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Chapter 7. Generalized Newtonian fluids

CM4650
Polymer Rheology
Michigan Tech

Carreau-
Yassuda GNF
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Back to our main goal:
Constitutive Equation — an accounting for all stresses, all flows

stress tensor ——\ En
Newtonian fluids: . deformation tensor

(all flows) L=—HY

|
In general: /_\ In the general case, f
T=— f Q) needs to be a non-linear

\_ ) |function (intime and
position)

What should we choose
for the function f?
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Non-Newtonian, Inelastic Fluids
logn
First, we concentrate on 1
the observation that shear |
viscosity depends on My ==
shear rate. I
— /Z' »
= logy
7 INon-Newtonian L .oy,
viscosity, r= ox,
shear rate
We will design a constitutive equation
that predicts this behavior in shear flow
3
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Newtonian :
Constitutive Equation L="HY

For Newton’s experiment (shear flow): v=| 0
0

) o
OX,
T=|Tan Ty Ty @E
2

Tan Ta2 Tsg)ips

0 0 O

We could make this equation give 12

the right answer (shear thinning) in
steady shear flow if we substituted
a function of shear rate for the
constant viscosity.
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Generalized Newtonian Fluid (GNF)
constitutive equation

y N
0o M g v_Lo P
T Tz T3 v 0%, 0),, g
T=|Tun Tpn Tn = 77(7 —+ 0 0 >.|;3
oX, L
a1 T Tag )i _ % @)
0 0 0 Y=ol 2

2

123 _J

\

GNF [ o0 o o v ov v
0%, OX, OX, OX3 OX% v=|v, llz
T = 77(7/ %4_% 2% %4_% Vs )13 >_|r__|
= oX, OX% oX, OX, OX; 5
N Ny Ny, OV y-s\g\ =
OX; OX OX, OX, OX3 ) ipg =

J
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Constitutive Equation — an accounting for all stresses, all flows

r=-f{)

A simple choice for f:

Generalized
c=-n(y)y Newtonian
B Fluids (GNF)

._H= 1.,
i PYAYA
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Generalized
7= Newtonian
- Fluids (GNF)

What do we pick for 77(7) ?

«Something that matches the data;

«Something simple, so that the
calculations are easy
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In processing, the high-shear-rate
behavior is the most important.
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Figure 6.3, p. 172 Piau et al.,
linear and branched PDMS
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Power-law
model for
viscosity

— m?-/n—l

n=m

in shear flow ;/ =

%‘

aXZ

(in shear
flow)

n-1
%
dx,

On a log-log plot, this
would give a straight line:

H_J
Y

B

log =logm+(n-1)lo

dv,

dx,
X

H_}
+ M
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steady
Power-law lShear
model for :
viscosity
log77

~

Newtonian 7=my"*, n

Non-Newtonian shear
Viscosity
— T

-

1

sloe?%\ N .
P shear thinning 7=my"", n<1

log
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Power-Law Generalized Newtonian Fluid

z=-1(7)7

n=-my

m or K = consistency index (m = p for Newtonian)
n = power-law index (n = 1 for Newtonian)

7=l

(Usually 0.5< n <1)
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Carreau-

Yassuda GNE z=-7(?)y

A model with 5
parameters

n=n+o—n 1+ GAF [+

deformation rate get large

deformation rate gets small

* A is the time constant for the fluid

*The viscosity function approaches the constant value of 77, as

*The viscosity function approaches the constant value 7, as

* n determines the slope of the power-law region

12
© Faith A. Morrison, Michigan Tech U.




GeneralizedNewtonianFluids.pdf CM4650
2014

Carreau-
Yassuda GNF

logn

position of break on 7
scale is determined by A4

77 e ——
° slope is determined by n

curvature here —
is determined by a

42
T3
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What about shear thickening?
10
o
*
1 * ¢
n * .
(Pas) -
0.1 =
vol % TiO;
* 47
001 —m 42
A 38
o 272
X 12
0.001
1 10 100 1000 10000
. 1
Figure 6.27, p. 188 Metzner and Y, S
Whitlock; TiO,/water suspensions 1
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Power-Law GNF

steady shear flow

log77

shear thickening n=my"*, n>1

\/ Newtonian #=my"", n=1

/

shear thinning 7=my"*, n<1

log
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Other Inelastic Fluids

What about mayonnaise?

Mayonnaise and many
other like fluids
(paint, ketchup, most
suspensions, asphalt)
is able to sustain a
yield stress.

Once the fluid begins to deform under an imposed stress, the
viscosity may either be constant or may shear-thin. This type of
steady shear viscosity behavior can be modeled with a GNF.

16
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Non-Newtonian Fluids

»
!

Yield

For some fluids, no flow occurs
when moderate stresses are applied.

Bingham plastic

constant slope = 4, (mayo,
paints, suspensions)

Newtonian i )@
\ &

stress

7=|y

v
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Non-Newtonian Fluids

Bingham plastic

PMMA in water

Yield
stress

To

Friend and Hunter, 1971; dispersions of
PMMA in water at various -potentials;
From Larson, p353.

[+2]
o

Shbar Stress (dynes cm™2)
>
[=]

. -20

| |

0 1000 2000

Shear Rate (sec™)
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Bingham Plastic Non-Newtonian viscosity, n
steady shear flow
— T T
n= '21 n=—+ Ho
4 Y
. . (T T
: lim(m)=lim| 2+, |=-2
- TZl = TO arF ;LIO]/ 7%0(77) 7%0[ }/ 'uoj 7/
logy  1097=10974 g7
slope = -1 J
.......... - lu()
y logy
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— 5 Vo) arameters

GNF r=-n()y g
o0 ‘Z‘ <7,
n(y)= 7,
Mo +— ‘Z‘ > Ty
4 =

M, = Viscosity parameter
7, = yield stress

There is no flow until the shear stress exceeds
a critical value t, called the yield stress.

20
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Other GNF P
. . See Carreau, DeKee, and Chhabra for
— VISCOSIty —— complete discussion (Rheology of
models Polymeric Systems, Hanser, 1997)

Ellis Model

4-Parameter Carreau Model (same as CY with a=2)

Cross-Williamson Model (same as CY with a=1, 7, =0)

DeKee Model n=ne

Casson Model /7 =

Herschel-Bulkley Model

DeKee-Turcotte Model

21
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__viscosity

Other GNF

See Carreau, DeKee, and Chhabra for
—— complete discussion (Rheology of

models —_ Polymeric Systems, Hanser, 1997)

d

4-Parameter Carreau Model (same as CY with a=2)

Ellis Model

Cross-Williamson Model (same as CY with a=1, r, =0)

DeKee Model n n,

Casson Model ai/? -

: Yield stress
Herschel-Bulkley Model < plus power-
law viscosity

DeKee-Turcotte Model behavior

‘ 22
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What now?

*Predict material functions with the Generalized
Newtonian Constitutive Equation.

Example: Elongational viscosity, etc.

Calculate velocity and stress fields predicted by
Generalized Newtonian Constitutive Equations

Example: Poiseuille flow, drag flow, etc.

23

§ EXAMPLE:

Generalized

tube

elong tube

fluid

steady state
*well developed

Pressure-driven flow
of a Power-Law

Newtonian fluid in a

24
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Velocity field
Poiseuille flow of a power-law fluid:

1 1
= 41
v (r)_(R(Lpg +P - PL)jn R |, ( r j
z - 1 | R
2Lm <1 R
n
25
Solution to Poiseuille flow in a tube
incompressible, power-law fluid
20 | n=1.0
0.5 +
0.0 |
0 0.2 0.4 0.6 0.8 1 1.2
r/R %

13
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Solution to Poiseuille flow in a tube
incompressible, power-law fluid

1,

0.8 1

0.6

Vz/Vmax

0.4

0.2

27

EXAMPLE: Drag flow of a Power-Law GNF
between infinite parallel plates

ssteady state
sincompressible fluid
sinfinitely wide, long

/ —)

W -;\:
/ )
X5 |
I vi(x;) H

28
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EXAMPLE: Pressure-driven flow of a Power-Law
GNF between infinite parallel plates

esteady state
sincompressible fluid
einfinitely wide, long

The steady shear viscosity function n can be fit to
experimental data to an arbitrarily high precision.

Does this mean that Generalized Newtonian Fluid
models are okay to use in all situations?

$
1o

it

123
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Generalized v, oy v, O, ov,

. . 2— —+—= —4+—=
Newtonian Fluid X X, Ox, OX, X
(GNF) constitutive r=p) 242 % Ny OV,
equation O0X, OX, 0X, OX, OX,

123

In Shear Flow:
Vl

v=|0 y=
0 123

.\ OV,
(o) - o
T T3 o 2
=T @ Ty = _77(7)&1 @ 0
2
123
0

Ty Ty @

Ny
OX,

0

123

No matter what we pick for the
function 7(), we cannot predict
shear normal stresses with a

Generalized Newtonian Fluid. "
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shear stress response

[ ‘What the data show: .

(1)
imposed shear rate _ o
}./21 _ Vl(t)/H increasing y
< : t
7’0 ‘What the GNF models predict:
!
’ t (1)

increasing ¥

\ 0 t
32
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What the datashow:
7, (t)
increasing y
0 t

\What the G models predict:

Correctly
captures rate

dependence
7, (1) B

-

increasing 7

0 t

misses start-up
effects

No matter what we pick for the function 77(}'/)
, We cannot predict the time-dependence of
shear start-up correctly with a GNF.

33
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imposed deformation
(steady state)

/I
72NN

X3

/) .
S7/ARNN
\g§\ /%:i

\\\\ 1 [/ /

WL/

elongational stress response

{

[ ‘What the data show: T

Trouton’s

ll_r)%ﬁ = 3770 Rule

(there is limited elongational
viscosity data available)

\Whatthe GNF mocels predict:

For all
1 = 2n  deformation
rates

If a material shear-thins, GNF

predicts it will tension-thin.

\ ’
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Summary:

PRO:

CON:

Generalized Newtonian Fluid
Constitutive Equations

«A first constitutive equation
«Can match steady shearing data very well
*Simple to calculate with

*Found to predict pressure-drop/flow rate
relationships well

«Fails to predict shear normal stresses

«Fails to predict start-up or cessation effects
(time-dependence, memory) — only a function of
instantaneous velocity gradient

*Derived ad hoc from shear observations;
unclear of validity in non-shear flows

35
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Summary:

PRO:

CON:

(time-dependence, memory) — only a function of
instantaneous velocity gradient

Generalized Newtonian Fluid
Constitutive Equations

*A first constitutive equation
«Can match steady shearing data very well
*Simple to calculate with

*Found to predict pressure-drop/flow rate

: . We now look to
relationships well

address this
failing of GNF
models by
seeking to
incorporate
memory.

*Fails to predict shear normal stresses

*Fails to predict start-up or cessation effec

*Derived a servations;
unclear of validity in non-shear flows

36
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Rules for Constitutive Equations

z(t) = f(y.1,,11,, 111, material info)

4

The stress expression:

*Must be of tensor order
*Must be a tensor (independent of coordinate system)
*Must be a symmetric tensor

*Must make predictions that are independent of the
observer

*Should correctly predict observed flow/deformation
behavior

37
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The stress expression:

Rules for Constitutive Equations

|
z(t)=f (]/< oo I, M Tensor invariants -
B ~ scalars associated with a
tensor that do not

depend on coordinate
*Must be of tensor order system

*Must be a tensor (independent of coordinate system)
*Must be a symmetric tensor

*Must make predictions that are independent of the
observer

*Should correctly predict observed flow/deformation
behavior

38
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Tensor Invariants
|, =traceA=trA

For the tensor Writttsen in Cartesian coordinates:

traceA = Z Ap=A+A,+A,

p=1
3

3
I, =trace(A-A)=A:A=3"> A,A,
p=1 k=1
3 3 3
I, =trace(A-A-A)=D">"> A ALA,
p=l j=1 h=1

Note: the definitions of invariants written in terms of
coefficients are only valid when the tensor is written in
Cartesian coordinates.

39
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Chapter 8: Memory Effects: GLVE

CM4650
Polymer Rheology
Michigan Tech

Maxwell’s model combines viscous and elastic

responses in series
“ y

Spring (elastic) and .I Rhaulu_gy

dashpot (viscous) in series: initial state
no force

final state
force, f, resists
displacement

Displacements are
additive:

D

=D + D,

total spring dashpot

40
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