\epsilon}_0\lambda(\dot{\gamma})$	
		$\bar{\eta}_{P_2}(\hat{\epsilon}_0)$	$\frac{2\eta(\dot{\gamma})}{1+2\dot{\epsilon}_0\lambda(\dot{\gamma})} = \frac{2\eta(\dot{\gamma})}{C(\dot{\gamma})}$	
	$\lambda(\dot{\gamma}) = \eta(\dot{\gamma})/G_0$ and $\dot{\gamma} = \dot{\underline{\gamma}} .$			

	TABLE D.4 Predictions of Oldroyd B or	Convected Jef	freys Model in Shear and Extensional Flows [26]		
	1. Shear				
	Startup	$\eta^{+}(t, \dot{\gamma})$	$\eta_0 \left[\frac{\kappa_2}{\lambda_1} + \left(1 - \frac{\kappa_2}{\lambda_1} \right) \left(1 - e^{-\frac{\kappa_1}{\lambda_1}} \right) \right]$		
Oldrovd B		$\Psi_1^+(t,\dot{\gamma})$	$2\eta_0 (\lambda_1 - \lambda_2) \left[1 - e^{-\frac{t}{\lambda_1}} \left(1 + \frac{t}{\lambda_1} \right) \right]$		
		$\Psi_2^+(t,\dot{\gamma})$	0		
(Convected	Steady	$\eta(\dot{\gamma})$	70		
Jeffreys)		$\Psi_1(\dot{\gamma})$ $\Psi_2(\dot{\gamma})$	$2\eta_0 (\lambda_1 - \lambda_2)$		
comojo,		-107			
	Cessation	$\eta^-(t,\dot{\gamma})$	$\eta_0 \left(1 - \frac{\lambda_2}{\lambda_1}\right) e^{-\frac{1}{\lambda_1}}$		
		$\Psi_1^-(t,\dot{\gamma})$	$2\eta_0 (\lambda_1 - \lambda_2) e^{-\frac{1}{\lambda_1}}$		
		$\Psi_2^-(t,\dot{\gamma})$	0		
	SAOS	$G'(\omega)$	$\eta_0 \frac{(\lambda_1 - \lambda_2)\omega^2}{1 + \lambda_1^2 \omega^2}$		
		$G''(\omega)$	$\eta_0\omega\frac{1+\lambda_1\lambda_2\omega^2}{1+\lambda_1^2\omega^2}$		
	2. Extension Startup				-i
	Uniaxial ($b = 0$, $\dot{\epsilon}_0 > 0$) or biaxial ($b = 0$, $\dot{\epsilon}_0 < 0$)	$\tilde{\eta}^+(t, \dot{\epsilon}_0)$ or $\tilde{\eta}^+_B(t, \dot{\epsilon}_0)$	$\begin{array}{c} 3\eta_0 \frac{\lambda_2}{\lambda_1} + \frac{\eta_0}{\mathcal{AB}} \left(1 - \frac{\lambda_2}{\lambda_1}\right) \left(3 - 2\mathcal{B}e^{-\frac{\lambda_1}{\lambda_1}} - \mathcal{A}e^{-\frac{\lambda_1}{\lambda_1}}\right) \\ \mathcal{A} = 1 - 2\hat{\epsilon}_0 \lambda_1 \\ \mathcal{B} = 1 + \hat{\epsilon}_0 \lambda_1 \end{array}$		Tech (
	Planar ($b = 1, \dot{\epsilon}_0 > 0$)	$\bar{\eta}^+_{P_1}(t,\dot{\epsilon}_0)$	$\begin{array}{c} 4\eta_0 \frac{\lambda_2}{\lambda_1} + \frac{2\eta_0}{\mathcal{A}C} \left(1 - \frac{\lambda_2}{\lambda_1}\right) \left(2 - \mathcal{A}e^{-\frac{\Omega_1}{\lambda_1}} - Ce^{-\frac{\eta_0}{\lambda_1}}\right) \\ \mathcal{A} = 1 - 2\ell_0\lambda_1 \\ C = 1 + 2\ell_0\lambda_1 \end{array}$		lichigan
		$\bar{\eta}^+_{P_2}(t,\dot{\epsilon}_0)$	$2\eta_0\frac{\lambda_2}{\lambda_1} + \frac{2\eta_0}{C}\left(1 - \frac{\lambda_2}{\lambda_1}\right)\left(1 - e^{-\frac{\zeta_1}{\lambda_1}}\right)$		on, N
	Steady		$\left(\lambda_{1}, 1-\frac{\lambda_{2}}{2}\right)$		rris
	Uniaxial ($b = 0, \dot{e}_0 > 0$) or biaxial ($b = 0, \dot{e}_0 < 0$)	$\bar{\eta}(\hat{\epsilon}_0)$ or $\bar{\eta}_B(\hat{\epsilon}_0)$	$3\eta_0\left(\frac{\lambda_1}{\lambda_1}+\frac{\lambda_1}{\mathcal{AB}}\right)$. Mo
	Planar ($b = 1, \dot{\epsilon}_0 > 0$)	$\bar{\eta}_{P_1}(\dot{\epsilon}_0)$	$4\eta_0\left(\frac{\lambda_2}{\lambda_1}+\frac{1-\frac{\lambda_2}{\lambda_1}}{\mathcal{A}C}\right)$		ith A
		$\bar{\eta}_{P_2}(\hat{\epsilon}_0)$	$2\eta_0\left(\frac{\lambda_2}{\lambda_1}+\frac{1-\frac{\lambda_2}{\lambda_1}}{C}\right)$	58	© Fa
					Ŭ

Some of what we have learned from Continuum Modeling

•We can model linear viscoelasticity. The GMM does a good job; there is no reason to play around with springs and dashpots to improve linear viscoelasticity

•We can model shear normal stresses. The kind of deformation described by the Finger tensor gives a first normal stress difference and zero second-normal stress; the kind of deformation described by the Cauchy tensor gives both stress differences, but too much second.

•We can model shear thinning. But only by brute force (GNF, White-Metzner)

•We can model elongational flows. But we predict singularities that do not appear to be present.

•Frame-Invariance is important. Calculations outside the linear viscoelastic regime are incorrect if the equations are not properly frame invariant.

•Thinking in terms of strain is an advantage. When we think only in terms of rate we can only model Newtonian fluids.

•Looking for contradictions when stretching a model to its limits is productive.

•Continuum models do not give molecular insight. We can fit continuum models and obtain material functions (viscosity, relaxation times) but we cannot predict these functions for new, related materials

63

© Faith A. Morrison, Michigan Tech U.