Advanced Constitutive Modeling

t
G lized Li - N - et '
V‘iesnceor:l:s?ic Nllr(])?jzrl: == IG(t —t )i(t ) dt

—00
L—— strain-rate

Good only for small strains, small strain-rates
tensor

To develop constitutive equations
for large strain, large strain-rate
flows, the strain and strain history
are important.

What is the strain measure that is used in
the GLVE model?

1
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What is the strain measure that is used in the GLVE model?

(see hand calculations)
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infinitesimal

Generalized Linear-
strain tensor

Viscoelastic Model:

(strain version) t
r=+ M-t dt
—00
oG(t -t
M{t-t)=
=1 ot’
memory
function

It is the use of the infinitesimal strain
tensor as the strain measure that causes
the frame-variance in the GLVE model.
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We have seen the infinitesimal strain tensor before: when we first
defined strain when we discussed material functions).

Infinitesimal T
strain tensor = VQ + (VQ)

Displacement  U(t,,t) =r(t)—r(t,)
function

X, ()

_ Particle r(t) =| X, (t)
tracking vector —
X3 (t) 123

4
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Strain in Shear Flow Vor (Lo 0 =% Shear strain
2
Xl(tref) u(t, t)=r(t)—r(t,,) Displacement
[(tref ) = XZ (tref ) function

X3 (tref ) 123

X (t) \\“\f‘low
(=] %0 .
X, (t) 123 particle path | \\“\‘~P(tref) ulted)  P()

X3

X1 5
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Deformation in shear flow (strain)

Xl (tref )
L(tref ) =1 X (tref )
X3 (tref ) 123

Xl(t) Xl (tref ) + (t _tref )7}0X2
[(t) = X2 (t) = X2 (tref )
X3 (t) 123 XS (tref ) 123

(t _tref )7}0X2 .
Displacement

g(tref ,t) = [(t) _L(tref) = 0 function in

shear
0 123
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Deformation in shear flow (strain) _
(t _tref )7/0X2
!(tref ’t) = [(t) _E(tref ) = 0
0 123
0 00
ng (t_tref )70 00
0 0 0 123
0 (t _tref )70 0
y =Vu+(Vu) =| (t—te)7 0o 0
Infinitesimal 0 0 0 123
strain tensor
in shear ,
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No stress is generated when a fluid is rotated,
what does the GLVE predict?

t

rcosp P(t)

=

B rsin g

X

calculate the infinitesimal strain tensor for rigid body rotation

use the strain-evident version of the GLVE
8
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GLVE Prediction for Rigid-Body Rotation around the z-axis

(see hand calculations)

9
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GLVE Prediction for Rigid-Body Rotation around the z-axis

t 2(cosy -1 0 0
v

g:+J' Mt —t) 0 2(cosy -1 O

o 0 0 0

Xyz

dt’

Why does GLVE make this erroneous
prediction?

7t 1) =V t) + Vutt.t)f

/\ u(tt) =re) —re)

Because this vector, while accounting for

deformation, also accounts for changes in

orientation.
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y(tt) = Vutt) + Vuc,t)[
ut,t) =r(t) —r()

vEry=r'-r
Origin O
in space

fixed

u(rr)

Orientation changes
(r changes direction)
Shape does not change
(length of r does not
change)

Accounts for changes in
shape and orientation.

Orientation changes
Shape changes
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We desire a strain tensor that accurately captures large-strain

deformation without being affected by

rigid-body rotation.

Consider: time=t’

Shape and position of a
deforming body at ¢’

4

P_.Q dr

fixed coordinate F—m
system (xyz)

time=t

Shape and position of
the same deforming
body at ¢

P

30

dr
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Define change-of-shape

How does dr map to dr’ along a particle path? HEMEmGS A0 (8. O

r particle label (reference time t)
r!

dr dr’

relative location of two
nearby particles

r location at time t’ of the particle labeled r

X
=y | =10
Z!
Xyz
dx’
df ={dy'| =?
dz’
Xyz
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dx'=?

dy'=?

dz'="?
(chain rule)

14
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x oy
OX OX OX
(dx' dy’ dz'),=(dx dy dz), x ¥ &
o oy oy
x o o
0L 0L 01y,
dr'=dr-F
Deformation-gradient % % %
tensor OX OX OX
Far)=| X ¥ & =8—L=aiépéi
= oy oy oy or oar,
x o
0z 07 01)y,
15
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Define: 5_1 F=1
Then use: dr'=dr-F
=7?

16
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Deformation-gradient ' ' '
tensor a_x ﬂ 6_2
. 8x| 8x' axl . .
dr'=dr-F F(L.t) = ox' oy oz Za_Lzﬁiépél
- o oy oy or or,
x o
01 01 01y,
Inverse deformation-
gradient tensor % ﬂ ﬂ
. ox' ox' ox'
— '. = ~A A
d[_dr_ 5 F_l(tl,t)E % ﬂ g :ﬂ:%ej m
- o oy oy | or or
x y a
oz 07" 0r')y,
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We desire a strain tensor that accurately captures large-strain
deformation without being affected by rigid-body rotation.

Vu
Z All these strain measures include
= both deformation and orientation
i -1

We canlseparate the deformation and orientation information in E
and E "using a technique called

18
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Polar Decomposition Theorem

Any tensor for which an inverse exists has two
unigue decompositions:

/
=V -R Pure rotation tensor

1 l_pT
U (oA R-R
- . Orthogonal tensor

T
V= Q‘é F u,v
l T - -

R=A-(A" ATE —AU™ Symmetric, nonsingular
= = = = = tensors

19
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EXAMPLE: Calculate the right stretch tensor and rotation
tensor for a given tensor. Calculate the angle through which R
rotates the vector u.

1>

1
=0
2

o w O

2 1
2 u=|2
0 1

Xyz Xyz

20
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We have partially isolated the effect of rotation
through polar decomposition.

rotation tensor
(‘ left stretch tensor

(\ A=R-U=V-R
C——— right stretch tensor

original (strain) tensor

We can further isolate stretch from rotation by
considering the eigenvectors of U and V .

21
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-cfj = ijj eigenvalues

>
>

<> |70
I
<
=}

& NE
PATH Il

22
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Finite Strain Tensors

A v? u?
E E-F' F'-E
E' ETE E-E
= | e BT

proposed deformation
tensors; contain stretch
of eigenvectors, BUT
NO ROTATION

© Faith A. Morrison, Michigan Tech U.
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EXAMPLE: Calculate stress predicted in rigid-body rotation by

a finite-strain Hooke’s law.

£=GC(t0)

EXAMPLE: Calculate stress predicted in shear by a finite-strain
Hooke’s law. Compare with experimental results.

£=GCY(t0)

© Faith A. Morrison, Michigan Tech U.
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EXAMPLE: What is the inverse-deformation gradient tensor in
steady shear flow? (deformation from t’ to t) What is the Finger
tensor?
70Y X+(t—t)7,Y'
v=| 0 )= Y
0 1
Xyz z Xyz
25
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) shear in
I-direction 1 jal elongation eew rotation

ransor wiLItf::i:&nl mii?{i-i]?r;:f;:lo .'lrnr:::'d!ﬁ: Table 9'3

in 2-direction

oy —siny 0
sing  cosip 0
1] n 1 e

cosd  sinyg 0
—ging cosyh 0
3

100 L B
B, 10 [
001/, 00 e

Din i [
1 - 0 o 00
it 1) ~y 1497 0 D oe 0 1
0 0 L G0 e /o
1+4 5 0 et oo
e y Lo [ 1
LUV Y L -
0 —y 0 ef—1 0 0
(e, ey =y o4t 0 0 e =1 0 0
- 0o 1), 0 0 e ) o

=
—
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fa
—
—_——
~
==
|
-
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QIQ
e
=
~—
=

&
r-r(t'.t)-Ls'{t")d"‘ 1 is the angle from £’ to 7 in cow

€= e(th6) = I e rotation around & s
-]
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TABLE D1

Comparison of Nomenclature for Strain Tensors Used in the Literature

Name

Stress semsor

Gradient of a vector

i

| . i
| Deformatson-gradicnt sensor ‘l
I |
| i

Invesse delormation-gradient Wensor

Cauchy unior

Fanger temsor

Finite strain based on Cauchy |

This Text | lamoniide] | DOFLI26)
B —_—

—

Macosko [162] | Middleman [179]

| O=g+pl |-L=-g+pl|
(o o, i, .
| Vg = —=, - —L
w e Gohd Ve = AL,
£
=
g
o o
e e |
Lo g |
¥ n |
i EEN | EaEy |
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Compare Finite-Strain Hooke’s Law with Observations

NOTE: for the
first time we have
predicted
nonzero normal
stresses in shear.

Figure 9.6, p. 325 DeGroot;
solid rubber

Stress (kPa)

(2]
]

11— 72

40 +

o
IS

™

0.2 0.4

20 4

-40 1

Solid lines, G = 160 kPa
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Now, let’s fix the Maxwell model.

(t-t)

t
Integral Maxwell model - :_J‘@e 7 dt!
(rate version): = 7=/( )

=+ _t[M(t—t')L(t,t')dt'

GLVE model _o
(strain version): 2G(t - 1)
Mt-t)=— 2
t-t) p
t _t=0)
_ 770 A '
Integral Maxwell model 7=+ | | =€ y(t,t)dt
= 2
(strain version): e A
29
© Faith A. Morrison, Michigan Tech U.
Lodge model
t _t=0)

Integral Maxwell model Z:+.[ %e A y(t,t)dt

(strain version): >

substitute (-Finger tensor) for _— C_l(t' 1)
infinitesimal strain tensor

t _(t—t')
L '
Lodge Model: Z=— ﬂ_ge A |CTH, ) dt
—0 A what does
it predict?

A finite-strain, viscoelastic constitutive equation
30
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EXAMPLE: Calculate the material functions of steady shear
flow for the Lodge model.

¢ (1)
Lodge Model: g=—j %e A |lcie byt

31
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Lodge model
107
A=1s
G,=4x10* Pa
¢ 108
z n() .
2 | ¥ (7)
€ 105,
n(7)
10¢ |
0.001 0.01 0.1 1 10 100 1000
yoré(s™)
32
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EXAMPLE: Does the Lodge model pass the test of objectivity
posed by the turntable example? (remember, the GLVE failed this test)

(@ ©)

<l

fluid

©

x|

33
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Turntable Example

t t-t"
M . e /
Lodge Model: g=—_[ —ge A |CTH(t, b dt
Sl A
x y a
ox  ox ox
Eley=o-Thee,-| o X 2
x y 2
oz o7 ot Xyz
X X + ot -ty
t=|y| = ¥
4 7
Xyz Xyz

34
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Deformation in shear flow (strain)

Xl (tref ) a
— ul
F(te) =] X, (te) Vo (L 1) = 5x, Shear strain
2
X3 (tref ) 123
Xl (t) Xl (tref ) + (t _tref )70)(2
[(t) = X2 (t) = X2 (tref )
X3 (t) 123 X3 (tref ) 123
(t_tref )7}0X2 Disol ¢
Isplacemen
Ut D) =r®)-r(te)=| 0 funetion
O 123
35

© Faith A. Morrison, Michigan Tech U.

Turntable Example

t _=0)
-1 '
Lodge Model: g=—J %e A |CTHE, t) dt
1+7/2 y 0
g_l= y 10
01
Xyz
Lodge prediction: rotating frame
2
t _(t—t') 1+}/ V4 0
r=- %eﬂ y 1 0| dt
- 0 01
Xyz
36
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Lodge turntable - from stationary frame

X Xo + (Y = Yo)|- SC'+ CS' + CC'y ]+ (X — xo)[SS' + CC' —CS'y
r=y| =| Yo+ —Yo)CT+S'S+SCy]+ (X —x)-CS +5C'—55%]
Z Xyz z Xyz
S =sinQt
S'=sinQt’
C =cosQt
-1 -1 ' '
Now, calculate E and C. C'=cosxt
x o @ 7 =rnt-1)
R
E—l(t-lt)zﬂ:%gj = x o a
= or  or oy’ oy oy
x ¥ a o
or or or)y, - -
37
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Result: 1-2CSy +C%?  (C%-SHy+SCy? 0
Ct,)=| (C*-SHy+SCy* 1+2CSy+S%°% 0
0 0 1
Xyz
Lodge Model prediction in stationary frame:
: ) 1-2CSy+C%?* (C*-S%y+SCy?* 0
r=-| %e 2 (C?-5Y)y+SCy?  1+2CSy+S%% o dt
—© 0 0 1
Xyz
S=sinQt C=cosQt
, . , , , To compare to previous result,
S'=sinQt’ C'=cosQt must consider shear
y = 770(t _ t') coordinate system, e.g. t=0

38
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Lodge prediction: stationary frame, t=0

2
et |1+
r=- %e A y 1 dt’
—0 0 0
XyzZ
Lodge prediction: rotating frame
2
‘ |1+ 7 0
r=- %e Al y 10| db
—0 0 0
XyzZ

39
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Lodge (Maxwell with Finger strain tensor)
passes test of objectivity

What is the differential form of the Lodge model?

t _(t=t)

?

Lodge Model:

5]
Il

o
N

o -

d

d 71

= _9
d

(Homework)

—

40
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oF ",
at

EXAMPLE: What is

We can answer by writing the definition of the
deformation gradient tensor in Einstein notation.
We will also need the chain rule of differentiation.

(after this, use Table 9.1)

41
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Aside: Why did we use —C™'(t',t) in the Lodge model?

EXAMPLE: What is C™'(t,t) ?

EXAMPLE: Define: g[ol(t,t')EE‘L What is this strain tensor in the

limit of small strains? ' a(r'-r)
Hint: VU= o

EXAMPLE: Define: ;/[()](t,t’)zi—g1 What is this strain tensor in the

limit of small strains? Hint: V'u =%
r

42
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11/26/2012

21



(Differential Lodge Equation, continued)

v

T+ AT = —ﬂl
= — ﬂ/ =

v Dr T

—ZE—T—(VM) -T—7-VV
upper-convected time derivative
Dr or
t t -
If we define: ; =7+ 770 | (does not affect practical predictions since only

normal stress differences can be measured)

43
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Note on the total derivative/substantial derivative:
dg(t,xl,xz,x3) B ot Ot OX, ot X, ot X,
= +—=—4=—=4 ==

dt ot ox ot ox, ot ox, o
di or & ag oX,,

J’_
dt ot Zox, ot

If the path along which we are taking the derivative is a particle path (which we
have already assumed when defining the Finger tensor), then

44
© Faith A. Morrison, Michigan Tech U.
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Differential Lodge Equation (Upper Convected Maxwell Model)

T+ AT =1y
Dz
gvz—?—(Vy)T -T—7-VV
upper-convected time derivative

45
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The Upper-Convected time derivative can be understood to be the
time derivative calculated in a coordinate system that is translating
and deforming with the fluid (see section 9.3).

) ) . , R?
material grid at time t' yA
same material
grid at time t
Q
P
s
X, Xt
& N
Y »
\ 4

46
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(lower-convected Maxwell)

Other Convected Derivatives
upper-convected time derivative
v D
r=—-( -z vy
lower-convected time derivative
Dr
t=pp vz (O
Corotational time derivative
Dr 1
iE—T+§(Q'£—£'@)
0=Vy- W)
47
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(1)
Lodge Model: r= _J‘ 77_(2)e 2 C_l(t',t) dt’
(upper-convected Maxwell) = 7/ | 2
t _(t-t)
Cauchy-Maxwell Model: £:+J' %e 2 eyt
—00

t
Lodge Rubberlike Liquid Model: g=- I M (t —t')E_l(t',t) dt’

48
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Lodge
Equation
(UCM)

TABLE D.2

Predictions of Lodge Equation or Upper Convected Maxwell Model in Shear and

Extensional Flows

1. Shear
Startup

Seady
Cessation
Step shear srain

2. Extension

Searvap
Uniaxial (b = 0, &g = 0)
or blaxial (b= 0,dg < 0)

Planar (b = 1,dg = )

Usiaxial (& = 0, dg > 0)
or biaxial (b = 0,4 < 0)

Planar (b= 1,4p > 0)

ntin @)
wrin ¥
wlin ¥
Lite]
Wi
wir)
LUy
W)
Wi ¥l

Git. )
G it 1)
Gyl )

Friedg)
ar 4g)

g, (8. dg)

i, {F. dad

ilda)
o falél
i Lo}
fipylée)

n(1-ct)

a1 - 6% (14 §)]
U]

no = Ggl
26T = Ingd
0

e T
ZingeT

2B - AT

}3[3 28e act)
A =1 - Zigh
Bl igh

;‘2(1 Ar¥ -t
A=) =gk
C=142égh *

L] EL]

{1 — Zhdg){l + hég) AB
dmg  Am
T-# ~ AC

49
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Cauchy-
Maxwell
Equation
(LCM)

TABLED.3

Predictions of Cauchy—Maxwell Equation or Lower Convected Maxwell Model in Shear and
Flows.

Extensional

1. Shear
Startup

Cessaton

Suep shear strain

1 Extension

Srarnap
Uniaxial (b= 0,dy > 0)
of biaxial (b= 10,4 <0)

Planar (b= 1,dp > 0)

5
Uniaxial (b =0, 4p > 0)
or biaxial (b = 0, dg < 0)

Planar (b= 1,dg > 0)

. ¥)
W)
WP
ni¥)
wily)
Wyl
LSy
i)
Vi)

Gir, w)
G e 10l
Gy (2. 10)

A%, da)
or figir, o)

LR
iinir.do)
fitha)
e fgldo)
i e

fimy o)

m(1-et)
2 fi-ef (14 4)]

-

= Goh
264} = gt
%
npe?
Zimpe

]

Goe~t
Goe~t
G

™ - -
m{! e ¥ - ceF)
€= 142
D= |- dgh
;""(z A ¥ - ce¥)
Aw | = Digh
—2ne &
A (]_' )
Ing _Im
(1+2uig)(1 - 2ig)  CD

—Am —4ng
1-4fa3 AC

—2ng =2
T=2igk = A

50
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Approaches to finite-strain
constitutive equations

N <

A
ﬁ replace with 7.

or other time

non-objective time derlvatlve\/\ derivatives
01\
differential T+ /’b 6t == _770}/
% Maxwell model !
E
5 t —(t=t) .-
& | integral r= J 0 e 4 '}/(t t )dt

Maxwell model

non-objective strain measure

“ replace with—C~ C

or other strain measures

51
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Methods of Improving Constitutive Equations

Maxwell Model or
T+A-==~-1,7
z ot ULYe
We can improve with
new time derivatives
or new strain t 7o (H)
measures. z(t) = __[ ?e (t t')dt’

We can also change the
basic equation:

elinear modifications
enon-linear modifications

52
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Other Constitutive Approaches

Simple Maxwell Model, 8721 _ c
shear atA =Y 2
ot
Upper-Convected Yo
Maxwell Model, general & ﬂ,g =T

retardation time j
or

) oy
= = _770(7/21 +4, gtﬂj

Simple Jeffreys Model, Ty
shear

Upper-Convected T + /11 7 =—-n,\V k + 12 7,)

Jeffreys Model, general
(Oldroyd B Fluid)
53
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Maxwell Model - Mechanical Analog

07, .
ot oY 2

Ty

Jeffreys Model - Mechanical Analog

0
z'21+/11 (7/21"'/1 gtﬂj

54
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Unfortunately, this change only modifies G(t-t);
the Jeffreys Model is a GLVE model

] or 57
Simple Jeffreys Model 7+ 4, i =1, ;/ +4, E

(not frame-invariant)

Now, solving for z,; explicitly we obtain,

o(t)=- ﬂ%(l—%]e‘l +%5(t —t’)}z(t’)dt’

_ — _J
G(tZt)

Other linear modifications of the Maxwell model
motivated by springs and dashpots in series and
arallel modlfy G(t-t”) but do not otherwise introduce

(Might as well use the
Generalized Maxwell model)

55
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Non-linear modifications of the Maxwell Model

n(y)
GO

. v o .
White-Metzner Model £+ g = —n(y)z

Oldroyd 8-Constant Model
THATHS (ﬂq ul)(g g?)+%ﬂo(trg)'+%v1(giy')i

|

™

™=
==

. v N1
:_770(1"'121"'(/12_ﬂ2)7:£)+§‘/2 :

The Oldroyd 8-constant contains many UCM
other constitutive equations as special

cases. UCM + terms = UCJ
56
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White-
Metzner

TABLE D.5
Predictions of White-Metzner Equation in Shear and Extensional Flows [26]°
1. Shear = .
Startup ot §) nt) (1
¥y 2o0ptp) [1 =« (14 7]
Wi 0
Steady al#) iF)
Wyl nlFIair)
walF) (]
2. Extension
Steady
Uniaxial (5 = 0, > ) filda)
of biaxfal b = 0, ég < 0) or falén) Mt
ok ) =1 - Dight§)
B(F) = 1+ dgdiF)
Planar (b = 1, > 0) in o) - )

1= 4BFF  AFICH
Aly) = | = 2ghly)
Cl¥h = 1+ gh(¥)

o inlF)  _ 2ath)
A1) 1+€d7) €
“AIF) = i)/ Gy and RN R
57
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TABLE D.4
Predictions of Oldroyd B or Convected Jefireys Model in Shear and E:kmioﬂa_l Flowi [26]
_— i i ,
Suareap ) m[:—fv(l—l—:)(l--e'ﬁ}]
Oldroyd B ] z.,,u.-n;:[ .
win g o
(Convected s o .
niE) Tng (A — ha)
Jeffreys) ) o
Cessation noinF) -»{l—:—f I
) Ing(hy —Agde W
W) []
5A0S Gle) m ‘—‘I';::’:"
ol
- i
1. Extension
Starmup
Uniiaxial (b = 0, ég > 0) *ir. dad

o biaial (b =10, &y < 0} of iy (1, 40)

Planar (b = 1. ép > 0) i, (r. )
iip it da)
Sieady
Usiaxial (b = 0, 4g = 0) L]

or biaxial (b = 0, dg < 0} of faléa)
Plasar (b= 1,45 > 0) fim lha)

iy (da}

58
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The Oldroyd 8-Constant model contains all terms linear in stress

tensor and at most quadratic in rate-of-deformation tensor that are also
consistent with frame invariance.

T+117+ (ﬂ1 ﬂl)(lﬁ ££)+%ﬂ0( ﬁ)}/"' Vl(z 7)'
:—%[z%z“ﬁz il
v al
Giesekus Model L"'ﬂﬁ"'a_f T—_7707
Tlo——
quadratic
in stress

The only way to choose among
these nonlinear models is to

compatre predictions. 59
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We can also to add non-linearity
and thus produce new constitutive equations.

Factorized Rivlin-Sawyers Model
t
o) =+ [ME-t)(®,(1,,1,C - ®,(1,,1,)C "ot
Factorized K-BKZ Model

z(t) = +j|v| (t— t)£2—g 2‘9—Uc ]d
I, 1, are the o al
invariants of the
Finger or Cauchy
strain tensors (these

are related). Again, the only way to choose among these nonlinear

models is to compare predictions
(see R. G. Larson, Constitutive Equations for Polymer Melts).
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Factorized
Rivlin-
TABLE D.6
Sawyers Predicti d Riviin-S. Maodel in Shear and Extensional Flows [26]
1. Shear - -
Steady L153] me Mis)s(®) + &) ds
3
i) Lsﬂuuhm + ) de
walF) - F.mm’o, ds
o
SADS ') fg Mis)(1 — cos we) ds
o
() lew M) sin we ds
2. Extension
Steady
Unisxil (b= 0,49 =0} Fléo) ;nﬂ Miz) [e_ (A =) g e e "-')] ds

or biaxiad (b= 0.4y <0)  or Faldo)

R b=1io20  dnte g [ M08 (% - ) 5y (0 )]

iy (éa) iy

=
.—Jf; (01675 + 1) (0 — )] 45
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We have fixed all the obvious flaws in our constitutive
equations, and now we have too many choices!

We could make predictions and compare with
experimental data, but some of the models (Rivlin
Sawyer, K-BKZ) have undefined functions that must be
specified.

How to proceed? We need some guidance.

All along we have taken a continuum-mechanics
approach. We have run that course all the way through.
Now we must go back and seek some insight from
molecular ideas of relaxation and polymer dynamics.

62
© Faith A. Morrison, Michigan Tech U.

11/26/2012

31



Some of what we have learned from Continuum Modeling

*We can model linear viscoelasticity. The GMM does a good job; there is no
reason to play around with springs and dashpots to improve linear viscoelasticity

*We can model shear normal stresses. The kind of deformation described by the
Finger tensor gives a first normal stress difference and zero second-normal
stress; the kind of deformation described by the Cauchy tensor gives both stress
differences, but too much second.

*We can model shear thinning. But only by brute force (GNF, White-Metzner)

*We can model elongational flows. But we predict singularities that do not appear
to be present.

*Frame-Invariance is important. Calculations outside the linear viscoelastic
regime are incorrect if the equations are not properly frame invariant.

*Thinking in terms of strain is an advantage. When we think only in terms of rate
we can only model Newtonian fluids.

eLooking for contradictions when stretching a model to its limits is productive.

«Continuum models do not give molecular insight. We can fit continuum models
and obtain material functions (viscosity, relaxation times) but we cannot predict
these functions for new, related materials
63
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