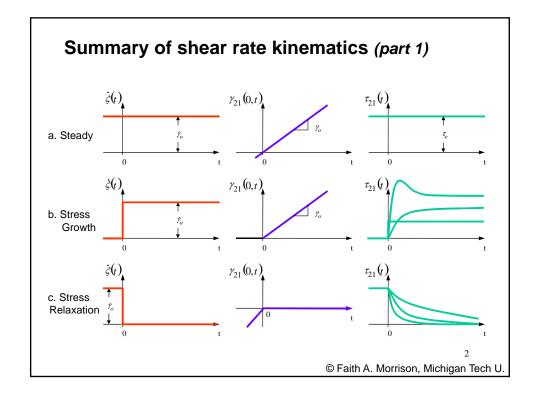
To proceed to better-designed constitutive equations, we need to know more about material behavior, i.e. we need more material functions to predict, and we need measurements of these material functions.

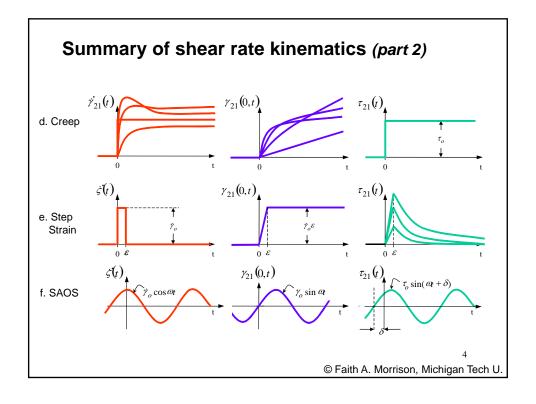
- •More non-steady material functions (material functions that tell us about memory)
- •Material functions that tell us about nonlinearity (strain)

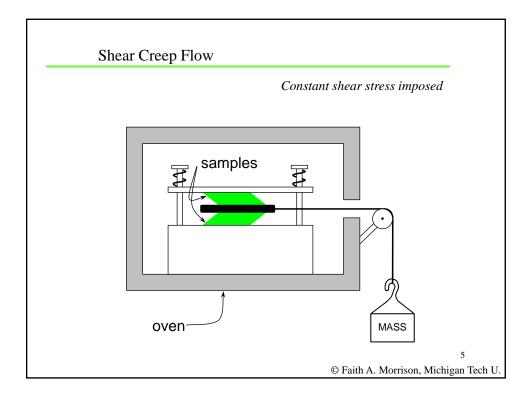
1

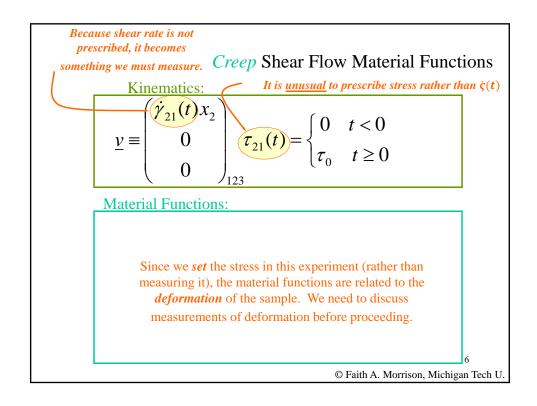


The next three families of material functions incorporate the concept of strain.

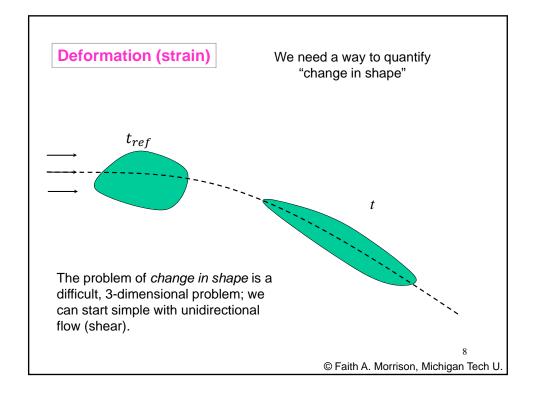
3

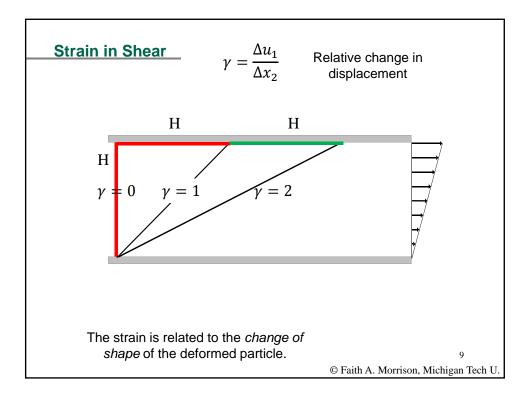


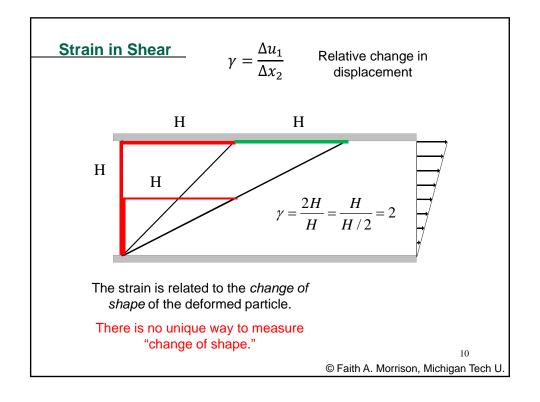


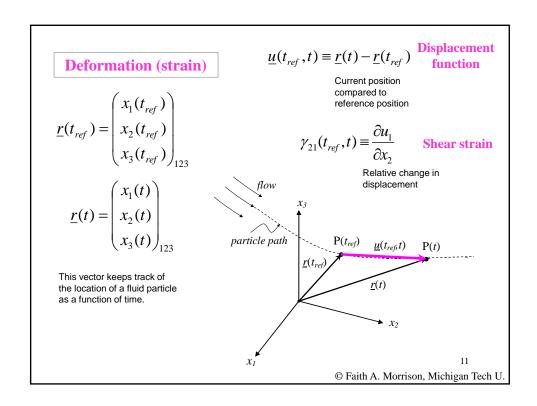


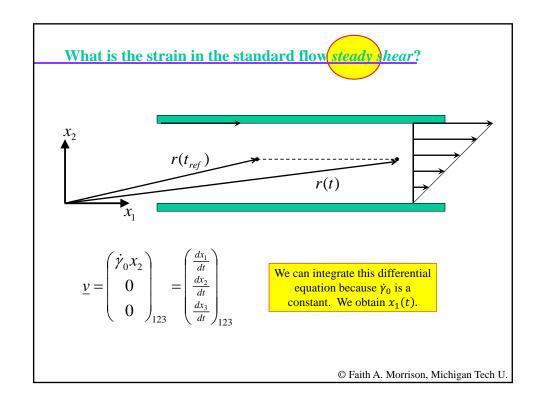
Pause on Material Functions We need to define and learn to work with strain.











Deformation in shear flow (strain)

$$\underline{r}(t_{ref}) = \begin{pmatrix} x_1(t_{ref}) \\ x_2(t_{ref}) \\ x_3(t_{ref}) \end{pmatrix}_{123}$$

$$\underline{r}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix}_{123} = \begin{pmatrix} x_1(t_{ref}) + (t - t_{ref}) \dot{\gamma}_0 x_2 \\ x_2(t_{ref}) \\ x_3(t_{ref}) \end{pmatrix}_{123}$$

$$\underline{u}(t_{ref},t) \equiv \underline{r}(t) - \underline{r}(t_{ref}) = \begin{pmatrix} (t - t_{ref})\dot{\gamma}_0 x_2 \\ 0 \\ 0 \end{pmatrix}_{123}$$
Displacement function

© Faith A. Morrison, Michigan Tech U.

Deformation in shear flow (strain)

$$\underline{u}(t_{ref},t) \equiv \underline{r}(t) - \underline{r}(t_{ref}) = \begin{pmatrix} (t - t_{ref})\dot{\gamma}_0 x_2 \\ 0 \\ 0 \end{pmatrix}_{123}$$
Displacement function

Our choice for measuring change in shape:

$$\gamma_{21}(t_{ref},t) \equiv \frac{\partial u_1}{\partial x_2} = \frac{du_1}{dx_2}$$

$$\gamma_{21}(t_{ref},t) = (t - t_{ref})\dot{\gamma}_0$$
(for steady shear or in unsteady shear for short

Shear strain

$$\gamma_{21}(t_{ref}, t) = (t - t_{ref})\dot{\gamma}_0$$

unsteady shear for short time intervals)

14

For unsteady shear, $\dot{\gamma}$ is a function of time:

$$\underline{v} = \begin{pmatrix} \dot{\gamma}(t)x_2 \\ 0 \\ 0 \end{pmatrix}_{123} = \begin{pmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \\ \frac{dx_3}{dt} \end{pmatrix}_{123}$$

This integration is less straightforward.

We can obtain the unsteady result for strain by applying the steady result over short time intervals (where $\dot{\gamma}$ may be approximated as a constant) and add up the strains.

short time interval between

 t_p and t_{p+1} :

$$\gamma_{21}(t_p, t_{p+1}) = \frac{\partial u_1}{\partial x_2} = \dot{\gamma}_{21}(t_{p+1})\Delta t$$

© Faith A. Morrison, Michigan Tech U.

For unsteady shear:

$$\gamma_{21}(t_p, t_{p+1}) = \frac{\partial u_1}{\partial x_2} = \dot{\gamma}_{21}(t_{p+1})\Delta t$$
 (short

For a long time interval, we add up the strains over short time intervals.

short time interval:
$$\gamma_{21}(t_p, t_{p+1}) = \dot{\gamma}_{21}(t_{p+1})\Delta t$$

$$long \ time \ interval: \qquad \gamma_{21}(t_1,t_2) = \sum_{p=0}^{N-1} \gamma_{21}(t_p,t_{p+1}) = \sum_{p=0}^{N-1} \Delta t \dot{\gamma}_{21}(t_{p+1})$$

Taking the limit as $\Delta t \rightarrow 0$,

$$\gamma_{21}(t_1, t_2) = \lim_{\Delta t \to 0} \left[\sum_{p=0}^{N-1} \Delta t \dot{\gamma}_{21}(t_{p+1}) \right] = \int_{t_1}^{t_2} \dot{\gamma}_{21}(t') dt'$$
Strain at t_2 with respect to fluid configuration at t_1 in unsteady shear flow.

Change of Shape

For shear flow (steady or unsteady):

$$\gamma_{21}(t_1, t_2) = \int_{t_1}^{t_2} \dot{\gamma}_{21}(t')dt'$$

Strain at t_2 with respect to fluid configuration at t_1 in shear flow (steady or unsteady).

Note also, by Leibnitz rule:

$$\frac{d\gamma_{21}}{dt} = \frac{d}{dt} \int_{t_{ref}}^{t} \dot{\gamma}_{21}(t') dt'
= \int_{t_{ref}}^{t} \frac{\partial}{\partial t} (\dot{\gamma}_{21}(t')) dt' + \dot{\gamma}_{21}(t) \frac{d(t)}{dt} - \dot{\gamma}_{21}(t_{ref}) \frac{d(t_{ref})}{dt}$$

$$\frac{d\gamma_{21}}{dt} = \dot{\gamma}_{21}(t)$$

Deformation rate

Now we can continue with material functions based on strain.

17

© Faith A. Morrison, Michigan Tech U.

Because shear rate is not prescribed, it becomes

something we must measure. Creep Shear Flow Material Functions

Kinematics: It is unusual to prescribe stress rather than $\dot{\varsigma}(t)$

$$\underline{v} = \begin{bmatrix} \dot{\gamma}_{21}(t) x_2 \\ 0 \\ 0 \end{bmatrix}_{123} \quad \tau_{123}(t) = \begin{cases} 0 & t < 0 \\ \tau_0 & t \ge 0 \end{cases}$$

Material Functions:

Since we *set* the stress in this experiment (rather than measuring it), the material functions are related to the *deformation* of the sample..

Creep Shear Flow Material Functions

Kinematics:

$$\underline{v} \equiv \begin{pmatrix} \dot{\gamma}_{21}(t)x_2 \\ 0 \\ 0 \end{pmatrix}_{123} \qquad \tau_{21}(t) = \begin{cases} 0 & t < 0 \\ \tau_0 & 0 \le t \le t_2 \\ 0 & t > t_2 \end{cases}$$

Material Functions:

$$\begin{split} J(t,\tau_0) &\equiv \frac{\gamma_{21}(0,t)}{-\tau_0} & J_r(\widetilde{t}\,,\tau_0) = R(\widetilde{t}\,,\tau_0) \equiv \frac{\gamma_r(\widetilde{t}\,)}{-\tau_0} \\ \text{Shear creep} & \gamma_r(\widetilde{t}) = \gamma_{21}(0,t_2) - \gamma_{21}(0,t) \end{split}$$

Recoverable creep compliance

19

© Faith A. Morrison, Michigan Tech U.

Creep Recovery

-After creep, stop pulling forward and allow the flow to reverse

-In linear-viscoelastic materials, we can calculate the recovery material function from creep measurements

$$\gamma_r(\tilde{t}) = \gamma_{21}(0, t_2) - \gamma_{21}(0, t)$$

Recoverable strain Recoil strain Strain at the end of the forward motion

Strain at the end of the recovery

$$J_r(\widetilde{t}\,,\tau_0)\equiv\frac{\gamma_r(\widetilde{t}\,)}{-\tau_0}$$

Recoverable creep compliance

20

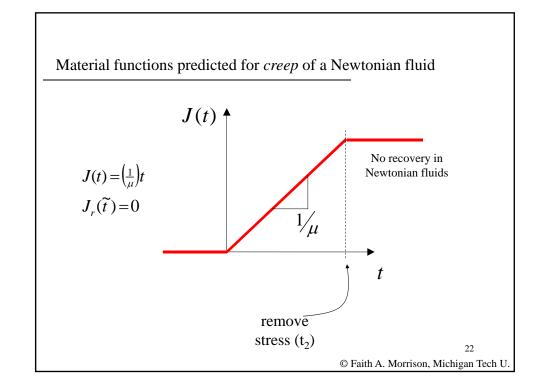
Material functions predicted for *creep* of a Newtonian fluid

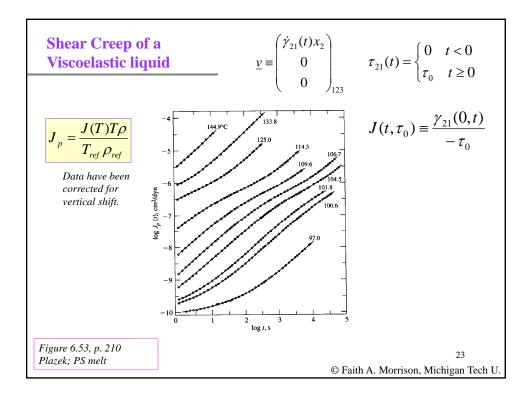
Newtonian:
$$\underline{\underline{\tau}}(t) = -\mu \left(\nabla \underline{v} + (\nabla \underline{v})^T \right)$$

Shear creep compliance
$$J(t, \tau_0) = ?$$
 $(t_2 \rightarrow \infty)$

Recoverable creep compliance
$$J_r(\tilde{t}, \tau_0) = ?$$

21





Characteristics of a Creep Curve

•At long times the creep compliance $J(t, \tau_0)$ becomes a straight line (steady flow).

$$\frac{dJ}{dt}\Big|_{\substack{\text{steady}\\\text{state}}} = \frac{d\gamma_{21}}{dt} \left(\frac{1}{-\tau_0}\right)$$

$$= \frac{\dot{\gamma}_{t\to\infty}}{-\tau_0}$$

$$= \frac{1}{\eta(\dot{\gamma}_{t\to\infty})}$$

The slope at steady state is the inverse of the steady state viscosity

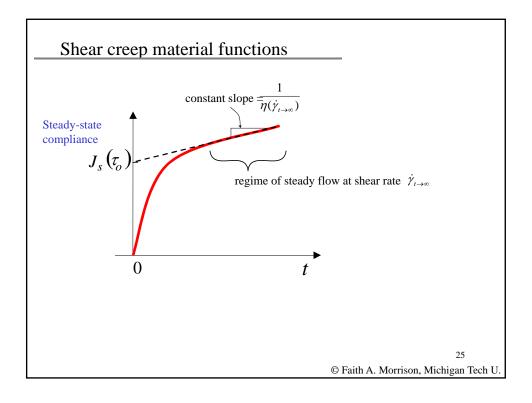
•We can define a steady-state compliance

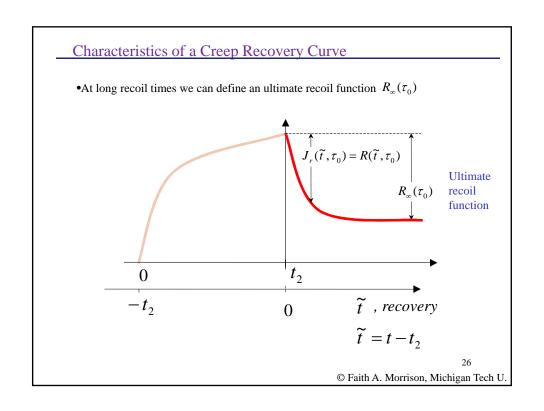
$$\Rightarrow J(t) \Big|_{\substack{steady \ state}} = rac{1}{\eta(\dot{\gamma}_{t o \infty})} t + C$$

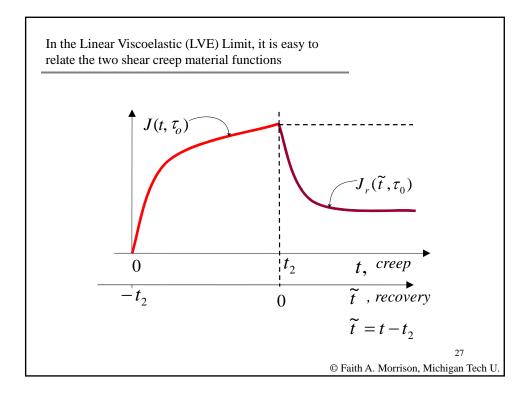
$$J_{s}(au_{0})$$

Steady-state compliance

24







Linear Viscoelastic Creep (no dependence on τ_0)

total recoverable non-recoverable

$$\gamma(t) = \gamma_r(t) + t\dot{\gamma}_{t\to\infty}$$

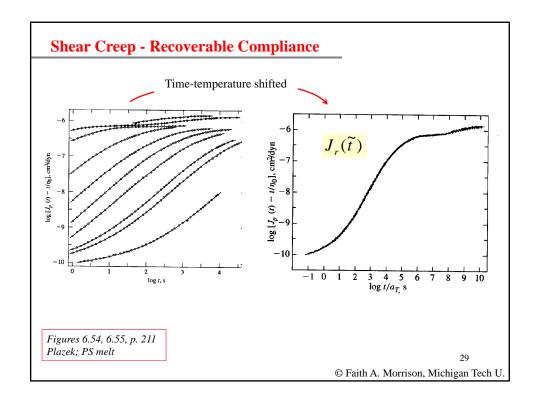
$$\frac{\gamma(t)}{-\tau_0} = \frac{\gamma_r(t)}{-\tau_0} + t \left(\frac{\dot{\gamma}_0}{-\tau_0}\right)$$

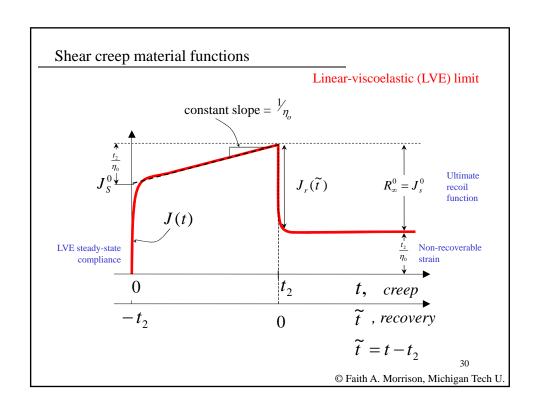
$$J(t) = J_r(t) + \frac{t}{\eta_0}$$
$$J_r(t) = J(t) - \frac{t}{\eta_0}$$

$$J_r(t) = J(t) - \frac{t}{\eta_0}$$

For LVE materials, we can obtain R(t) without a recovery experiment

28





Step Shear Strain Material Functions

Kinematics:

$$\underline{v} \equiv \begin{pmatrix} \dot{\varsigma}(t)x_2 \\ 0 \\ 0 \\ 123 \end{pmatrix}_{123} \qquad \begin{aligned} \dot{\varsigma}(t) &= \lim_{\varepsilon \to 0} \begin{cases} 0 & t < 0 \\ \dot{\gamma}_0 & 0 \le t < 0 \\ 0 & t \ge \varepsilon \end{cases} \\ \dot{\gamma}_0 \varepsilon &= \text{constant} = \gamma_0 \end{aligned}$$

Material Functions:

First normal-stress relaxation modulus
$$G_{\Psi_1} \equiv \frac{-\tau_{21}(t, \gamma_0)}{\gamma_0}$$
Relaxation modulus
Second normal-stress relaxation modulus
$$G_{\Psi_2} \equiv \frac{-(\tau_{11} - \tau_{22})}{\gamma_0^2}$$

What is the strain in this flow?

$$\gamma_{21}(-\infty,t) = \int_{-\infty}^{t} \dot{\gamma}_{21}(t') dt'$$

$$= \int_{-\infty}^{t} \lim_{\varepsilon \to 0} \begin{cases} 0 & t' < 0 \\ \frac{\gamma_0}{\varepsilon} & 0 \le t' < \varepsilon & dt' \\ 0 & t \ge \varepsilon \end{cases}$$

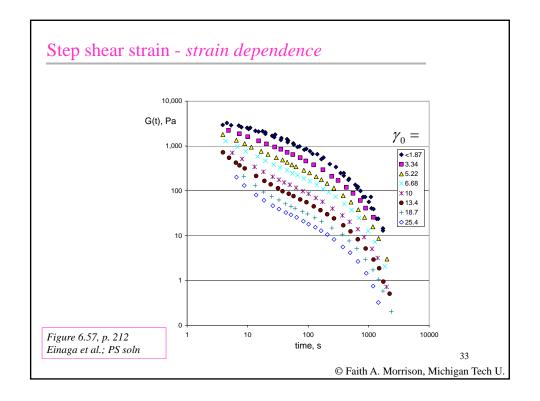
$$= \lim_{\varepsilon \to 0} \int_{0}^{\varepsilon} \frac{\gamma_0}{\varepsilon} dt'$$

$$= \gamma_0$$

The strain imposed is a constant

32

© Faith A. Morrison, Michigan Tech U.



Linear viscoelastic limit

$$\lim_{\gamma_{0\to 0}} G(t,\gamma_0) = G(t)$$

At small strains the relaxation modulus is independent of strain.

The polystyrene solutions on the previous slide show time-strain independence, i.e. the curves have the same shape at different strains.

Damping function, h

$$h(\gamma_0) \equiv \frac{G(t, \gamma_0)}{G(t)}$$

The damping function summarizes the non-linear effects as a function of strain amplitude.

34

What types of materials generate stress in proportion to the strain imposed? Answer: elastic solids

Hooke's Law for elastic solids
$$\tau_{21} = -G\gamma_{21}$$

initial state, no flow, no forces

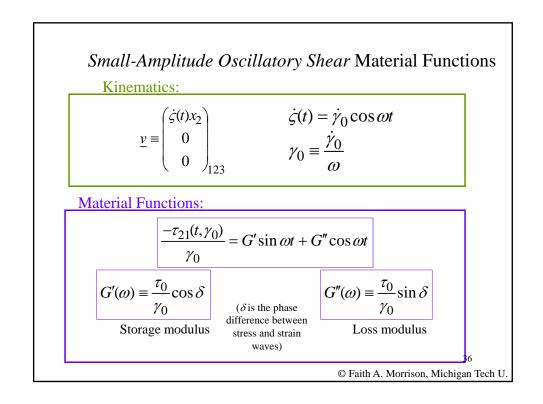
deformed state,
$$\tau_{21} = -G\frac{\Delta u_1}{\Delta x_2}$$
Hooke's law for elastic solids

Similar to the linear spring law

Similar to the linear spring law

85

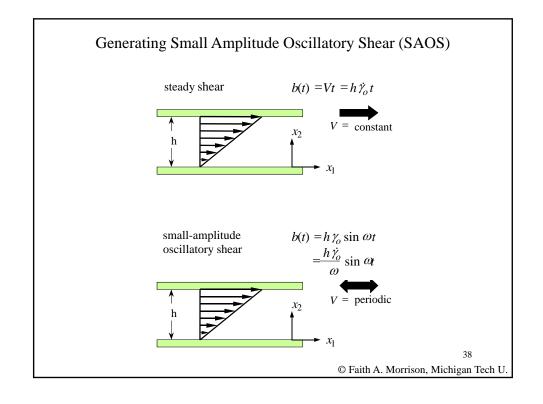
© Faith A. Morrison, Michigan Tech U.



What is the strain in this flow?
$$\gamma_{21}(0,t) = \int_0^t \dot{\gamma}_{21}(t')dt'$$

$$= \int_0^t \dot{\gamma}_0 \cos \omega t' dt'$$

$$= \frac{\dot{\gamma}_0}{\omega} \sin \omega t \qquad \text{The strain imposed is sinusoidal.}$$
The strain amplitude is $\gamma_0 = \frac{\dot{\gamma}_0}{\omega}$



In SAOS the strain amplitude is small, and a sinusoidal imposed strain induces a sinusoidal measured stress.

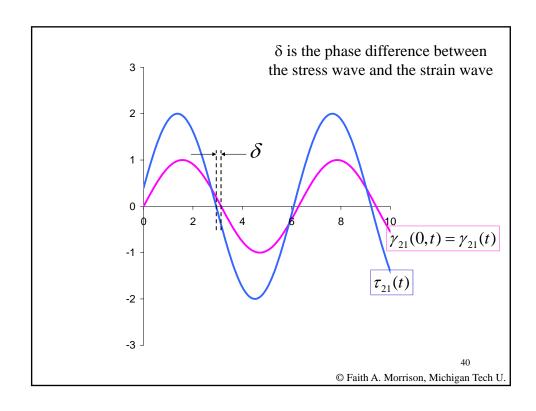
$$-\tau_{21}(t) = \tau_0 \sin(\omega t + \delta)$$

$$-\tau_{21}(t) = \tau_0 \sin(\omega t + \delta)$$

$$= \tau_0 \sin \omega t \cos \delta + \tau_0 \cos \omega t \sin \delta$$

$$= [\tau_0 \cos \delta] \sin \omega t + [\tau_0 \sin \delta] \cos \omega t$$

portion in-phase with <u>strain</u> portion in-phase with <u>strain-rate</u>



SAOS Material Functions

$$\frac{-\tau_{21}(t)}{\gamma_0} = \left[\frac{\tau_0 \cos \delta}{\gamma_0}\right] \sin \omega t + \left[\frac{\tau_0 \sin \delta}{\gamma_0}\right] \cos \omega t$$
portion in-phase with strain
$$\frac{\rho}{\sigma} = \left[\frac{\tau_0 \cos \delta}{\gamma_0}\right] \sin \omega t + \left[\frac{\tau_0 \sin \delta}{\gamma_0}\right] \cos \omega t$$

For Newtonian fluids, stress is proportional to strain rate: $\tau_{21} = -\mu \dot{\gamma}_{21}$

G'' is thus known as the <u>viscous</u> loss modulus. It characterizes the viscous contribution to the stress response.

© Faith A. Morrison, Michigan Tech U.

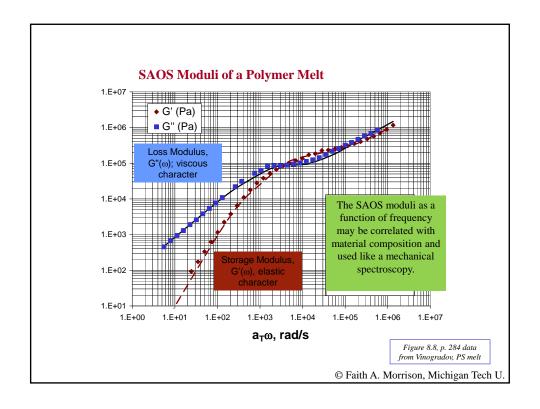
SAOS Material Functions

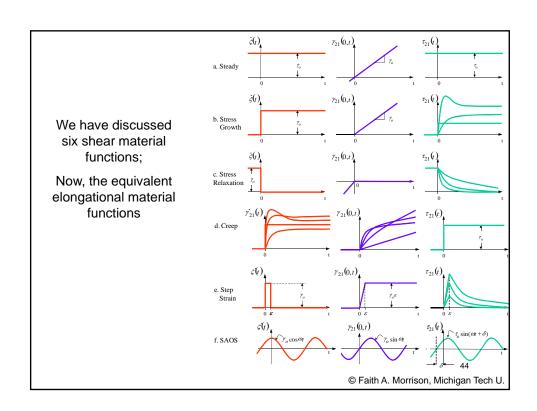
$$\frac{-\tau_{21}(t)}{\gamma_0} = \left[\frac{\tau_0 \cos \delta}{\gamma_0}\right] \sin \omega t + \left[\frac{\tau_0 \sin \delta}{\gamma_0}\right] \cos \omega t$$
portion in-phase with strain
$$\frac{\rho(t)}{\rho(t)} = \left[\frac{\tau_0 \cos \delta}{\gamma_0}\right] \sin \omega t + \left[\frac{\tau_0 \sin \delta}{\gamma_0}\right] \cos \omega t$$

For Hookean solids, stress is proportional to strain:

G' is thus known as the <u>elastic</u> storage modulus. It characterizes the elastic contribution to the stress response.

> (note: SAOS material functions may also be expressed in complex notation. See pp. 156-159 of Morrison, 2001)





Steady Elongational Flow Material Functions

Kinematics:

$$\underline{v} = \begin{pmatrix} -\frac{1}{2}\dot{\varepsilon}(t)(1+b)x_1 \\ -\frac{1}{2}\dot{\varepsilon}(t)(1-b)x_2 \\ \dot{\varepsilon}(t)x_3 \end{pmatrix}$$

$$\dot{\varepsilon}(t) = \dot{\varepsilon}_0 = \text{constant}$$
Elongational flow: b=0, $\dot{\varepsilon}(t) > 0$
Biaxial stretching: b=0, $\dot{\varepsilon}(t) < 0$
Planar elongation: b=1, $\dot{\varepsilon}(t) > 0$

Material Functions:

$$\overline{\eta}$$
 or $\overline{\eta}_B$ or $\overline{\eta}_{P_1} \equiv \frac{-(\tau_{33} - \tau_{11})}{\dot{\varepsilon}_0}$

Uniaxial or Biaxial or First Planar Elongational Viscosity

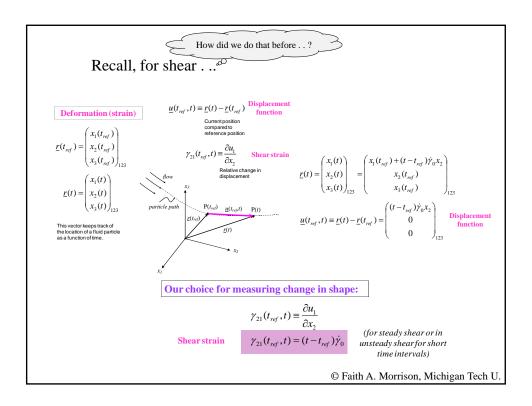
$$\overline{\eta}_{p_2} \equiv \frac{-\left(\tau_{22} - \tau_{11}\right)}{\dot{\varepsilon}_0}$$

Second Planar Elongational Viscosity

© Faith A. Morrison, Michigan Tech U.

What is the strain in this flow?

(to answer, review how strain was developed/defined for previous flows. . .)



Path to strain for shear:

$$\underline{r}(t_{ref}),\underline{r}(t) \rightarrow \underline{u} \rightarrow \underline{v}\underline{u} \rightarrow \underline{\gamma}(t_{ref},t)$$

Try to follow for elongation.

$$\underline{r}(t_{ref}) = \begin{pmatrix} x_1(t_{ref}) \\ x_2(t_{ref}) \\ x_3(t_{ref}) \end{pmatrix}_{123} \qquad \underline{r}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix}_{123} = ?$$

$$\underline{\underline{u}}(t_{ref}, t) \equiv \underline{\underline{r}}(t) - \underline{\underline{r}}(t_{ref}) = ?$$

$$\underline{\gamma} = \nabla \underline{\underline{u}} + (\nabla \underline{\underline{u}})^T = ?$$

Shear	Elongation	
$v_1 = \dot{\gamma}_0 x_2$	$v_3 = \dot{\varepsilon}_0 x_3$	$\frac{\partial v}{\partial x} = constant$
$\frac{dx_1}{dt} = \dot{\gamma}_0 x_2$ $dx_1 = \dot{\gamma}_0 x_2 dt$	$\frac{dx_3}{dt} = \dot{\varepsilon}_0 x_3$ $\frac{dx_3}{x_3} = \dot{\varepsilon}_0 dt$	Сх
$x_1 = x_{1,0} + \dot{\gamma}_0 \Delta t \ x_2$ $\frac{\partial (x_1 - x_{1,0})}{\partial x_2} = \dot{\gamma}_0 \Delta t$	$ \ln \frac{x_3}{x_{3,0}} = \dot{\varepsilon}_0 \Delta t $	Piece of deformation over

Notes:

- •The way we quantified deformation for shear, du_1/dx_2 , is not so appropriate for elongation.
- •Velocity gradient constant in both flows (but not the same gradient)
- •(Velocity gradient) (Δt) is a measure of deformation that accumulates linearly with flow

© Faith A. Morrison, Michigan Tech U.

Press on:

 $strain = \int_{gradient}^{velocity} dt$

homogeneous flows (velocity gradient the same everywhere in the flow)

Shear:

$$\gamma_{21}(t_1, t_2) = \int_{t_1}^{t_2} \dot{\gamma}_{21}(t')dt'$$

Elongation:

$$\gamma_{21}(t_1, t_2) = \int_{t_1}^{t_2} \dot{\gamma}_{21}(t') dt'$$

$$\varepsilon(t_1, t_2) = \int_{t_1}^{t_2} \dot{\varepsilon}(t') dt'$$

Note:

Need a better definition of strain for the general case

Hencky strain

$$\mathcal{E}(t_{ref}, t) = \int_{t_{ref}}^{t} \dot{\mathcal{E}}(t') dt' \qquad \text{(choose } t_{ref} = 0\text{)}$$

 $=\dot{\mathcal{E}}_0 t$ The strain imposed is proportional to time.

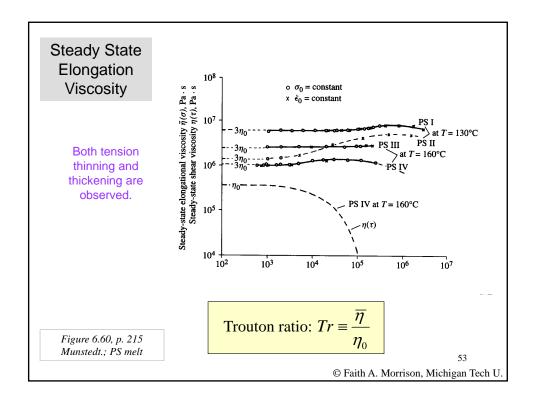
The ratio of current length to initial length is exponential in time.

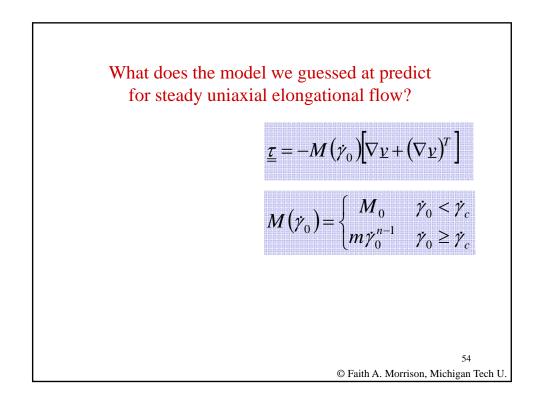
© Faith A. Morrison, Michigan Tech U.

What does the **Newtonian** Fluid model predict in uniaxial steady elongational flow?

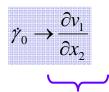
$$\underline{\underline{\tau}} = -\mu \underline{\underline{\dot{\gamma}}} = -\mu \left[\nabla \underline{\underline{\nu}} + (\nabla \underline{\underline{\nu}})^T \right]$$

Again, since we know $\underline{\boldsymbol{v}}$, we can just plug it in to the constitutive equation and calculate the stresses.





What if we make the following replacement?



This at least can be written for any flow and it is equal to the shear rate in shear flow.

55

© Faith A. Morrison, Michigan Tech U.

Observations

$$\underline{\underline{\tau}} = -M(\dot{\gamma}_0) \left[\nabla_{\mathcal{V}} + (\nabla_{\mathcal{V}})^T \right]$$

$$M(\dot{\gamma}_0) = \begin{cases} M_0 & \dot{\gamma}_0 < \dot{\gamma}_c \\ m\dot{\gamma}_0^{n-1} & \dot{\gamma}_0 \ge \dot{\gamma}_c \end{cases}$$

- •The model contains parameters that are specific to shear flow – makes it impossible to adapt for elongational or mixed flows
- •Also, the model should only contain quantities that are independent of coordinate system (i.e. invariant)

We will try to salvage the model by replacing the flow-specific kinetic parameter with something that is frame-invariant and not flow-specific.

56

We will take out the shear rate and replace with the magnitude of the rate-of-deformation tensor (which is related to the second invariant of that tensor).

$$\underline{\underline{\tau}} = -M\left(\underline{\underline{\gamma}}\right)\left[\nabla_{\underline{\mathcal{V}}} + (\nabla_{\underline{\mathcal{V}}})^T\right]$$

$$\underline{\underline{\tau}} = -M\left(\underline{\underline{\gamma}}\right)\left[\nabla\underline{\underline{\nu}} + (\nabla\underline{\underline{\nu}})^{T}\right]$$

$$M\left(\underline{\underline{\gamma}}\right) = \begin{cases} M_{0} & |\underline{\underline{\gamma}}| < \gamma_{c} \\ m|\underline{\underline{\gamma}}|^{n-1} & |\underline{\underline{\gamma}}| \ge \gamma_{c} \end{cases}$$

© Faith A. Morrison, Michigan Tech U.

The other elongational experiments are analogous to shear experiments (see text)

Elongational stress growth

Elongational stress cessation (nearly impossible)

Elongational creep

Step elongational strain

Small-amplitude Oscillatory Elongation (SAOE)

