Molecular Constitutive Modeling

*Begin with a picture (model) of the kind of material
that interests you

*Derive how stress is produced by deformation of that
picture

*Write the stress as a function of deformation
(constitutive equation)

65
© Faith A. Morrison, Michigan Tech U.

At the beginning of the course . . .

Chapter 3: Newtonian Fluid Mechanics Polymer Rheology

Molecular Forces (contact) — this is the tough one

chooseasurface

f=|atp|ds ] through P

S on dS
the
forceon P
that
surface /\/

We need an expression for the
state of stress at an arbitrary
pointPina flow.

66
© Faith A. Morrison, Michigan Tech U.
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At the beginning of the course . . .

Molecular Forces (continued)

Think back to the molecular !
picture from chemistry:

At that
time we
wanted to
avoid
specifying
much
about our
materials.

The specifics of these forces;
connections, and interactions
must be captured by the
molecular forces term that wi

\
° s*
o —@

’

seek.

67
© Faith A. Morrison, Michigan Tech U.

At the beginning of the course . . .

Molecular Forces (continued)

*We will concentrate on expressing the molecular
forces mathematically;

*We leave to later the task of relating the resulting
mathematical expression to experimental observations.

First, choose a

surface: A

«arbitrary shape

«small X f
stress /\
ap joS=1 Whatis 2
on dS

68
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At the beginning of the course . . .

Molecular Forces (continued)

Assembling the force vector:

f=dS N [M,60 + 1,00 + ;68
+ 111,668, + 1168, + 113,68,
+ 11,3665 +T1,6,6,+ Hsﬁ%]

We swept all
molecular contact .
forces into the —dSA- M é¢6
stress tensor. pzzlmzzll pm=pmm

=dSn-TT 6.6,

Total stress tensor

Now, we seek to (molecular stresses)

calculate molecular
contact forces
directly from a

molecular picture.

69

© Faith A. Morrison, Michigan Tech U.

Long-Chain Polymer Constitutive Modeling

molecular tension

force on arbitrary f =dA ﬁ . (—2’
surface \/— =
We now attempt to calculate
molecular forces by considering
molecular models.
Polymer Dynamics end-to-end
vector, R

Long-chain polymers
may be modeled as
random walks.

stress tensor

|70

70

© Faith A. Morrison, Michigan Tech U.
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Polymer coil responds to deformation

A polymer chain adopts
the most random
configuration at

equilibrium. end-to-end R
vector, R
When deformed, the chain
tries to recover that most
random configuration,
giving rise to a spring-like spring of equilibrium
restoring force. length and orientation R

We will model the chain dynamics
with a random walk.
71
© Faith A. Morrison, Michigan Tech U.

Gaussian Springs (random walk)

Equilibrium configuration distribution ﬂ 3 )
function - probability a walk of N steps W, (R)=| = e A'RR
of length a has end-to-end distance R - NTT
3
= 2Na?
From an entropy calculation of the work needed to 3kT
extend a random walk, we can calculate the force f = R
needed to deform a the polymer coil — Na2 -
If we can relate this force, the force to
extend the spring, to the force on an
arbitrary surface, we can predict rheological
properties
lecular tensi d 7
molecular tension ~
forceonarirary  f =—dAfA-z SUEsS|TRNSol

surface ~__

1z

© Faith A. Morrison, Michigan Tech U.
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Molecular force generated by deforming chain

P Tension Force on surface
f= [force on dAJ J-J-J. dA due to chains

- of ETER
' N
;:(;:):l;:cl IgI'E R Probability Force exerted
— || chain has ETE || by chain w/
crosses surface
R ETER
dA
1>
(A-R)v3 ¢ 3KT R
see next slide — 2=
‘ " y(RIIRARR, Na
v = number of polymer 73
chains per unit volume © Faith A. Morrison, Michigan Tech U.

Probability chain of ETE R crosses surface dA

intersection

ith dA
a.W It Wv ,,,,,,,,,,,,,,,,,,, b

Probability R =
chain of ETE R (”'R)(V 3)[” 3)

crosses surface |~ (Vms)z
dA

74
1/v = volume per polymer chain

© Faith A. Morrison, Michigan Tech U.
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Molecular force generated by deforming chain

~ 3kTv? (.
f==7 (R R)

(R-R)=[[[R-Ry(R)IR.dR,dR;

BUT, from before . . .
molecular tension

f =—dAN-7| ®= force on arbitrary
— = surface in terms of z

Comparing these two
we conclude, 3kTv 2
r=———->(R-R) (dA=v 3)
= Na
Molecular force generated by
deforming chain I8
© Faith A. Morrison, Michigan Tech U.

How can we convert this equation,

Molecular stress in a fluid generated
by a deforming chain

which relates molecular ETE vector and stress, into a constitutive
equation, which relates stress and deformation?

We need a idea that connects ETE vector motion
to macroscopic deformation of a polymer

network or melt.

76
© Faith A. Morrison, Michigan Tech U.
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Elastic (Crosslinked) Solid

Between every two crosslinks there is a
polymer strand that follows a random
walk of N steps of length a.

R,
A

Distribution of
ETE vectors

g

©

ETE = end-to-end vector B

7

Faith A. Morrison, Michigan Tech U.

How can we relate changes in end-to-end
vector to macroscopic deformation?

AN ANSWER: affine-motion assumption: the macroscopic
dimension changes are proportional to the

microscopic dimension

before after

changes

] ===

78
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Consider a general elongational deformation:

4 0 0
F'=l0 4, 0
0 0 13 123

For affine motion we can relate the components of the
initial and final ETE vectors as,

ETE after '
\ ﬂ’lRl
PR L R .| R(t) =| AR

Rl ? R R; — 2°72

' AR]

ETE before

© Faith A. Morrison, Michigan Tech U.

3 /123

79

We are attempting to calculate the stress tensor with this

equation:
g=—3kTv<B-B>

P

(R-R)=[[[R-Ry(R)IR,dR,0R;

ﬂlRl But, where do
R(t)=| 4,R, we get this?
%Ré 123

© Faith A. Morrison, Michigan Tech U.
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Probability chain has ETE
between R and R+dR: Q‘/f (R)dR,dR,dR,

Configuration
distribution function

distribution function:

Jz

3
Equilibrium configuration p _BRR
R

2Na’
But, if the deformation is affine, then the number of
ETE vectors between R and R+dR at time t is equal to
the number of vectors with ETE between R’ and
R’+dR’ at t’

Conclusion: w(R) =y, (R") = [%j e /R
T

81
© Faith A. Morrison, Michigan Tech U.

Now we are ready to calculate the stress tensor.

3kT
-2 (R-R)

(,'\'6‘/

(R-R)=[[[R-R¥/(R)dRdR,dR,

wy ) R'=2>

) _ o[ P 3 PR
AR} ), y(R)=yo(R) [\/;j e

(much algebra Final solution: 7 = —VkTﬂizé\i éi

omitted; solved in
Problem 9.57)

82
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/112 0 O
Final solution for stress: 7 =—-vkTA66 =—vkT| 0 4 0
2
0 O 13 123
Compare this solution with the Finger strain tensor for this flow.
2 0 0
_ af -
c'n=F E'=lo 2 o
2
0 0 ﬂ? 123
Since the Finger tensor for — _ -1
any deformation may be ﬁ |4 kT g
written in diagonal form
(symmetric tensor) our Which is the same as the finite-strain
derivation is valid for all Hooke’s law discussed earlier, with G=1kT.
deformations.

83
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What about polymer melts?

Non permanent crosslinks Green-Tobolsky
Temporary Network
Model

* v junction points per unit volume = constant
*ETE vectors have finite lifetimes

*when old junctions die, new ones are born
enewly born ETE vectors adopt the
equilibrium distribution v,

Probability per unit
time that strand dies
and is reborn at
equilibrium

1 Probability that strand
= retains same ETE fromt” | = |Dt,t
A to t (survival probability)

84

© Faith A. Morrison, Michigan Tech U.
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What is the probability that a strand retains the same ETE vector
between t' and t'+A4t?

Probability that strand Probability that
=3 — |retains same ETE from t’| | strand does not die
VAL o t (survival probability) over interval At

1
Pt',t+At = Pt',t 1_1At
R, 1
= Pt',t

dt A
t

In Ptryt = _Z—}_Cl
(=)

Pt',t =e /

85
© Faith A. Morrison, Michigan Tech U.

The contribution to the stress tensor of the individual strands can be
calculated from,

Stress at t from Probability that Probability Stress generated by
strands born — strand is born that a strand an affinely
betweent’and | = | betweent’ and survives from deforming strand
t'+dt’ t’+dt’ ttot between t” and t

(t-t)

dg{%dt} e+ [~ectt.y)

z*i%e_

Green-Tobolsky temporary network
mode (Lodge model) 86
© Faith A. Morrison, Michigan Tech U.
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Oh no, back where we started! ¢ G (1)

r=—|=e * C(t,t)dt’
NO! B e o

Green-Tobolsky temporary network
mode (Lodge model)

We now know that affine motion of strands with equal birth and death rates
gives a model with no shear-thinning, no second-normal stress difference.

To model shear-thinning, N,, etc., therefore, we must add something else to
our physical picture, e.g.,

*Anisotropic drag
enonaffine motion of various types

87

© Faith A. Morrison, Michigan Tech U.

Anisotropic drag - Giesekus

In a system undergoing deformation, the surroundings of a given molecule
will be anisotropic; this will result in the drag on any given molecule being

anisotropic too.

2
Starting with the dumbbell model (gives UCM), replace &I with an

anisotropic mobility tensor = . Assume also that the aniséropy in B is
proportional to the anisotropy in Z .

B-1-2r

= = G_

v al
Giesekus Model £+/1£+_77 .2="1y
. Z

see Larson, Constitutive Equations for Polymer

Melts, Butterworths, 1988 88

© Faith A. Morrison, Michigan Tech U.
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Constitutive equations incorporating non-affine motion include:

Gordon and Schowalter: “strands of polymer slip with respect to the
deformation of the macroscopic continuum”; see Larson, p130 (this model has
problems in step-shear strains) (__ strand slippage

r=—=-(Vv) -L+LV\L+§(L'L+ & )

=

[

*Phan-Thien/Tanner
«Johnson-Segalman

Larson: uses nonaffine motion that is a generalization of the motion in the Doi
Edwards model; see Larson, Chapter 5

Wagner: uses irreversible nonaffine motion; see Larson, Chapter 5

see Larson, Constitutive Equations for Polymer
Melts, Butterworths, 1988

89
© Faith A. Morrison, Michigan Tech U.

Reptation Theory (de Gennes)

Non-affine
motion
90

© Faith A. Morrison, Michigan Tech U.
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Step shear strain - strain dependence

10,000

G(t), Pa

1,000 4

100

101

Figure 6.57, p. 212
Einaga et al.; PS soln
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Step shear strain - Damping Function

100000
After retraction the
relaxation is governed by
10000 1 "l the memory function M(t-t')
P A
% Q‘:% la N\
©

2 1000 - *‘N

s Y e

o .

o Depending on \"9‘

£ the strain, a ¥,

= 1004 '

& different &
amount of &
stress is °®
relaxed during o9

10 +— :
retraction x
- . +
fRetractlon time
1 . . .
1 10 100 1000 1000
time, t

damping function, h

strain

The Doi-Edwards
model does a good job
of predicting the
damping function, h(y)
(see Larson p108)

Figure 6.58, p. 213
Einaga et al.; PS soln
92
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Doi-Edwards Model

r=— j M (t-t)Q(t’ 1) dt

, 1 2rm Gr. Ffl ~y
Q= []8—=—
7T 30 U'-£7 ‘
Predicts a
memory G =
function M(t-t)= 27'9 hOG =

iodd 74

Predicts a
strain measure

= Predicts a
relaxation
time
distribution

N

0" = unit vector that gives
orientation of strands at time t’

M. Doi and S. Edwards J. Chem Soc. Faraday Trans Il 74, 1818
(1978); ibid 74 560, 918 (1978); ibid 75, 32 (1979); ibid 75, 38

(Factorized K-BKZ type)

© Faith A. Morrison, Michigan Tech U.

93

(1979)

Doi-Edwards Model
Steady Shear
SAOS

R] S

7%}/ 310}

01p

L L L
[} 10

wly, «Ty

Fia. 3.—MNon-linear viscosity o) in steady state, the modulus, [4*(e)], and the real part, y'(w) of
the linear dynamic viscosity. Aﬂqumﬁl:n;n normalized by the steady state viscosity at zero
rate, D).

M. Doi and S. Edwards J. Chem Soc. Faraday Trans Il 75, 38 (1979)

w11 410)

AALRR AL

10

(1] 1
wly

FiG. 5.—First and the second normal stress coefficients o, («) and $s(x) in steady shear flow. [Note

that $5(0) =< 0, so that ¢,(x) =< 0]

© Faith A. Morrison, Michigan Tech U.
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Doi-Edwards Model 2
Shear Start Up xIg=10

x5 K)agleo ; )

1Ta
Fig. 6.—Shear stress when a shear flow is started at 1 = 0 with shear rate «.

08 -

06

1 1 1 1 1

lozslts #)— aplt; elfloxalce ; ©)=aplea ; «)]

1 2 3
Ty
Fig. 7.—Growth of the first normal stress component when a shear flow is started at 1 = 0 with
shear rate x.

95

M. Doi and S. Edwards J. Chem Soc. Faraday Trans Il 75, 38 (1979) ) . L
© Faith A. Morrison, Michigan Tech U.
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Doi-Edwards Model
Steady Elongation
Elongation Startup

=
@

=
m

=
r

[oslt s ®)— ot W)lomlen ; )= aple; <]
=2
-~

=]
N
w

Ty
Fig. 13.—Growth of stress when an elongational flow is started at r == 0.|

7 (%) /710)

=]/ B0}

L n

[ 1 10
*

Fio. 12.—Steady elongational viscosity 7(«) and the steady shear viscosity 3n(x). Both are normalized
by wl0) = 3x(0). %

M. Doi and S. Edwards J. Chem Soc. Faraday Trans Il 75, 38 (1979)

© Faith A. Morrison, Michigan Tech U.
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Doi-Edwards Model

(), Pa e
Large-Amplitude Step Shear PR .1 v
W, flnale e
O Lo, i hame, ce
RS EI T e
e et
) RO °§fx o lozsa
1 o e
I
ot+®
' o%
o
B
T o w0 1000 o000
. ime, s
10+
- 10
3
-
=
ER L] ]
: s
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2 ]
2 u
: 2 =
10 10 £ o1 .
S L]
A
L]
Fi0. 6.—Strain dependent part of the stress relaxation function for simplc shear [eqn (6.7)], Circles, "
observed values [after ref. (11): sample, polystyrene solution in dicthyl phihalate ; molecular weight,
3x10°; concentration, O 0,166 gem-5, O- 0.221 gom-?, 3 0.275 gem-"), Solid curve, eqn (6.5).
Broken curve, eqn (7.4). In the |d=|l nusslu rubsber /A is constant, 001

Figure 6.58, p. 213 Einaga et al.; PS soln

M. Doi and S. Edwards J. Chem Soc. Faraday Trans Il 74, 1802 (1979)

© Faith A. Morrison, Michigan Tech U.

strain

97

m

Doi-Edwards Model

Correctly predicts:

*Ratio of ¥',/'¥,

eshape of start-up curves

eshape of h(yo) (nonlinear step strain, damping function)
«predicts n=AM3

eshear thinning of n, ‘¥'; |

tension-thinning elongational viscosity

Fails to predict:

. T]:Al\/l3'4

sshape of shear thinning of 1, ‘¥';

sreversing flows

*Elongational strain hardening (branched polymers)

Tentatively
conclude:
shear
thinning is an
issue of non-
affine motion

98
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Advanced Models

Long-chain branched polymers

Pom-Pom Model (McLeish and Larson, JOR 42 81, 1998)
Extended Pom-Pom (Verbeeten, Peters, and Baaijens, JOR 45 823, 2001)

«Single backbone with multiple branches

*Backbone can readily be stretched in an extensional flow, producing strain
hardening

«In shear startup, backbone stretches only temporarily, and eventually collapses,
producing strain softening

*Based on reptation ideas; two decoupled equations, one for orientation, one for

stretch; separate relaxation times for orientation and stretch) 99

© Faith A. Morrison, Michigan Tech U.

Extended Pom-Pom (Verbeeten, Peters, and Baaijens, JOR 45 823, 2001)

LDPE melt, BASF Lupolen 1810H at T=150°C

10 r
O £=00030 |s7)
x E=00002 5]
— + =008 |5
Predicts : ® e=0103 [

. a g e=0M2 5] o~ 7 -
elongational S0 0 emion i ﬂ_f_f_ﬂ}'c
strain 2
hardening 3

Z 0

=

=

j
10°
107

Time t sl

FIG. 5. Transient and quasisteady state (insef) uniaxial elongational viscosity »,, of the XPP model for Lupolen
I810H melt at 7= 150°C. v; = 2/g;, & = 0.0030, 0.0102, 0.0305, 0.103, 0.312, 1.04 s L

100
© Faith A. Morrison, Michigan Tech U.
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Extended Pom-Pom (Verbeeten, Peters, and Baaijens, JOR 45 823, 2001)

LDPE mel, BASF Lupolen 1810H at T=150°C LDPE melt, BASF Lupolen 1810H at T=150°C
10° — 10’
0 =000 ) “l 0 ¥= 0015
® g DUl Y nﬂ: ® e O3]
L ER LR D] - + oy= 03 )
* guil v Y ® y= U
- @ =03 ] = 10°H @ y=wo
. o =10 1) e
g A ST | é
s & !
g g0
] v
> 3
5
Z 0
; i . , .
10 = 0 1 4 -2 0 1 4
10 10 10 10 10 10 10 10

Time t sl Time t 1s]

FIG. 8. Transient and steady state (inset) shear viscosity #» (/eff) and first normal stress coefficient W (right)
of the XPP model for Lupolen 1810H melt at T'= 150 °C. v; = 2/g;. ¥ = 0.001, 0.01, 0.03, 0.1, 0.3, 1,
10s L
101
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What about polymer solutions?

+Dilute solutions: chains do not interact Elastic Dumbbell Model
ecollisions with sol_vent molecules are W. Kuhn, 1934
modeled stochastically
ecalculate y(R) by a statistical-mechanics
solution to the Langevin equation - Random force
(ensemble averaging) \ models random

X collisions

R
R Drag on beads

models friction

102
© Faith A. Morrison, Michigan Tech U.
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Elastic Dumbbell Model

Continuum modeling
Momentum balance on a control volume (Navier-Stokes Equation)

p(%w'v\_/}—vmwzwpg

Inertia = surface + body

Mixed Continuum/Stochastic modeling (Langevin Equation)
Momentum balance on a discrete body (mass m, velocity u)

In a fluid continuum (velocity field v) Construct an
ensemble of
du 2 dumbbells and
m(aj=—§(U—R'VV)—4kTﬁ R+A S
probability of a
Inertia = drag + spring + random (Brownian) given ETE at t
103
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Construct an

A ensemble of
Elastic Dumbbell Model dumbhells and
Langevin Equation seek the

probability of a
du iven ETE at t
m(dtj=—§(U—R'VV)—4kTﬁZR+A .

To solve, (see Larson pp41-45). Consider an ensemble of dumbbells and seek the

probability y that a dumbbell has an ETE R at a given time t. The equation for v is the
Smoluchowski equation:

2
R g ¢ ©R

3;12‘/ [[[R-Ry/(R)AR,dR,dR,

We can calculate stress from: z ==

If we multiply the Smoluchowski equation by R-R and integrate over R space, we
obtain an expression for Z (i.e. the constitutive equation for this model)

104
© Faith A. Morrison, Michigan Tech U.
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|nteg ration yields: see Larson, Constitutive Equations for Polymer Melts,
Butterworths, 1988

L+AL= -1y

Upper-Convected Maxwell Model!

(\number of dumbbells/volume

Two different models give G= VkT
the same constitutive

equation (because stress
only depends on the ﬂ,

second moment of y, not N 2
on details of ) 8kTﬁ
3

IBZ
2Na2 from random walk

é/ bead friction factor

105
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Elastic Dumbbell Model for Dilute
Polymer Solutions

(N /Iz_Yp =-1,7  Polymer contribution
L= _7751 Solvent contribution
L=, L, Dumbbell Model
(Oldroyd B) See problem 9.49

see Larson, Constitutive
Equations for Polymer Melts, 106

Butterworths, 1988 . . L.
© Faith A. Morrison, Michigan Tech U.
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Rouse Model

*Multimodal bead-spring model

*Springs represent different sub-molecules

*Drag localized on beads (Stokes)

*No hydrodynamic interaction N+1beads

N springs

|0

107
© Faith A. Morrison, Michigan Tech U.

see Larson, Constitutive Equations for Polymer Melts,

RO use MO d el Butterworths, 1988

*Rouse wrote the Langevin equation for each spring. Each spring’s equation is
coupled to its neighbor springs which produces a matrix of equations to solve.

Langevin Equation

du
m(dt =—¢(U-R-Vv)-4kTB’R+A
*Rouse found a way to diagonalize the matrix of the averaged Langevin equations; this
allowed him to find a Smoluchowski equation for each transformed “mode” R; of the

Rouse chain -
*Each Smoluchowski equation gives a UCM for each of the modes R;

X Rouse Model for
g= ZL G =vkT polymer solutions
i=1 (multi-mode UCM)
v g

A=
t+Az,=-GlL " 16kTAsin?(iz/2(N +1))

108
© Faith A. Morrison, Michigan Tech U.
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Zimm Model

*Multimodal bead-spring model

see Larson, Constitutive Equations for Polymer Melts,
Butterworths, 1988

*Springs represent different sub-molecules
*Drag localized on beads (Stokes)

alelnllgtTald hydrodynamic interaction

Rouse: solvent velocity near one bead is
unaffected by motion of other beads (nho
hydrodynamic interaction)

Zimm: dominant
hydrodynamic
interaction)

N+1beads
N springs

109
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What about suspensions?

uniform flow

Stokes flow

—_
— @

Increasing
complexity;
solve NS

—_
. @

= o !

(Mewis and Wagner, Colloidal Suspension
Rheology, Cambridge 2012)

| I B
> @
e Dilute solution
—_— Einstein relation
7=1,(1+2.5¢)
| I B

Concentrated
suspensions
Stokesian dynamics

= SRe

:ﬁfo “ 00

110
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Brady and Bossis, Ann. Rev. Fluid Mech, 20 111 1988
Wagner and Brady, Phys. Today 2009, p27

Stokesian Dynamics

Langevin Equation for Dumbbells

dt
Inertia = drag + spring + random (Brownian)

m(dgj =—¢(U-R-Vv)-4kTS’R+A

Another Langevin Equation
Stokesian Dynamics for Concentrated Suspensions

M- =F +E +F

—hydrodynamic ' ~—— particle ' ——Brownian

du
dt

Hydrodynamic = everything the suspending fluid is doing (including drag)
Particle = interparticle forces, gravity (including spring forces)
Brownian = random thermal events

111
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Stokesian Dynamics

Brady and Bossis, Ann. Rev. F
Mech, 20 111 1988

Spanning clusters
increase viscosity

N—"
Figure 14  Snapshots of i particle configurations for the sheared suspension of
Figure 13. The sequence (from top to bottom) corresponds in time to that indicated by the
arrows in Figure 13, These arrows correspond to the maxima and minima of the viscosity
fluctuations. Both the top and bottom frames show the presence of alspanning cluster)—a 112
connected path from one wall 1o the other—and give rise Lo large viscosities. In the middle
frame, no spanning cluster is present and the viscosily is relatively low,

© Faith A. Morrison, Michigan Tech U.
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Summary

Molecular models may lead to familiar constitutive equations

*Rubber-elasticity theory = Finite-strain Hooke’s law model
*Green-Tobolsky temporary network theory = Lodge equation (UCM)
*Reptation theory = K-BKZ type equation

«Elastic dumbbell model for polymer solutions = Oldroyd B equation

Model parameters have greater meaning when connected to a
molecular model

*G = vkT

*G;, ); specified by model

As always, the

Molecular models are essential to narrowing down proofis in the  |see

the choices available in the continuum-based

prediction. Larson,
models (e.g. K-BKZ, Rivlin-Sawyers, etc.) esp.Ch7
Modeling may lead directly to information sought
(without ever calculating the stress tensor)
113
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Summary

Molecular models may lead to familiar constitutive equations

*Rubber-elasticity theory = Finite-strain Hooke’s law model

[ *Green-Tobolsky temporary network theory = Lodge equation (UCM) ]
*Reptation theory = K-BKZ type equation

[ *Elastic dumbbell model for polymer solutions = Oldroyd B equation (UCM]

Caution: correct stress predictions do not
imply that the molecular model is correct

Stress is proportional to the second moment of y(R), but
different functions may have the same second moments.

114
© Faith A. Morrison, Michigan Tech U.
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Summary

Materials Discussed

*Elastic solids

sLinear polymer melts with affine motion (temporary network)

sLinear polymer melts with anisotropic drag

sLinear polymer melts with various types of non-affine motion
*Chain slip
*Reptation

*Branched melts (pom-pom)

*Polymer solutions

sSuspensions
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