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Molecular Constitutive Modeling

•Begin with a picture (model) of the kind of material 
that interests you

•Derive how stress is produced by deformation of that 
picture

•Write the stress as a function of deformation 
(constitutive equation)

© Faith A. Morrison, Michigan Tech U.
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At the beginning of the course . . . 

Chapter 3:  Newtonian Fluid Mechanics Polymer Rheology

Molecular Forces  (contact) – this is the tough one

stress




 choose a surface 

P

dS
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Pat

stress
f
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
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
 through P

the 
force on 
that 
surface
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We need an expression for the 
state of stress at an arbitrary 

point P in a flow.
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At the beginning of the course . . . 

Molecular Forces (continued)

Think back to the molecular 
picture from chemistry:

At th t

The specifics of these forces, 

At that 
time we 
wanted to 
avoid 
specifying 
much 
about our 
materials.

© Faith A. Morrison, Michigan Tech U.
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e spec cs o ese o ces,
connections, and interactions 

must be captured by the 
molecular forces term that we 

seek.

At the beginning of the course . . . 

Molecular Forces (continued)

•We will concentrate on expressing the molecular 
forces mathematically;

•We leave to later the task of relating the resulting 
h i l i i l b imathematical expression to experimental observations.

•arbitrary shape
•small

First, choose a 
surface: n̂

f
dS

stress





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At the beginning of the course . . . 

Molecular Forces (continued)

Assembling the force vector:
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We swept all 
molecular contact 

forces into the 
stress tensor.

© Faith A. Morrison, Michigan Tech U.
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f

Total stress tensor
(molecular stresses)Now, we seek to 

calculate molecular 
contact forces 
directly from a 

molecular picture.

Long-Chain Polymer Constitutive Modeling

)(ˆ
~  ndAf

molecular tension 
force on arbitrary 
surface

stress tensor

R

We now attempt to calculate 
molecular forces by considering 
molecular models.

end-to-end Polymer Dynamics

© Faith A. Morrison, Michigan Tech U.

vector, R

Long-chain polymers 
may be modeled as 
random walks.

70
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Rend-to-end

A polymer chain adopts 
the most random 
configuration at 
equilibrium

Polymer coil responds to deformation

end-to-end 
vector, R

equilibrium.

When deformed, the chain 
tries to recover that most 
random configuration, 
giving rise to a spring-like spring of equilibrium 

© Faith A. Morrison, Michigan Tech U.

g g p g
restoring force.

p g q
length and orientation R

We will model the chain dynamics 
with a random walk.

71

Equilibrium configuration distribution 
function - probability a walk of N steps 
of length a has end-to-end distance R

Gaussian Springs (random walk)

RReR 







2

3

0 )( 




3

From an entropy calculation of the work needed to 
extend a random walk, we can calculate the force 
needed to deform a the polymer coil

R
Na

kT
f

2

3


If we can relate this force, the force to 
extend the spring to the force on an

22Na


© Faith A. Morrison, Michigan Tech U.

 ndAf ˆ
~molecular tension

force on arbitrary
surface

stress tensor

extend the  spring, to the force on an 
arbitrary surface, we can predict rheological 
properties

72
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
Force on surface 
dA due to chains 

f ETE R

Tension 
force on dA

Molecular force generated by deforming chain

f
~

Probability 
chain has ETE 
R

Probability 
chain of ETE R
crosses surface 
dA

Force exerted 
by chain w/ 
ETE R 


of ETE R

© Faith A. Morrison, Michigan Tech U.

R
Na

kT
f

2

3


321)( dRdRdRR(see next slide)

  3

1

ˆ Rn 

73= number of polymer 
chains per unit volume

31
1

n̂

dA

a

b

c

a b

intersection
with dA

Probability chain of ETE R crosses surface dA

I put that in 
because this 

31

31
1



31
1



d

Rn ˆ
n̂

R

a b



does not print 
to PDF right 
fam 2012
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Probability 
chain of ETE R
crosses surface 

dA
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
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74
= volume per polymer chain
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Molecular force generated by deforming chain

 RRn
Na

kT
f  ˆ

3~
2

3

1



321)( dRdRdRRRRRR  

 ndAf ˆ
~ molecular tension 

force on arbitrary 
surface in terms of 

BUT, from before . . .

© Faith A. Morrison, Michigan Tech U.

Comparing these two 
we conclude,

RR
Na

kT


2

3 

surface in terms of 

)( 3

2


dA

Molecular force generated by 
deforming chain 75

How can we convert this equation,

RR
Na

kT


2

3 

Molecular stress in a fluid generated 
by a deforming chain

which relates molecular ETE vector and stress, into a constitutive 
equation, which relates stress and deformation?

© Faith A. Morrison, Michigan Tech U.

We need a idea that connects ETE vector motion 
to macroscopic deformation of a polymer 
network or melt.

76
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Elastic (Crosslinked) Solid

Between every two crosslinks there is a 
polymer strand that follows a random 
walk of N steps of length a

2R RETE = end-to-end vector

walk of N steps of length a.

Distribution of 
ETE vectors

© Faith A. Morrison, Michigan Tech U.

1R

ETE vectors

77

How can we relate changes in end-to-end 
vector to macroscopic deformation?

affine-motion assumption:  the macroscopic 
dimension changes are proportional to the 

AN ANSWER:

g p p
microscopic dimension changes

before after

© Faith A. Morrison, Michigan Tech U.
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Consider a general elongational deformation:

2

1
1 00

00











 


F

123300 



 

For affine motion we can relate the components of the 
initial and final ETE vectors as,

ETE after
11 



 R

© Faith A. Morrison, Michigan Tech U.

1

1
1 R

R



2

2
2 R

R



3

3
3 R

R




ETE before
12333

22

11

)(



















R

RtR




79

RR
Na

kT


2

3 

We are attempting to calculate the stress tensor with this 
equation:

321)( dRdRdRRRRRR  

Na

11 



 R But where do

© Faith A. Morrison, Michigan Tech U.

12333

22

11

)(









 


R

RtR




But, where do 
we get this?

80
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321)( dRdRdRR
Probability chain has ETE 

between R and R+dR:


3

Configuration 
distribution function

RReR 







2

3

0 )( 


Equilibrium configuration 

distribution function:

But, if the deformation is affine, then the number of 
ETE vectors between R and R+dR at time t is equal to 
the number of vectors with ETE between R’ and 

22

3

Na


© Faith A. Morrison, Michigan Tech U.

R’+dR’ at t’

RReRR 







2

3

0 )'()( 


Conclusion:

81

RR
Na

kT


2

3 

Now we are ready to calculate the stress tensor.

321)( dRdRdRRRRRR  
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12333   

iii eekT ˆˆ2 Final solution:

82

(much algebra 
omitted; solved in 
Problem 9.57)
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Compare this solution with the Finger strain tensor for this flow.

123

2
3

2
2

2
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




















 kTeekT iiiFinal solution for stress:

p g

 
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2
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2
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1
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















 





FFttC

T

1

© Faith A. Morrison, Michigan Tech U.

1 CkT

Which is the same as the finite-strain 
Hooke’s law discussed earlier, with G=kT.

Since the Finger tensor for 
any deformation may be 
written in diagonal form 
(symmetric tensor) our 
derivation is valid for all 
deformations.

83

What about polymer melts?
Non permanent crosslinks

j i i i l

Green-Tobolsky
Temporary Network 
Model

•  junction points per unit volume = constant
•ETE vectors have finite lifetimes
•when old junctions die, new ones are born
•newly born ETE vectors adopt the 
equilibrium distribution 0

© Faith A. Morrison, Michigan Tech U.

Probability per unit 
time that strand dies 

and is reborn at 
equilibrium 

1


Probability that strand 
retains same ETE from t’ 
to t (survival probability)

ttP ,

84
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What is the probability that a strand retains the same ETE vector 

between t’ and t’+t?

Probability that 
strand does not die 

Probability that strand 
retains same ETE from t’ tttP

over interval tto t (survival probability)







   tPP ttttt 

1
1,,

 ttt ,

 tt
tt P

dt

dP


  ,
, 1

© Faith A. Morrison, Michigan Tech U.

 
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C
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









,

1,ln

85

The contribution to the stress tensor of the individual strands can be 
calculated from,

Probability that 
strand is born

Stress generated by 
an affinely

Probability 
that a strand

Stress at t from 
strands born strand is born 

between t’ and 
t’+dt’

an affinely
deforming strand 
between t’ and t

 
 ),(

1 1 ttCGetdd
tt













  









that a strand 
survives from 

t’ to t

strands born 
between t’ and 

t’+dt’
=

© Faith A. Morrison, Michigan Tech U.

 










t tt

tdttCe
G

),(1




Green-Tobolsky temporary network 
mode (Lodge model) 86
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 










t tt

tdttCe
G

),(1




Green-Tobolsky temporary network

Oh no, back where we started!

NO!

Green Tobolsky temporary network 
mode (Lodge model)

We now know that affine motion of strands with equal birth and death rates 
gives a model with no shear-thinning, no second-normal stress difference.

To model shear-thinning, N2, etc., therefore, we must add something else to 
our physical picture e g

© Faith A. Morrison, Michigan Tech U.

our physical picture, e.g.,

•Anisotropic drag
•nonaffine motion of various types

87

Anisotropic drag - Giesekus
In a system undergoing deformation, the surroundings of a given molecule 
will be anisotropic; this will result in the drag on any given molecule being 

anisotropic too.



Starting with the dumbbell model (gives UCM), replace             with an 

anisotropic mobility tensor    .  Assume also that the anisotropy in       is 
proportional to the anisotropy in      .


 28kT


B B




G

IB 

© Faith A. Morrison, Michigan Tech U.



 0

0

: Giesekus Model

see Larson, Constitutive Equations for Polymer 
Melts, Butterworths, 1988 88
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Constitutive equations incorporating non-affine motion include:

Gordon and Schowalter: “strands of polymer slip with respect to the 
deformation of the macroscopic continuum”;  see Larson, p130  (this model has 
problems in step-shear strains) strand slippage

Larson: uses nonaffine motion that is a generalization of the motion in the Doi
Edwards model;  see Larson, Chapter 5

   


  
2

vv
Dt

D T

•Phan-Thien/Tanner
•Johnson-Segalman

© Faith A. Morrison, Michigan Tech U.

Wagner: uses irreversible nonaffine motion;  see Larson, Chapter 5

see Larson, Constitutive Equations for Polymer 
Melts, Butterworths, 1988

89

Reptation Theory (de Gennes)

Retraction (Doi-Edwards)

© Faith A. Morrison, Michigan Tech U.

90

Non-affine 
motion
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10,000

G(t), Pa

Step shear strain - strain dependence
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<1.87
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0
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1 10 100 1000 10000

time, s
Figure 6.57, p. 212 
Einaga et al.; PS soln

© Faith A. Morrison, Michigan Tech U.
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100000

Step shear strain - Damping Function
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After retraction the

100

1000
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sh
if

te
d

 G
(t

),
 P

a

0.01

0.1 1 10 100

strain

Depending on 
the strain, a 
different 

t f

The Doi-Edwards 
model does a good job 
of predicting the 
damping function, h() 
(see Larson p108)

After retraction the 
relaxation is governed by 
the memory function M(t-t’)

1

10

1 10 100 1000 1000

time, t

Figure 6.58, p. 213 
Einaga et al.; PS soln

© Faith A. Morrison, Michigan Tech U.

92

Retraction time

amount of 
stress is 
relaxed during 
retraction
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Doi-Edwards Model







 ),()( tdttQttM
t

Predicts a 
strain measure

 























 




2

0 0
21

11
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ˆ

ˆˆ
5

4

1
),( dd

Fu

FuFu
ttQ







oddi

tt

i

i ie
G

ttM 


)(

22

08

i

G
G N

i 
 2

1

ii

 

Predicts a 
memory 
function

Predicts a 
relaxation 

time 
distribution

© Faith A. Morrison, Michigan Tech U.

i i i

(Factorized K-BKZ type)û unit vector that gives 
orientation of strands at time t’                

93M. Doi and S. Edwards J. Chem Soc. Faraday Trans II 74, 1818 
(1978); ibid 74 560, 918 (1978); ibid 75, 32 (1979); ibid 75, 38 
(1979)

Doi-Edwards Model
Steady Shear
SAOS

© Faith A. Morrison, Michigan Tech U.

94
M. Doi and S. Edwards J. Chem Soc. Faraday Trans II 75, 38 (1979)
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Doi-Edwards Model
Shear Start Up

© Faith A. Morrison, Michigan Tech U.

95
M. Doi and S. Edwards J. Chem Soc. Faraday Trans II 75, 38 (1979)

Doi-Edwards Model
Steady Elongation
Elongation Startup

© Faith A. Morrison, Michigan Tech U.

96
M. Doi and S. Edwards J. Chem Soc. Faraday Trans II 75, 38 (1979)
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Doi-Edwards Model
Large-Amplitude Step Shear
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97

0.01

0.1 1 10 100

strain

M. Doi and S. Edwards J. Chem Soc. Faraday Trans II 74, 1802 (1979)

Figure 6.58, p. 213 Einaga et al.; PS soln

Doi-Edwards Model

•Ratio of 1/2
•shape of start-up curves

h f h( )

Correctly predicts:

!!!!

•shape of h(0) (nonlinear step strain, damping function)

•predicts =AM3

•shear thinning of , 1
•tension-thinning elongational viscosity

AM3 4

Fails to predict:

Tentatively 
conclude:  

shear 
thinning is an 
issue of non-
affine motion

© Faith A. Morrison, Michigan Tech U.

• =AM3.4

•shape of shear thinning of , 1
•reversing flows
•Elongational strain hardening (branched polymers)

98

affine motion
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Advanced Models

Pom-Pom Model (McLeish and Larson, JOR 42 81, 1998)
Extended Pom-Pom (Verbeeten, Peters, and Baaijens, JOR 45 823, 2001)

Long-chain branched polymers

© Faith A. Morrison, Michigan Tech U.

99

•Single backbone with multiple branches
•Backbone can readily be stretched in an extensional flow, producing strain 
hardening
•In shear startup, backbone stretches only temporarily, and eventually collapses, 
producing strain softening 
•Based on reptation ideas; two decoupled equations, one for orientation, one for 
stretch; separate relaxation times for orientation and stretch)

Extended Pom-Pom (Verbeeten, Peters, and Baaijens, JOR 45 823, 2001)

Predicts 
elongational
strain 
hardening

© Faith A. Morrison, Michigan Tech U.

100
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Extended Pom-Pom (Verbeeten, Peters, and Baaijens, JOR 45 823, 2001)

© Faith A. Morrison, Michigan Tech U.

101

What about polymer solutions?

Elastic Dumbbell Model•Dilute solutions: chains do not interact
•collisions with solvent molecules are 
modeled stochastically
•calculate (R) by a statistical-mechanics

W. Kuhn, 1934

R

R

Drag on beads 
models friction

calculate (R) by a statistical mechanics 
solution to the Langevin equation 
(ensemble averaging)

Random force 
models random 
collisions

© Faith A. Morrison, Michigan Tech U.

models friction

102
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Elastic Dumbbell Model

Continuum modeling
Momentum balance on a control volume (Navier-Stokes Equation)

gvpvv
t

v  





 

 2

t  
Inertia        =      surface    + body

Mixed Continuum/Stochastic modeling (Langevin Equation)
Momentum balance on a discrete body (mass m, velocity u)
In a fluid continuum (velocity field v)

 ud




 2

Construct an 
ensemble of 

dumbbells and

© Faith A. Morrison, Michigan Tech U.

103

  ARkTvRu
dt

ud
m 






 24 

Inertia =         drag          +   spring   + random (Brownian)

dumbbells and 
seek the 

probability of a 
given ETE at t

Elastic Dumbbell Model

Langevin Equation

  ARkTvRu
dt

ud
m 






 24 

Construct an 
ensemble of 

dumbbells and 
seek the 

probability of a 
given ETE at t

To solve, (see Larson pp41-45).  Consider an ensemble of dumbbells and seek the 
probability  that a dumbbell has an ETE R at a given time t.  The equation for  is the 
Smoluchowski equation:

0
24 2




















R

kT
R

kT
vR

Rt







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We can calculate stress from: 3212
)(

3
dRdRdRRRR

Na

kT   

If we multiply the Smoluchowski equation by          and integrate over R space, we 
obtain an expression for    (i.e. the constitutive equation for this model)

RR 

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Integration yields:

 0

see Larson, Constitutive Equations for Polymer Melts, 
Butterworths, 1988

Upper-Convected Maxwell Model!

kTG 
 

number of dumbbells/volume

bead friction factor

Two different models give 
the same constitutive 

equation (because stress 
only depends on the

© Faith A. Morrison, Michigan Tech U.

28 


kT

2
2

2

3

Na
 from random walk

105

only depends on the 
second moment of , not 

on details of 

Elastic Dumbbell Model for Dilute 
Polymer Solutions

 0
pp

Polymer contribution

 ss


Solvent contribution

Dumbbell Model 
(Oldroyd B)

sp
 
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see Larson, Constitutive 
Equations for Polymer Melts, 
Butterworths, 1988

(Oldroyd B)
See problem 9.49
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Rouse Model

•Multimodal bead-spring model
•Springs represent different sub-molecules
•Drag localized on beads (Stokes)
•No hydrodynamic interaction N+1beads

R

y y N+1beads
N springs

© Faith A. Morrison, Michigan Tech U.
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Rouse Model

•Rouse wrote the Langevin equation for each spring.  Each spring’s equation is 
coupled to its neighbor springs which produces a matrix of equations to solve.

Langevin Equation

see Larson, Constitutive Equations for Polymer Melts, 
Butterworths, 1988

  ARkTvRu
dt

ud
m 






 24 

•Rouse found a way to diagonalize the matrix of the averaged Langevin equations; this 
allowed him to find a Smoluchowski equation for each transformed “mode”      of the 
Rouse chain
•Each Smoluchowski equation gives a UCM for each of the modes

iR
~

iR
~
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IG
ii

N

i
i













1

))1(2(sin16 22 




NikT

kTG

i 



Rouse Model for 
polymer solutions
(multi-mode UCM)
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Zimm Model

•Multimodal bead-spring model
•Springs represent different sub-molecules
•Drag localized on beads (Stokes)
•Dominant hydrodynamic interaction N+1beads

see Larson, Constitutive Equations for Polymer Melts, 
Butterworths, 1988

R

y y N+1beads
N springs

Rouse:  solvent velocity near one bead is 
unaffected by motion of other beads (no 
hydrodynamic interaction)

Zimm:  dominant 
hydrodynamic 
interaction)
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interaction)

What about suspensions?
…

uniform flow

Dilute solution
Einstein relation

(Mewis and Wagner, Colloidal Suspension 
Rheology, Cambridge 2012)

Stokes flow

Increasing 
l i

…

Concentrated 
i

  5.21 m
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complexity; 
solve NS

suspensions
Stokesian dynamics
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Stokesian Dynamics

Langevin Equation for Dumbbells

  ARkTR
ud





 24 

Brady and Bossis, Ann. Rev. Fluid Mech, 20 111 1988
Wagner and Brady, Phys. Today 2009, p27

  ARkTvRu
dt

m 





 24 

Inertia =         drag          +   spring   + random (Brownian)

Another Langevin Equation
Stokesian Dynamics for Concentrated Suspensions

Blh d d FFF
Ud

M 
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Brownianparticleichydrodynam FFF
dt

M 

Hydrodynamic = everything the suspending fluid is doing (including drag) 

Particle = interparticle forces, gravity (including spring forces)

Brownian = random thermal events

Brady and Bossis, Ann. Rev. Fluid 
Mech, 20 111 1988

Stokesian Dynamics

Spanning clusters 
i i it

ga
n 

Te
ch

 U
.

increase viscosity
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Summary

•Rubber-elasticity theory = Finite-strain Hooke’s law model

•Green-Tobolsky temporary network theory = Lodge equation (UCM)

•Reptation theory = K-BKZ type equation

Molecular models may lead to familiar constitutive equations

•Elastic dumbbell model for polymer solutions = Oldroyd B equation

Model parameters have greater meaning when connected to a 
molecular model

•G = kT

•Gi, i specified by model

Molecular models are essential to narrowing down 
th h i il bl i th ti b d

As always, the 
proof is in the see 

© Faith A. Morrison, Michigan Tech U.

the choices available in the continuum-based 
models (e.g. K-BKZ, Rivlin-Sawyers, etc.)

prediction. Larson, 
esp. Ch 7

113

Modeling may lead directly to information sought 
(without ever calculating the stress tensor)

Summary

•Rubber-elasticity theory = Finite-strain Hooke’s law model

•Green-Tobolsky temporary network theory = Lodge equation (UCM)

•Reptation theory = K-BKZ type equation

Molecular models may lead to familiar constitutive equations

•Elastic dumbbell model for polymer solutions = Oldroyd B equation (UCM)

Caution: correct stress predictions do not 
imply that the molecular model is correct

Stress is proportional to the second moment of (R), but 
diff t f ti h th d t

© Faith A. Morrison, Michigan Tech U.

different functions may have the same second moments.
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Summary

•Elastic solids

•Linear polymer melts with affine motion (temporary network)

•Linear polymer melts with anisotropic drag

Materials Discussed

•Linear polymer melts with various types of non-affine motion

•Chain slip

•Reptation

•Branched melts (pom-pom)

•Polymer solutions

•Suspensions

© Faith A. Morrison, Michigan Tech U.
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Resources

R. G. Larson, Constitutive Equations for Polymer Melts

R. G. Larson, The Structure and Rheology of Complex Fljuids

J. Mewis and N. Wagner, Colloidal Suspension Rheology


