CM4650 Material Functions (part 1)

Chapter 5. Material Functions
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Polymer Rheology
Michigan Tech

Steady Shear Flow Material Functions

Kinematics:
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v=| 0 ¢(t) = 79 = constant
0 123

Material Functions:

First normal-stress |y = - (Tll - 722)
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Second normal- |y, = - (122 — Z'33)

Viscosity stress coefficient },5
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Role of Material Functions in Rheological Analysis

QUALITY CONTROL QUALITATIVE ANALYSIS
compare with other compare data with
in-house data on literature reports on

qualitative basis unknown various fluids

l \ matirial / l

conclude whether or conclude on the probable
not a material is measure material physical behavior of the
appropriate for a functions, e.g. 7, fIl_Jid based on gomparis_on

specific application G'(w), G"(W), G(t) with known fluid behavior

l

MODELING WORK

calculate predictions of
material functions from
various constitutive
equations

compare measured with predicted ‘h

conclude which constitutive equation is
best for further modeling calculations
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QUALITY CONTRO

Role of Material Functions in Rheological Analysis

L

compare with other
in-house data on
qualitative basis

unknown
material
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i

conclude whether o
not a material is
appropriate for a

N\

measure material
functions, e.g. 7,

r

/7

QUALITATIVE ANALYSIS

compare data with
literature reports on
various fluids

g

conclude on the probable
physical behavior of the
fluid based on comparison

with known fluid behavior

specific application G'(w), G"(w), G(t)

We will
fOCUS here MODELING WORK calculate predictions of
i material functions from
first ‘ compare measured with predicted ‘():I various constitutive

equations

conclude which constitutive equation is
best for further modeling calculations %
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Material function definitions

(1. Choice of flow (shear or elongation)

~
<. 1,
§ 5(929] —p 00+ Elongational flow: b=0, &(t) > 0
) < v=| O v= _E‘g'(t)(]__b)x2 Biaxial stretching: b=0, £(t) <0
él 0 2 ()X, Planar elongation: b=1, £(t) >0
123
123
2. Choice of details of c(t) or £(t).
3. Material functions definitions: will be based on
7,1, N, N, inshearor 7, —7,;,7,, — 7y,
in elongational flows.
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(I call these my “recipe cards”)
Steady Shear Flow Material Functions

Kinematics:

st)x, ) ,
v=| 0 ¢(t) = y9 = constant

0 123

Material Functions:

First normal-stress ¥ = - (Tll - Z'22)

. . - . 2
_ —Tpq coefficient 70
70
) . Second normal- |\, — — (722 - 733)
Viscosity stress coefficient | = 2 7’5
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How do we predict material functions?

ANSWER: From the constitutive equation.

What does the Newtonian Fluid model predict in
steady shearing?
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What does the Newtonian Fluid model predict
in steady shearing?

£=—puy =~y + (V)]

You try.
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What do we measure for these
material functions?

(for polymer solutions, for example)
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Steady shear viscosity and first
normal stress coefficient
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Steady shear viscosity and first
normal stress coefficient
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Steady shear viscosity for linear
and branched PDMS
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Figure 6.3, p. 172 Piau et al.,

linear and branched PDMS
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What have material functions taught us so far?

*Newtonian constitutive equation is inadequate

1. Predicts constant shear viscosity (not always
true)

2. Predicts no shear normal stresses (these
stresses are generated for many fluids)

*Behavior depends on the material (chemical structure,
molecular weight, concentration)

195
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Can we fix the Newtonian Constitutive Equation?

Let’s replace p with

a function of shear

rate because we 7 — | (}‘/0 )[V\_/ + (VM)T ]
want to predict a

non-constant

viscosity in shear

196
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What does this model predict for steady shear viscosity?

£ =M (7, Vv -+ (Vv) |
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What does this model predict for steady shear viscosity?

£ =M (7, )|Vu-+(Vy) |

You try.
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What does this model predict for steady shear viscosity?

£ =M (7, Vv -+ (Vv) |

Answer: n=M (7«,0)

199
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Problem solved!

If we choose: .
M(?O :{ L n-1 .
my, Yo 27
logn
| slope = (n-1)
o7 log 7,
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Try something else . . .

But what about the normal stresses?

£ =M (7, [Vu+ (Vo) |

0 7 O It appears that z
. should not be
7={7% 0 0 simply proportional
to 7

0 00 123 =

z=—puy+1 ()

z=f(v) VV-(VV)T

z=A [Vv (wv) ]+ BVv+C(Vv)
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But which ones?

To sort out how to fix the Newtonian equation,
we need more observations (to give us ideas).

Let’s try another material function that’s not a
steady flow (but stick to shear).
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Start-up of Steady Shear Flow Material Functions

Kinematics:
s®x . 0 t<0
v=| 0 c(t)=+.
0 Vo 120
123
Material Functions:
First normal-stress \py+ _ — (711 — T )
—7..(t growth function ~1 -2
g = =) 72
Yo ( )
- —\7T,, —T
Shear stress Second normal 2+ =_ 12 733/
rowth stress growth 72
growt function 0
function
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What does the Newtonian Fluid model predict in
start-up of steady shearing?

Again, since we know V, we can just
plug it in and calculate the stresses.
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What does the Newtonian Fluid model predict in start-
up of steady shearing?

£= g =—ulVy+(Vy) ]

You try.
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shearing of a Newtonian fluid

Material functions predicted for start-up of steady

+
7 )
0 t<O ]
n(t) =
t>0 H
T+=_(T11_T22)—0 t
1 — .2 -
Yo
( ) Do these predictions
pr=_\'2"Ts)_ g match observations?
2 = .2
7o 206
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What about other non-steady flows?
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Cessation of Steady Shear Flow Material Functions

Kinematics:
~(t)x .
g() 2 . 7/0 t < o
v=| 0 g(t)=
0 0 t=0
123
Material Functions:
First normal-stress -__ (711 — Ty )
=1, (t decay function ~1 — .2
0 70
7o ( )
- _ —\7T,, — T
Shear stress Second normal Yr=_V22 733/
decay function stress decay ~ 2 7}2
function 0

209

© Faith A. Morrison, Michigan Tech U.

13



CM4650 Material Functions (part 1)
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What does the model we guessed at predict
for start-up and cessation of shear?

£=—M (7, vu+ (Vo) ]

, M. e
M(?’o) my:—l 7./0 7
0 0 —1/¢
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What does the model we guessed at predict
for start-up and cessation of shear?

£=—M(7,)[Vu+ (Vo) ]

MO 770<7¢

W mytt g2,

You try.
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Menzes and Graessley, conc. PB solution; 350 kg/mol
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. M (7, )=
Observations (7o) {m?a” e

*The model predicts an instantaneous stress
response, and this is not what is observed for
polymers

*The predicted unsteady material functions depend
on the shear rate, which is observed for polymers

n"=n"(t,y,) <= Progress here
*No normal stresses are predicted

214
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) M (7 ): Mai
Observations O Imptt oy 2.
*The model predicts an instantaneous stress

response, and this is not what is observed for

po|ymers <=mm | acks memory

*The predicted unsteady material functions depend
on the shear rate, which is observed for polymers

n"=n"(t,y,) <= Progress here

*No normal stresses are predicted <=smm Related to
nonlinearities

215
© Faith A. Morrison, Michigan Tech U.

16



CM4650 Material Functions (part 1)

To proceed to better-designed constitutive equations,
we need to know more about material behavior, i.e.
we need more material functions to predict, and we
need measurements of these material functions.

*More non-steady material functions (material functions that tell
us about memory)

*Material functions that tell us about nonlinearity (strain)
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Summary of shear rate kinematics (part 1)
g(t) 721(0,11) T21(t)
’ T
a. Steady 7o ° 7
v +
0 t 0 t 0 t
g(t) 721(0,t) 2'21(t)
b. Stress ;O 7o 7
Growth ! /
0 t 0 t 0 t
) 7210.t) ()
c. Stress T
Relaxation yf /‘0 .
0 t 0 t
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The next three families of material functions
incorporate the concept of strain.
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