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To proceed to better-designed constitutive equations,
we need to know more about material behavior, i.e.
we need more material functions to predict, and we

need measurements of these material functions.

*More non-steady material functions (material
functions that tell us about memory)

*Material functions that tell us about nonlinearity
(strain)
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Summary of shear rate kinematics (part 1)
g(t) 721(01) 121(t)
p T
a. Steady %o ° %
' '
0 t 0 t 0 t
g(t) 721(0,t) 721(t)
b. Stress ;} 7 7~
Growth ! /
0 t 0 t 0 t
$t) 72, 0,0) 20
c. Stress T
Relaxation f’ /‘o !
0 t 0 t
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The next three families of material functions
incorporate the concept of strain.
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Summary of shear rate kinematics (part 2)

7}1&)‘M 721(01t) 721(t)
d. Creep S S—
/ ;

0 t 0 t 0 t
5&)‘ 721 0.t) 0
= T
Strain f | f
0¢ t 0¢ t 0¢ t
s(t)

71 0,t) 7 ()

f. SAOS 7o coset wyo sin at :
/ ‘ \//\t \A \//t 7[3@&[.

— e

I g sin(at +9)
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Shear Creep Flow

Constant shear stress imposed

samples
id id

[ i ]

T
_J

oven MASS
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Because shear rate is not
prescribed, it becomes

something we must measure. Creep Shear Flow Material Functions
Kinematics: ~— It is unusual to prescribe stress rather than ¢(t)

@?XZ\ 0 t<0

: 7, t=0

123

Material Functions:

Since we set the stress in this experiment (rather than
measuring it), the material functions are related to the
deformation of the sample. We need to discuss

measurements of deformation before proceeding.
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Pause on Material Functions

We need to define and learn to
work with strain.
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Deformation (strain) We need a way to quantify
“change in shape”

The problem of change in shape is a
difficult, 3-dimensional problem; we S~
can start simple with unidirectional T~
flow (shear).

© Faith A. Morrison, Michigan Tech U.
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Strain in Shear _ Auy Relative change in
4 Ax, displacement
H H
f
H /
y§0 y=1 y=2

The strain is related to the change of
shape of the deformed particle.
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Strain in Shear _ Auy Relative change in
Ax, displacement
H H
H
H
MW,
H H/2

The strain is related to the change of
shape of the deformed particle.

There is no unique way to measure
“change of shape.”
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Deformation (strain)

Xl (tref )
XZ (tref )
X3 (tref ) 123

X, (t)
X, ()
X5 (t) 123

[(tref ) =

r)=

This vector keeps track of
the location of a fluid particle
as a function of time.

NN

Displacement
function

g(tref ’t) = [(t) _L(tref )
Current position

compared to
reference position

ou
— 1 ;
721(tref )=— Shear strain
OX,
Relative change in
displacement

X3

particle path .. P(trer)

g(trefvt) P(t)
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X1

. dx,

70X, ot

= —| 9o
v=l 0 =| &
dxz

0 123 dt

123

What is the strain in the standard flov\@hear?
N

We can integrate this differential
equation because y, is a
constant. We obtain x; (t).

© Faith A. Morrison, Michigan Tech U.
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Deformation in shear flow (strain)

Xl (tref )
[(tref ) = XZ (tref )
X3 (tref ) 123

X (t) X (tref ) + (t - tref )70X2
[(t) =1 % (t) = X, (tref )
X3 (t) 123 X3 (tref ) 123

(t _tref )7}0X2
Displacement

Ut ) =r(t)—r(ty)= 0 function
0

123
13
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Deformation in shear flow (strain)

(t _tref )7}0X2
Displacement

Uty t)=r)—r(t)= 0 function
0

123

Our choice for measuring change in shape:

ou, du
t  t)=—2=—2
721( ref ) 8X2 dX2
(for steady shear or in

Shear strain Vor(ter s 1) = (=t )70 unsteady shear for short
time intervals)

14
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Forhear, y is a function of time:

. dx.
7 ()X, & — —
%, This integration is less
V= 0 =| o straightforward.
dx
0 iac R
123 dt 123

We can obtain the unsteady result for strain by applying the steady
result over short time intervals (where y may be approximated as a
constant) and add up the strains.

short time interval between
tp and tpyyq:

ou, .
Yoty tou) :8_)(1 =7a(t)At

2

15
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Forhear:

ou, .
7/21(tp7tp+l) 267 = }/Zl(tp+l)At

2 (short time interval)

For a long time interval, we add up the strains over short time intervals.
short time interval: 7 (tp atp+1) = 721 (t p+1)At

N-1 N-1
long time interval: Yaltut,) = 2721(tp 'tp+l) = ZAU}Zl(tpﬂ)
p=0 p=0

Taking the limit as At — 0,

Strain at t, with
. = t, | respect to fluid
yau(t,t)= l!_rg)[z Aty (t p+1):| = J.tl 7 ()t configuration at t, in
p=0

unsteady shear flow.

16
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Change of Shape

For shear flow (steady or unsteady):

t, . Strain at t, with
7 (t,t) = I 7, (t)dt’ respectto fluid

Y configuration at t, in
shear flow (steady
or unsteady).

Note also, by Leibnitz rule:

dy, d ¢t .
== t"dt’
dt at Yo V()

Yoy () + 7 ; 0(ter)
:J.t,e, %(7/21« ))jt +721(t)%_7/21(tref) at

d .
é/tu =7x(t)

Deformation rate Now we can continue with material
functions based on strain.
17
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Because shear rate is not
prescribed, it becomes

something we must measure. Creep Shear Flow Material Functions

Kinematics: ~— Itis unusual to prescribe stress rather than ¢(t)

\ 0 t<0
@: 7, t=0

123

Material Functions:

Since we set the stress in this experiment (rather than
measuring it), the material functions are related to the

deformation of the sample..

8
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Creep Shear Flow Material Functions

Kinematics:
721('[)X2 0 t<0
V= 0 7,{t)=47, 0<t<t,
0 0 t>t,

123

Material Functions:

J (t,Z'O) = }/21(0’t)
(ty>x) -7

Shear creep
compliance

3,(1ry) =R(E,ry) = 20

(T=t-t,,t>t,) )
Y () = ¥21(0,t2) — ¥21(0,1)
Recoverable

creep
compliance

© Faith A. Morrison, Michigan Tech U.
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Creep Recovery

-After creep, stop pulling forward and allow the flow to reverse

-In linear-viscoelastic materials, we can calculate the recovery
material function from creep measurements

Vr (f) =72(0,t;) —72(0,1)

Recoverable strain Strain at the end of  Strain at the end
Recoil strain the forward motion  of the recovery

‘]r(F1TO) ELF)

Recoverable
creep
compliance

Ty
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Material functions predicted for creep of a
Newtonian fluid

Newtonian:  Z(t) = _/J(V\_/ +(W)f )

=7
Shear creep compliance 'J((t’ z'o) -

t,—00)

Recoverable creep compliance ~ J, (T, 7,) =2

21
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Material functions predicted for creep of a Newtonian fluid

J (t) A

| No recovery in
Jt)= (i t -~ Newtonian fluids

v

remove

stress (t,) i

© Faith A. Morrison, Michigan Tech U.
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Shear Creep of a 7 ()X, 0 t<0
Viscoelastic liquid v=| 0 7,,(t) =
q v (1) fy 120
0 123
72(0,1)
J :\](T)Tp J(t,TO)EZi—T
P Tref pref 0
Data have been
corrected for H
vertical shift. %
Figure 6.53, p. 210 23
Plazek; PS melt
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Characteristics of a Creep Curve

line (steady flow).
dJ

=J (t)‘steady =

state

*At long times the creep compliance J(t, 7,) becomes a straight

E steady a dt
state

*We can define a steady-state compliance

,;t +C
17 500)

_dyuf 1
—7,
— 7}14)00
—17,
_ 1 The slope at steady state is the
n(7.,..) inverse of the steady state viscosity

J;(7)

Steady-state compliance
24
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Shear creep material functions

constant slope =~
P 0)

Steady-state
compliance

6 )-

regime of steady flow at shear rate 7.,

v

25
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Characteristics of a Creep Recovery Curve

«At long recoil times we can define an ultimate recoil function R, (7,)

A
f _
J.(t,79)=R(t,7)
Ultimate
R,(z,) recoil
function
0 t,
-4 0 t , recovery
t=t—t,
26
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In the Linear Viscoelastic (LVE) Limit, it is easy to
relate the two shear creep material functions

A ,
‘](t’ ZE)) —————————————
E J.(t,7,)

0 i1, t, creep g

-, 0 t ,rec0\7ery
t=t-t,

27
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Linear Viscoelastic Creep (no dependence on t,)

total recoverable non-recoverable
strain strain strain

A~
7(t) = ]/r(t)+t7./t~)oo
) _ 70 H( 7 j

—To T — 7T

I =3,0)+—

o

t
J(O)=J0O-— For LVE materials,
Mo we can obtain R(t)
without a recovery
experiment
28
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Shear Creep - Recoverable Compliance

Time-temperature shifted

T T 1 T T T T T T T T T
-6} d
s+ J.(1) .
= oz} r
g T -7t 4
s °
£ 5 1
' T—s- .
= S r 4
‘:‘n N
£ =-9F .
o0
£ _
—10}+
] 1 Il !

Figures 6.54, 6.55, p. 211
Plazek; PS melt 2
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Shear creep material functions

Linear-viscoelastic (LVE) limit

constant slope = %70

A
T
bt
Mo
0 ~ Ultimate
JSL’ Jr(t) Ri ZJSO recoil
function

J(t)
L/

LVE steady-state % Non-recoverable

compliance o strain
0 t, t, creep:
-1, 0 f . recovery
t=t—t,

30
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Step Shear Strain Material Functions

Kinematics:
: 0 t<0
c(t)x; , e
c(t)=limiy, O<t<e
V= 0 &0
- 0 0 t>¢
123 7,€ = constant = y,
Material Functions:
First normal-stress |G, = — (Tll ; 722)
i 1
_ —199(t, 7o) | relaxation modulus 7
Y0
- Second normal- |G, = — (722 - T33)
Relaxation . ¥, 5
stress relaxation 7
modulus 0
modulus
1
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What is the strain in this flow?

Ya(-0,t) =

t . r !
[ 7a(t)dt
. 0 t'<0
= [lim{2 o<t'<g dt’
&0
- 0 t>¢
=|imj"ﬁdt'
£—0J0 &

=%

The strain imposed is a constant

32
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Step shear strain - strain dependence
10,000
G(t), Pa ®s a0y
ISPy 2" Vo =
A, mg 8%y 0
1,000 4 A Oy Vg
0K Ao, '-.'00’ <187
o X I A' LN B3.34
or ®g Ky s 8%, A5.22
o + %@ T Xx NS 6.68
100 o 8% KX, TS o %10
OSSR P LY ®134
oo +y @K Alle +187
R e Y
000 + ex Ag )
104 ®s ++ X A
<>o+ oxX
ot oK A
ot®
1 +o
< +X.
<o
N
0 T T T
Figure 6.57, p. 212 1 10 100 1000 10000
Einaga et al.; PS soln time, s .
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Linear viscoelastic limit

. At small strains the
lim G(tJ/o) = G(t) relaxation modulus is

700 independent of strain.

The polystyrene solutions on the previous slide show time-strain
independence, i.e. the curves have the same shape at different strains.

Damping function, h

G(t, 7o) The damping function
h(}fo) = summarizes the non-linear
G(t) effects as a function of

strain amplitude.

34
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What types of materials generate stress in proportion
to the strain imposed? Answer: elastic solids

Hooke’s Law for elastic solids| 797 = -Gy

initial state,
no flow,
no forces

Ay

Ay
AX,

| = ,

Hooke's law for
elastic solids

AXy Ty = -G

deformed state,

Xl | ' L
' ! initial state,
< —>
I ””:““ A i noforce

deformed state,
fl = —kAXl

N

Hooke's law for
linear springs

|

@

spring restoring forc

Similar to the linear spring law

35
© Faith A. Morrison, Michigan Tech U.

Small-Amplitude Oscillatory Shear Material Functions

123

Kinematics:
s®x c(t) = ypcosamt
v=| 0 _ 70
0 Y0 = ;

Material Functions:

—raalbro) _ G'sinwt + G" cos wt

70
T 0 _.
G'(w) =—2coss G"(w) =-%sins
70 (dis the phase 70
difference between
Storage modulus  gtress and strain Loss modulus

6

© Faith A. Morrison, Michigan Tech U.
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_N

What is the strain in this flow?
t N ! !
7,,(0,1) = .[o 7, (t)dt
t
= jyo cosot’ dt’
0

Sin ot The strain imposed

is sinusoidal.

The strain
amplitude is 7o =-2
0]

37
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Generating Small Amplitude Oscillatory Shear (SAOS)

steady shear b(t) =Vt =hy,t
| ]
T X V = constant
“ T
| ¢ ] X

small-amplitude
oscillatory shear

b(t) =h 3, sin ot
_h%

sin at
a)
| | . ____ 2
T X V = periodic
- 2
“ T
| i T X

38
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In SAQOS the strain amplitude is small, and a
sinusoidal imposed strain induces a
sinusoidal measured stress.

]—Tzl(t) = 7o sin(et + 5)\

—T21(t) =1 Sin(a)t + 5)
= 75SIN Wt COS S + 75 COSwESIN O
= [2'0 cos 5]sin ot + [ro sin 5]003 ot

~ 7 ~ 7

Y Y
portion in-phase portion in-phase
with strain with strain-rate

39
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d is the phase difference between
37 the stress wave and the strain wave

721(0,8) = 75 (1)

Tzi ®)

40
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SAOS Material Functions

— Toq(t 70COSO | . 705N 0
a0 _| % sin et +| -9 cos et
Y0 70 70
— —
portion in-phase portion in-phase
with strain with strain-rate
G! G”

For Newtonian fluids, stress is proportional to strain rate:

G" is thus known as the viscous loss modulus. It characterizes the
viscous contribution to the stress response.

41
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SAOS Material Functions

() _| 70C0s8 sin oot 4| 205N o S
70 70 70
— "
portion in-phase portion in-phase
with strain with strain-rate
G[ G”

For Hookean solids, stress is proportional to strain : | 7o1 = —G721

G’ is thus known as the elastic storage modulus. It characterizes the
elastic contribution to the stress response.

(note: SAQOS material functions may also be expressed in
complex notation. See pp. 156-159 of Morrison, %(2)01)

© Faith A. Morrison, Michigan Tech U.
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SAOS Moduli of a Polymer Melt

LE+07 ‘

1.E+06 +

L]
u
Q
T
Q

-4
1.E+05 -
%
s
1.E+04 ~ N
The SAOS moduli as a
R function of frequency
1E+03 may _be correlat_eq with
—_ material composition and
AN used like a mechanical
1.E+02 - spectroscopy.
LesoL / NN .

1.E+00 1.E+01

1.E+02 1.E+03 1.E+04

1.E+05 1.E+06 1.E+07

a;o, rad/s
Figure 8.8, p. 284 data
from Vinogradov, PS melt
© Faith A. Morrison, Michigan Tech U.
), 7210,1) ()
_ L S
a. Steady % % %
| 1 i
0 t 0 t 0 t
) 7210,1) 5 0)
——
. b. St g
We have discussed Growth ; !
six shear material ° ‘ ° oo '
functions; &), 710.1), )
. c. Stress il
Now, the equivalent Relaxation 7 —
elongational material 0 ‘ o :
functions 7a) E ra.) )
d. Creep I S—
/ h
0 t 0 t 0
<) 720t) )
R .
Strain ¢ *
0& t 0¢ t 0¢é
<) 7210,t) o)

f. SAOS # 7o Coset f 2
t

1
L sin(et +0
7o sinat H £ msin(et+9)

NS AN
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Steady Elongational Flow Material Functions

Kinematics:
1. . .
200D £(t) = & = constant
V= —lé(t)(l—b)x
- 2 2 Elongational flow: b=0, £(t) >0
()%, Biaxial stretching: b=0, &(t) <0
123 Planar elongation: b=1, £(t) >0

Material Functions:

—Ar . -~ —(T33—T11) - _ —(Tzz —Tll)
70N 77g OF 1jp = ——=——== 7, =
£p £p
Uniaxial or Biaxial or First Planar Second Planar
Elongational Viscosity Elongational Viscosity

5
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What is the strain in this flow?

(to answer, review how strain was
developed/defined for previous flows. . .)

© Faith A. Morrison, Michigan Tech U.
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Recall, for shear . ..&

Displacement

Deformation (strain) Ut D) =10~ (ter) function

Currentposition
X, (ter) rerenca pesion
Pt ) = | Xo(ter) oy
[XS(tref )123 Vor(tes 1) = &2 Shear strain X, (t) X (b )+ (E =t ) 776X,
X, (t) \\\"ow . gimvceeﬂ:?ge " rt)= [xz (t)] = [ Xy (ter ) J
)= [Xz (t)J N R ’ X3 (1) ) 5 X3 (ter) 123
X5 () ) particle path | e Ple) utat)  pQy

This vectorkeeps track of
the location of a fluid particle
asa function of time.

(tftrev)}}ux Displ
,,,,,,,,,, _ isplacement
Ut ) =r(t)—r(ty) = 0 function
0 123

X1

Our choice for measuring change in shape: |

ou
721(tref vt) =—1
0X,
) . (for steady shear or in
Shearstrain Vo1t 1) = (€=Le )% unsteadyshearfor short

time intervals)

© Faith A. Morrison, Michigan Tech U.

Path to strain for shear:

r(tref) 7@ = u—>  Vu- Y(es )

Try to follow for elongation.

Xl (tref ) Xl (t)
Mt ) =| Xo(ter) rt)y=| x, ()| =?
X3 (tref) 123 X3 (t) 123

g(tref 't) = [(t) _L(tref ) =7
y=Vu+(Vu) =7

© Faith A. Morrison, Michigan Tech U.
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Shear Elongation
. . o
Vi =YX, Vy = &%y = constant
& _ VoX B _ s x
dt 072 d 073
dx, = y,x,dt dx, .
1= Yo% . 5 _ g dt
X = X0+ 7oAt X, 3
A(x. —X X . Piece of
M = 7,At In—=-=¢gAt  deformation over
X, X350 time interval At

Notes:

*The way we quantified deformation for shear, du,/dx,, is not so appropriate
for elongation.
*\elocity gradient constant in both flows (but not the same gradient)

(\elocity gradient) (At) is a measure of deformation that accumulates linearly
with flow

© Faith A. Morrison, Michigan Tech U.

Press on:

. velocit homogeneous flows
strain = I radierzlt dt (velocity gradient the same
9 everywhere in the flow)

| ' '
Shear: Yalt,t)= _L 7 (t)dt

Elongation: e(t,t,)= sz g(tNdt’

Note:

Need a better definition of
strain for the general case

© Faith A. Morrison, Michigan Tech U.
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Hencky strain

t
b 4
&tre t) = _[[ g(t)dt (choose t,,;=0)
ref
— ‘c}Ot The stra_m |mpos§d is
proportional to time.
| The ratio of current
=Iln— length to initial length is
0 exponential in time.

51
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What does the Newtonian Fluid model predict in
uniaxial steady elongational flow?

r=—uy=—pvy+ (V\—/K)T ]

Again, since we know V, we can just -)

plug it in to the constitutive equation
and calculate the stresses.

52
© Faith A. Morrison, Michigan Tech U.
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Steady State

Elongation -

V|SCOS|ty @ @ © 09 = constant
gL x € = constant
38
EF 1071 PS1
g [Tme e Sa D atT=130°C

Bothtension 4 [t B Rl
thinning and gg 106 §77 375 “owbonare— T 0 501y
thickening are e Ly —— —
observed. £3 ~~_
@ -g 105 4 N~ PSIVat T=160°C
41 N
S N 1)
3 \
w
10* . i \ . .
102 103 104 105 106 107
Trouton ratio: Tr = -L-
Figure 6.60, p. 215 770
Munstedt.; PS melt o3

© Faith A. Morrison, Michigan Tech U.

What does the model we guessed at predict
for steady uniaxial elongational flow?

£ =M (7, vy (Vo) ]

MO 70<7c

My, )=
w727,

54
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What if we make the following
replacement?

. 1
Py —> =%
A

H_J

This at least can be written
for any flow and it is equal
to the shear rate in shear
flow.

55
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Observations L M. 1
(7/0)_ .n-l Y >
My, Yo Ve

*The model contains parameters that are specific to
shear flow — makes it impossible to adapt for
elongational or mixed flows

*Also, the model should only contain quantities that are
independent of coordinate system (i.e. invariant)

We will try to salvage the model by replacing
the flow-specific kinetic parameter with
something that is frame-invariant and not
flow-specific.

56
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We will take out the shear rate and replace
with the magnitude of the rate-of-deformation
tensor (which is related to the second invariant

of that tensor).

57
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The other elongational experiments are
analogous to shear experiments (see text)

Elongational stress growth
Elongational stress cessation (nearly impossible)
Elongational creep
Step elongational strain

Small-amplitude Oscillatory Elongation (SAOE)

58
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Figure 6.64, p. 218

Start-up of _
Steady =
Elongation Z
Strain- :
hardening \i/

tensile stress grosth coe

Kurzbeck et al.; PP

Fit to an advanced
constitutive equation (12
mode pom-pom model) 10

FUTTTEETT! T A T

Figure 6.63, p. 217
Inkson et al.; LDPE

T ETTT R S RU U] R R S TT S B S W RN TTI 1 \Hllj

01 1

10 100 1000 10000

59
© Faith A. Morrison, Michigan Tech U.

What's next?

v'Standard flows

v'Material functions

«Constitutive equations

*Model flows/solve engineering problems

v'Underlying physics (mass, momentum balances, stress tensor)

? /\ We want to design

constitutive equations

based on the material

behavior of real non-
Newtonian fluids.

What is the behavior of
non-Newtonian fluids?

60
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