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Advanced Constitutive Modeling
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)()(  Generalized Linear-
Viscoelastic Model:



Good only for small strains, small strain-rates

To develop constitutive equations 
for large strain, large strain-rate 

flows, the strain and strain history
are important.

strain-rate 
tensor
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What is the strain measure that is used in 
the GLVE model?
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What is the strain measure that is used in the GLVE model?

(see hand calculations)
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Generalized Linear-
Viscoelastic Model: 

(strain version)

infinitesimal 
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It is the use of the infinitesimal strain 
tensor as the strain measure that causes 

the frame-variance in the GLVE model.
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We have seen the infinitesimal strain tensor before:  when we first 
defined strain (when we discussed material functions).
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Strain in Shear Flow
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Deformation  in shear flow (strain)
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Deformation  in shear flow (strain)
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Infinitesimal 
strain tensor 

in shear
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t 't

No stress is generated when a fluid is rotated; 
what does the GLVE predict?
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• calculate the infinitesimal strain tensor for rigid body rotation 
• use the strain-evident version of the GLVE
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GLVE Prediction for Rigid-Body Rotation around the z-axis

(see hand calculations)
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GLVE Prediction for Rigid-Body Rotation around the z-axis
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Why does GLVE make this erroneous 
prediction?
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Because this vector, while accounting for 
deformation, also accounts for changes in 
orientation.
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 Accounts for changes in 
shape and orientation.
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We desire a strain tensor that accurately captures large-strain 
deformation without being affected by rigid-body rotation.

Consider: time=t’
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fixed coordinate 
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r

r

 location at time t’ of the particle labeled r

particle label (reference time t)

How does dr map to dr’ along a particle path?
Define change-of-shape 

tensors that rely on 
relative location of two 

nearby particles

r location at time t’ of the particle labeled r
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(chain rule)
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Frdrd 

IFF 1
Define:

Then use:

?
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 Frdrd

We desire a strain tensor that accurately captures large-strain 
deformation without being affected by rigid-body rotation.

u

F

1F

All these strain measures include 
both deformation and orientation



We can separate the deformation and orientation information in      

and        using a technique called polar decomposition.
F

1F
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Polar Decomposition Theorem

Any tensor for which an inverse exists has two 
unique decompositions:
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EXAMPLE: Calculate the right stretch tensor and rotation 
tensor for a given tensor.  Calculate the angle through which  
rotates the vector u.
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We have partially isolated the effect of rotation 
through polar decomposition.  

i

RVURA 

original (strain) tensor

rotation tensor

right stretch tensor

left stretch tensor

We can further isolate stretch from rotation by 
considering the eigenvectors of      and      .  U V
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EXAMPLE: Calculate stress predicted in rigid-body rotation by 
a finite-strain Hooke’s law.

)0(1 tCG 

EXAMPLE: Calculate stress predicted in shear by a finite-strain 
Hooke’s law.  Compare with experimental results.

)0,(tCG

)0,(1 tCG 
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EXAMPLE: What is the inverse-deformation gradient tensor in 
steady shear flow? (deformation from t’ to t)  What is the Finger 
tensor?
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Table 9.3
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Compare Finite-Strain Hooke’s Law with Observations

NOTE: for the 
first time we have 
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Now, let’s fix the Maxwell model.
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Lodge model

Integral Maxwell model 
(strain version):
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A finite-strain, viscoelastic constitutive equation

what does 
it predict?
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EXAMPLE: Calculate the material functions of steady shear 
flow for the Lodge model.
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EXAMPLE: Does the Lodge model pass the test of objectivity 
posed by the turntable example? (remember, the GLVE failed this test)
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Lodge Model: tdttCe
t tt
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Deformation  in shear flow (strain)
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Lodge Model: tdttCe
t tt
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To compare to previous result, 
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coordinate system, e.g. t=0
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Lodge (Maxwell with Finger strain tensor) 
passes test of objectivity

What is the differential form of the Lodge model?

Lodge Model:
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(Homework)
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EXAMPLE: What is          ?
t

F



 1

We can answer by writing the definition of the 
deformation gradient tensor in Einstein notation.  
We will also need the chain rule of differentiation.
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(after this, use Table 9.1)

EXAMPLE: What is             ?),(1 ttC 

Aside:  Why did we use                  in the Lodge model? ),(1 ttC  

EXAMPLE: Define:                            What is this strain tensor in the 

limit of small strains?

ICtt ),(]0[

EXAMPLE: Define:                             What is this strain tensor in the 
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limit of small strains?
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(Differential Lodge Equation, continued)
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 0~ If we define: (does not affect practical predictions since only 

normal stress differences can be measured)
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If the path along which we are taking the derivative is a particle path (which we 

have already assumed when defining the Finger tensor), then
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Differential Lodge Equation (Upper Convected Maxwell Model)
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The Upper-Convected time derivative can be understood to be the 
time derivative calculated in a coordinate system that is translating 
and deforming with the fluid (see section 9.3).
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Other Convected Derivatives
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Lodge Model: 
(upper-convected Maxwell)
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Lodge Rubberlike Liquid Model: tdttCttM
t

 


 ),'()( 1

48



11/26/2012

25

Lodge 
Equation
(UCM)
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Cauchy-
Maxwell 
Equation
(LCM)
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Approaches to finite-strain 
constitutive equations

non-objective time derivative



replace with
or other time
derivatives
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non-objective strain measure

replace with
or other strain measures

CC ,1

Methods of Improving Constitutive Equations
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We can improve with 
new time derivatives 
or new strain 
measures.

We can also change the 
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basic equation:

•linear modifications
•non-linear modifications
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Other Constitutive Approaches
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   201 

p y ,
shear

Upper-Convected 
Jeffreys Model, general

(Oldroyd B Fluid)
53

Maxwell Model - Mechanical Analog
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Jeffreys Model - Mechanical Analog
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Unfortunately, this change only modifies G(t-t’);
the Jeffreys Model is a GLVE model

Simple Jeffreys Model 
(not frame-invariant) 
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Now, solving for 21 explicitly we obtain,
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Other linear modifications of the Maxwell model 
motivated by springs and dashpots in series and 
parallel modify G(t-t’) but do not otherwise introduce 
new behavior.

(Might as well use the 
Generalized Maxwell model)
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Non-linear modifications of the Maxwell Model

White-Metzner Model

Oldroyd 8-Constant Model
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UCM

UCM terms UCJ

The Oldroyd 8-constant contains many 
other constitutive equations as special 

cases.
56
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White-
Metzner
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The Oldroyd 8-Constant model contains all terms linear in stress 
tensor and at most quadratic in rate-of-deformation tensor that are also 
consistent with frame invariance.
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0

quadratic 
in stress

The only way to choose among 
these nonlinear models is to 
compare predictions. 59

We can also modify integral models to add non-linearity 
and thus produce new constitutive equations.

Factorized Rivlin-Sawyers Model
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Factorized K-BKZ Model

I I are the
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 12I1, I2 are the 
invariants of the 
Finger or Cauchy 
strain tensors (these 
are related). Again, the only way to choose among these nonlinear 

models is to compare predictions 
(see R. G. Larson, Constitutive Equations for Polymer Melts).
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Factorized 
Rivlin-
Sawyers

© Faith A. Morrison, Michigan Tech U.

61

We have fixed all the obvious flaws in our constitutive 
equations, and now we have too many choices!

Choosing Constitutive Equations

We could make predictions and compare with 
experimental data, but some of the models (Rivlin
Sawyer, K-BKZ) have undefined functions that must be 
specified.

How to proceed? We need some guidance.

© Faith A. Morrison, Michigan Tech U.

All along we have taken a continuum-mechanics 
approach.  We have run that course all the way through.  
Now we must go back and seek some insight from 
molecular ideas of relaxation and polymer dynamics.
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Some of what we have learned from Continuum Modeling

•We can model linear viscoelasticity.  The GMM does a good job; there is no 
reason to play around with springs and dashpots to improve linear viscoelasticity

•We can model shear normal stresses.  The kind of deformation described by the 
Finger tensor gives a first normal stress difference  and zero second-normal 
stress; the kind of deformation described by the Cauchy tensor gives both stressstress; the kind of deformation described by the Cauchy tensor gives both stress 
differences, but too much second.

•We can model shear thinning.  But only by brute force (GNF, White-Metzner)

•We can model elongational flows.  But we predict singularities that do not appear 
to be present.

•Frame-Invariance is important.  Calculations outside the linear viscoelastic
regime are incorrect if the equations are not properly frame invariant.

Thinking in terms of strain is an ad antage When e think onl in terms of rate

© Faith A. Morrison, Michigan Tech U.

63

•Thinking in terms of strain is an advantage.  When we think only in terms of rate 
we can only model Newtonian fluids.

•Looking for contradictions when stretching a model to its limits is productive.

•Continuum models do not give molecular insight.  We can fit continuum models 
and obtain material functions (viscosity, relaxation times) but we cannot predict 
these functions for new, related materials


