KEY TO FERRY'S PLOTS OF MATERIAL FUNCTIONS

CM 480 Fall 1990

- I. dilute polymer solution: atactic polystyrene, 0.015g/ml in Aroclor 1248, a chlorinated diphenyl with viscosity 2.57 poise at 25 $^{\circ}$ C. $M_{\rm w}$ =860,000, $M_{\rm w}/M_{\rm n}$ near 1.
- II. amorphous polymer of low molecular weight: poly(vinyl acetate), M=10,500, fractionated.
- III. amorphous polymer of high molecular weight: atactic polystyrene, narrow MW distribution, $M_{\rm W}$ =600,000.
- IV. amorphous polymer of high molecular weight with long side groups: fractionated poly(n-octyl methacryalte), $M_w=3.62\times10^6$.
- V. amorphous polymer of high molecular weight below its glass transition temperature: poly(methyl methacrylate).
- VI. lightly cross-linked amorphous polymer: lightly vulcanized Hevea rubber.
- VII. very lightly cross-linked amorphous polymer: styrene butadiene random copolymer, 23.5% styrene by weight.
- VII. highly crystalline polymer: linear polyethylene.

from Ferry, John D., <u>Viscoelastic Properties of Polymers</u>, 3rd Edition, Wiley: New York, 1980.

FIG. 2-4. Loss modulus plotted logarithmically for the eight systems identified as in Fig. 2-1.

FIG. 2-8. Loss tangent plotted logarithmically for the eight systems identified as in Fig. 2-1.

Figures taken from Ferry, John D., <u>Viscoelastic Properties</u> of <u>Polymers</u>, 3rd Edition, Wiley: New York, 1980.

FIG. 2-2. Stress relaxation modulus for the eight systems identified as in Fig. 2-1.

FIG. 2-3. Storage modulus plotted against frequency, with logarithmic scales, for the eight systems identified as in Fig. 2-1.