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What is rheology anyway?

Rheology = the study of
deformation and flow.

“What is Rheology Anyway?” Faith
A. Morrison, The Industrial Physicist,
10(2) 29-31, April/May 2004.
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What is rheology anyway?

To the layperson, rheology is

*Mayonnaise does not flow even under stress
for a long time; honey always flows

«Silly Putty bounces (is elastic) but also flows
(is viscous)

*Dilute flour-water solutions are easy to work
with but doughs can be quite temperamental

«Corn starch and water can display strange
behavior — poke it slowly and it deforms easily
P around your finger; punch it rapidly and your
fist bounces off of the surface
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What is rheology anyway?

To the scientist, engineer, or
technician, rheology is

*Yield stresses
*Viscoelastic effects

, — *Memory effects
e *Shear thickening and shear
t thinning

For both the layperson and the technical person, rheology is a
set of problems or observations related to how the stress in a
material or force applied to a material is related to
deformation (change of shape) of the material.

3
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What is rheology anyway?

Rheology affects: *Processing (design, costs,
production rates)

www.corrugatorman.com/

pic/akron%20extruder.JPG -
www.math.utwente.nl/

mpcm/aamp/examples.html

*End use (food
texture, product pour,
motor-oil function)

*Product quality
(surface distortions,

: W anisotropy, strength,
pomar et o m structure development)
JNNFM 54°

143 1994
4

© Faith A. Morrison, Michigan Tech U.




CM4650 Vectors and Tensors

Goal of the scientist,
engineer, or technician:

*Understand the kinds of flow and
deformation effects exhibited by
complex systems

How
do we reach
these goals?

*Apply qualitative rheological
knowledge to diagnostic, design, or
optimization problems

*In diagnostic, design, or
optimization problems, use or devise
guantitative analytical tools that
correctly capture rheological effects

5
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BY observing the behavior
of different systems

How? s

*Understand the kinds of flow and
deformation effects exhibited by
omplex systems

*Apply qualitative rheological
knowledge to diagnostic, design, or

optimization problems By learning
- e which
: *In diagnostic, design, or quantitative
B?’ ”;ar_'”g optimization problems, Use or devise \ models
caicuiations quantitative analytical tools that apply in
with models IN'N_ ¢ rectly capture rheological effect what
appropriate ycap g circums-
situations stanaces
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Learning Rheology (bibliography)

Descriptive Rheology
Barnes, H., J. Hutton, and K. Walters, An Introduction to Rheology
(Elsevier, 1989)

Quantitative Rheology

Morrison, Faith, Understanding Rheology (Oxford, 2001)
Bird, R., R. Armstrong, and O. Hassager, Dynamics of Polymeric
Liquids, Volume 1 (Wiley, 1987)

Industrial Rheology
Dealy, John and Kurt Wissbrun, Melt Rheology and Its Role in Plastics
Processing (Van Nostrand Reinhold, 1990)

Polymer Behavior
Larson, Ron, The Structure and Rheology of Complex Fluids (Oxford, 1999)
Ferry, John, Viscoelastic Properties of Polymers (Wiley, 1980)

Suspension Behavior

Mewis, Jan and Norm Wagner, Colloidal Suspension (Cambridge, 2012)
Macosko, Chris, Rheology: Principles, Measurements, and Applications

(VCH Publishers, 1994)
7
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The Physics Behind Rheology:

L Conser{]\;gtlon laws Cauchy Momentum Equation

momentum <= ov
ASRVIS vAVE P v/
o p[ a yj 072} pg

2. Mathematics
differential equations
vectors
tensors

3. Constitutive law = law that relates stress to
deformation for a particular fluid

8
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Polymer Rheology

Non-Newtonian Fluid Mechanics

Newtonian fluids:
(fluid mechanics)

.

Ty =

(\ material parameter
L dy, P

dx, — deformation
J

Newton’s Law of Viscosity

Y

*This is an empirical law
(measured or observed)

*May be derived theoretically
for some systems

Non-Newtonian fluids:

Need a new law or new

(rheology) laws

*These laws will also either be

empirical or will be derived

theoretically o

© Faith A. Morrison, Michigan Tech U.
Polymer Rheology Non-Newtonian Fluid Mechanics
Newtonian fluids: dv
(shear flow only) Ty =—p—-
dx,

Non-Newtonian fluids:
(all flows)

/‘\
stress tensor

Constitutive Equation

z

(\ Rate-of-

_ _f k) deformation
( C

tensor
non-linear function
(in time and position)

10
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Introduction to Non-Newtonian Behavior

Rheological Behavior of Fluids, National
Committee on Fluid Mechanics Films, 1964

Velocity gradient tensor Z

(zero viscosity, u=0)

Type of fluid Momentum balance Stress —Deformation
relationship (constitutive
equation)
Inviscid Euler equation (Navier- Stress is isotropic

Stokes with zero viscosity)

Newtonian Navier-Stokes (Cauchy Stress is a function of the
(finite. constant viscosity, | momentum equation with instantaneous velocity
N Newtonian constitutive gradient
equation)

Non-Newtonian (finite,
variable viscosity n plus
memory effects)

Cauchy momentum
equation with memory
constitutive equation gradient

Stress is a function of the
history of the velocity

11
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Rheological Behavior of Fluids - Newtonian

1. Strain response to imposed
shear stress %

vi(x,)
eshear rate is constant %

4 y = ar =constant
dt

2. Pressure-driven flow in i
a tube (Poiseuille flow)

eviscosity is
constant
_ 7APR*
B 8uL
4
Q i =constant
8uL
AP

3. Stress tensor in shear
flow

eonly two components
are nonzero

0 r, O
t=|7, 0 O
0 0 0,

12
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Rheological Behavior of Fluids — non-Newtonian

1. Strain response to imposed

shear stress

eshear rate is variable

X,

Release
stress

2. Pressure-driven flow in

a tube (Poiseuille flow)

eviscosity is variable

X

3. Stress tensor in shear
flow

«all 9 components are
nonzero

Normal
stresses

13
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Rheological Behavior of Fluids — non-Newtonian

1. Strain response to imposed

shear stress

eshear rate is variable

%

2. Pressure-driven flow in
a tube (Poiseuille flow)

eviscosity is variable

«all 9 components are

Normal - onzero

© Faith A. Morrison, Michigan Tech U.
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Examples from the filmof . . ..

Dependence on the history of the deformation gradient

«Polymer fluid pours, but springs back

«Elastic ball bounces, but flows if given enough time

«Steel ball dropped in polymer solution “bounces”

«Polymer solution in concentric cylinders — has fading memory
*Quantitative measurements in concentric cylinders show memory
and need a finite time to come to steady state

Non-linearity of the function z = f @

*Polymer solution draining from a tube is first slower, then faster
than a Newtonian fluid
*Double the static head on a draining tube, and the flow rate does
not necessarily double (as it does for Newtonian fluids); sometimes
more than doubles, sometimes less
*Normal stresses in shear flow
*Die swell

15
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Show NCFM Film
on Rheological
Behavior of Fluids

* Search for NCFMF
o web.mit.edu/hml/ncfmf.html
+ Also on YouTube

16
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Chapter 2: Mathematics Review

1. Scalar — a mathematical entity that has magnitude only

temperature T
speed v

time t

density p

e.g.:

— scalars may be constant or may be variable

Laws of Algebra

ab =ba

for Scalars:

yes commutative
yes associative  a(bc) = (ab)c

yes distributive a(b+c) = ab+ac

17
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Mathematics Review

Polymer Rheology

2. Vector — a mathematical entity that has magnitude and direction

force on a surface f
velocity v

e.g.:

— vectors may be constant or may be variable

Definitions

magnitude of a vector — a scalar associated with a vector
v|=v ‘ f ‘ = f

unit vector — a vector of unit length
V' ~
— =V
|V| "‘) a unit vector in the
- direction of v

18
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Mathematics Review

Polymer Rheology

Laws of Algebra
for \ectors:

1. Addition

© Faith A. Morrison, Michigan

19

Tech U.

Laws of Algebra for Vectors (continued):

3. Multiplication by scalar aVv

yes commutative

4a. scalar (dot) (inner) product
V-W=VWCcoséd v

Note: we can find
magnitude with dot
product V-V =wcos0 =V

v=ly=v-v

4. Multiplication of vector by vector

av=

yes associative a(ﬂy) = (aﬂ)y =afjv

yes distributive a(\_/ + v_v) =aV+aWw

I=

va

20
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Laws of Algebra for \Vectors (continued):

4a. scalar (dot) (inner) product (con’t)

yes commutative V-W=W-V

NO associative M no such operation

yes distributive ;-(\_/+v_v) =7-V+2-W

4b. vector (cross) (outer) product

VxW=vwsing é

I<
S

€ is a unit vector
perpendicular to
both v and w
following the

right-hand rule 21
© Faith A. Morrison, Michigan|Tech U.

I=

Laws of Algebra for Vectors (continued):

4b. vector (cross) (outer) product (con’t)
NO commutative VXW#WXV
NO associative VXWX Z # (VxW)xZ#Vx(Wxz)

yes distributive 2 x (v+w)=(zxVv)+(zx w)

22
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Mathematics Review

Polymer Rheology

Coordinate Systems

*Allow us to make actual calculations with vectors

Rule: any three vectors that are non-zero and linearly
independent (non-coplanar) may form a coordinate basis

Three vectors are linearly dependent if o, B, and y can
be found such that:

ca+pb+yc=0
for «a,p,y#0

If a, B, and y are found to be zero, the vectors are
linearly independent.

23
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Mathematics Review

any vector

N

Polymer Rheology

How can we do actual calculations with vectors?

Rule: any vector may be expressed as the linear combination
of three, non-zero, non-coplanar basis vectors

coefficient of a in the éy

direction

aX

at +ae +ag =|a,
aZ Xyz

A~ A~

aiel + a'2 2 + a3é3

3
Za,- i
j=1

24
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Mathematics Review Polymer Rheology

Trial calculation: dot product of two vectors

a-b= (a1é1 + azéz + a3‘33)' (b1é1 + bzéz + b3é3)
= a6 '(blel + bzez + b3e3)+
azéz '(b1§1 + bzéz + bsés)"'
a3€; '(blel + bzez + b3e3)
=a6 - blel +a,6 'bzez +a,6 - bses +
a,6,-be +ae,-be,+ae, be +
a.6,-bé +a.6,-be, +aé,-he,
If we choose the basis to be orthonormal - mutually perpendicular
and of unit length - then we can simplify.

25
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

If we choose the basis to be orthonormal - mutually perpendicular
and of unit length, then we can simplify.

0-6=1
0
0

66
66

a-b=2ag bé +ag be,+ab b+
a8, D6 +ak, - be, +a8, b +
ab; - 6 + 885 b6, + 3 - by
= a +ab, +agh;

We can generalize this operation with a technique called Einstein notation.

26
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Mathematics Review

Polymer Rheology

Einstein Notation

a system of notation for vectors and tensors that allows for
the calculation of results in Cartesian coordinate systems.

a :331é1+ e, + &k,
= a6
j=1

«the initial choice of subscript letter is arbitrary

«the presence of a pair of like subscripts implies a
missing summation sign

27
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Mathematics Review

Polymer Rheology

Einstein Notation (con’t)

The result of the dot products of basis vectors can be
summarized by the Kronecker delta function

6-6=1 1 i=p
2:2:8 é"ép:é‘p:{o i#p

Kronecker delta

28
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Mathematics Review Polymer Rheology

Einstein Notation (con’t)

To carry out a dot product of two arbitrary vectors . . .

Detailed Notation 1 Einstein Notation

a-b=(a6 +ag +as) (bg +be +be) a-bh=ag b6,
= a6 b6 +a6 b +al be+

1
1
1
1
1
28,06 + 8,6, - 0,6, + 3,8, -0 + ! =20 by
af; D +afs - bE, +ak;-bh !
=ab + a0, +ah ! =ayb,
:
1
1
1
29
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Mathematics Review Polymer Rheology

3. Tensor — the indeterminate vector product of two (or more) vectors
e.g.. stress T )
velocity gradient 7

— tensors may be constant or may be variable

Definitions

dyad or dyadic product — a tensor written explicitly as the
indeterminate vector product of two vectors

ad  dyad
A general representation
= of a tensor

30
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Mathematics Review Polymer Rheology

Laws of Algebra for Indeterminate
Product of \ectors:

NO commutative av+va
yes associative b(av)=(ba)v=bav

yes distributive  a (v + W) =av+aw

31
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Mathematics Review Polymer Rheology

How can we represent tensors with respect to a chosen

i 2
coordinate system Just follow the rules of tensor algebra

am= (a1é1 + azéz + asés )(mlél + mzéz + msés)
= alélmlél + a1élmzéz + a'1élmsés +
a2e2m1e1 + azezmzez + 3.2(':‘2”]363 +
a,6,Mm€ + a,6;m,e, + a,6;m,e,

e EM

é
3

k=1

Any tensor may be written as the
W sum of 9 dyadic products of
basis vectors

>

QJ
('D>

=
I
N

32
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Mathematics Review Polymer Rheology

What about A?  same.

Einstein notation for tensors: drop the summation sign;
every double index implies a summation sign has been dropped.

A=A 68 = Ay &8

Reminder: the initial choice of subscript
letters is arbitrary

33
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Mathematics Review Polymer Rheology

How can we use Einstein Notation to calculate dot
products between vectors and tensors?

It’s the same as between vectors.

o [
> 1= o
<
I

34
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Mathematics Review

Polymer Rheology

Summary of Einstein Notation

1. Express vectors, tensors, (later, vector operators) in a Cartesian
coordinate system as the sums of coefficients multiplying basis
vectors - each separate summation has a different index

2. Drop the summation signs

3. Dot products between basis vectors result in the Kronecker delta
function because the Cartesian system is orthonormal.

Note:

«In Einstein notation, the presence of repeated indices implies
a missing summation sign

*The choice of initial index (i, m, p, etc.) is arbitrary - it
merely indicates which indices change together

35
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Mathematics Review

Definitions

A:M

Polymer Rheology

3. Tensor — (continued)

Scalar product of two tensors

= A.ee, M, ee,

AA LA A carry out the dot
= Aip M m€i€p - €k products indicated
:AipMkm (ep'ekxei'em)
= Aip M km 5pk 5im
= Amk M km

“n” becomes “K”
“I” becomes “m”

36
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Mathematics Review Polymer Rheology

But, what is a tensor really?

Atensor is a handy representation of a Linear Vector Function

scalar function: y = f (X) = X* +2x+3

a mapping of values of x onto values of y

vector function: w= f(v)

a mapping of vectors of v into vectors w

How do we express a
vector function?

37
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Mathematics Review Polymer Rheology

What is a linear function?

Linear, in this usage, has a precise, mathematical definition.

Linear functions (scalar and vector) have the
following two properties:

f (Ax) = Af (X)
f(x+w)=f(x)+ f(w)

Multiplying vectors and tensors is
a convenient way of representing

the actions of a linear vector
function (as we will now show).

38
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Mathematics Review Polymer Rheology

Tensors are Linear Vector Functions

Let f(a) =b be a linear vector function.
L We can write a in Cartesian coordinates.

a= aiél + azéz + a3é3
f(@)=f (aiél + azéz + a3é3) =b

Using the linear properties of f, we can distribute the function action:

f@-):a1f(él)+a2f(é2)+a3f(é3)zg
e

These results are just vectors, we will

name them v, w, and m. %

© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

Tensors are Linear Vector Functions (continued)

f@-):a1f(él)+a2f(é2)+a3f(é3)zg
e
v w m

f(a)= av+a,W+a,m= b
Now we note that the coefficients a; may be written as,
& :é'él a, :Q‘éz s :Q‘és
Substituting, /\ indetzrrﬁinate

vector product
v+a-e,w+a b oo
has appeared!

40
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Mathematics Review

f@=a-(gv+6w+e
1\

Polymer Rheology

Using the distributive law, we can factor out the dot product with a:

m)=b
J

This is just a tensor

products of vectors)

f@=a-M=Db

(the sum of dyadic (él V+6 W+6 m)

M

7

CONCLUSION: Tensor operations

are convenient to use
to express linear
vector functions.

41
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Mathematics Review

3. Tensor — (continued)

More Definitions

Identity Tensor
1=66=66+686 +68
1 00
=0 1 0
00 1),

Al= Apeép €&
= Apélé‘pkék
= Ae&

Polymer Rheology

42
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review

3. Tensor — (continued) More Definitions

Zero Tensor
0 0O
0={0 0 0
00 0123

Magnitude of a Tensor

At

AL A= ALE,: Anbiy
- Ap'okm (ép ékXéi ém)
= AnkAm

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology

products
across the
diagonal

43

Mathematics Review

Polymer Rheology

3. Tensor — (continued) More Definitions
Tensor Transpose
T T Exchange the
M = (Mikéiék) = Mikéké. coefficients across the
diagonal
CAUTION:

= (ACy 8]
= ACp; 646
Itis not equal to: (ég)-r = (Apcpj eéj)r

*

(ég) (Akélék ij p~ij :(Akcpj éiéjé‘kp)r

| recommend you
always interchange the
indices on the basis
vectors rather than on
the coefficients.

44
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3. Tensor — (continued)

Mathematics Review

Symmetric Tensor

M=M'

Mik:Mki

Antisymmetric Tensor

More Definitions

e.g.

e.g.

Polymer Rheology

N
asrDN
o 01w

123

-2 -3
0 -5

123

N O

45
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3. Tensor — (continued)

Mathematics Review

Tensor order

More Definitions

Polymer Rheology

Scalars, vectors, and tensors may all be considered to
be tensors (entities that exist independent of coordinate
system). They are tensors of different orders, however.

order = degree of complexity

scalars 0t -order tensors

vectors 15t -order tensors

tensors 2nd —order tensors
———————————————————————————————————————————————————————————— express the

higher- 3 -order tensors

tensors

30
31 Numpe_r of
coefficients
32 needed to
33 tensor in 3D

space

46
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Mathematics Review Polymer Rheology

3. Tensor — (continued) More Definitions

Tensor Invariants

Scalars that are associated with tensors; these are
numbers that are independent of coordinate system.

vectors: M =V  The magnitude of a vector is a
scalar associated with the
vector

It is independent of coordinate
system, i.e. it is an invariant.

There are three invariants
associated with a second-order
tensor.

tensors:

>

47
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

Tensor Invariants
|, =traceA=1trA

For the tensor written in Cartesian coordinates:

traceA= Ay, = A+ Ay + Ag
1, =trace(A- A)= A: A= Ay A,

11, =trace(A-A- A)= A;ALA,

Note: the definitions of invariants written in terms of
coefficients are only valid when the tensor is written in
Cartesian coordinates.

7
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Mathematics Review Polymer Rheology

4. Differential Operations with Vectors, Tensors

Scalars, vectors, and tensors are differentiated to determine
rates of change (with respect to time, position)

«To carryout the differentiation with respect to a single
variable, differentiate each coefficient individually.

*There is no change in order (vectors remain vectors, scalars
remain scalars, etc.

o 9By 9By By
ot o ot ot
da ow _ | ow, OB _| 0By 0B, 0By
ot ot ot ot ot ot ot
oW oB;; 0B;, 0By
at 123 at at at 123

49
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Mathematics Review Polymer Rheology
4. Differential Operations with Vectors, Tensors (continued)

To carryout the differentiation with respect to
3D spatial variation, use the del (nabla) Del Operator
operator.

This is a vector operator

«Del may be applied in three different ways

0
«Del may operate on scalars, vectors, or tensors &
This is written in VzéliJréziJr%i: i
Cartesian 0% 0%, OX; | O%
coordinates i
6)(3 123
3 0 0
= z gp — = ep -
p1 - OXp OX,

—

Einstein notation for del
50
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Mathematics Review

Gibbs

Gradient of a
scalar field

4. Differential Operations with \Vectors, Tensors (continued)

A. Scalars - gradient

notation i i i — %
@ 616X1,6'+626X2ﬂ+%6)(3ﬂ OXy

o
ax3 123
B
RRCPW The gradient of
P lar field i
ascalarnelaisa he gradient operation
vector captures the total spatial

egradient operation increases the order of the
entity operated upon

Polymer Rheology

This is written in
% Cartesian
0% coordinates

variation of a scalar,
vector, or tensor field.

51
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Mathematics Review

the derivatives
because they are
constant (do not
change with
position)

Polymer Rheology
4. Differential Operations with Vectors, Tensors (continued)
B. Vectors - gradient
0 0 0
széla—w+éz—w+93—w This is all written
X X X3 in Cartesian
. coordinates (basis
The basis vectors — @
=€ (W1e1 +W,€, + Wgés) vectors are
can move out of 0X,
constant)

+6, 0 (W6, +W,6, +W,6;)
0X,

+6, i(wlel +W,E, +W,E;)
OXy

oW, Ow. OW. oW,

=66 —1+66—2+66—2+6,6 1+
1~1 a 1~2 axi 1~3 6)(1 2¥1 )
6,6, —ZWZ 16,6, —ZW3 L6, —Z‘Nl 166, —ZWZ ree, M
XZ 2 3 3 3

52
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Mathematics Review Polymer Rheology
4. Differential Operations with \Vectors, Tensors (continued)

B. Vectors - gradient (continued)
constants may appear

on either side of the

Gradient of a differential operator

vector field

3 W W w0
,Zlkzﬁék ox % ok O
LY_J

Einstein notation

The gradient of for gradient of a
a vector field is vector
a tensor

53
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Mathematics Review Polymer Rheology
4. Differential Operations with Vectors, Tensors (continued)

C. Vectors - divergence

Divergence of a 0 0 0
vector field (élgl +6 o + %&J W6 + W) + Wb

_om oW, oW
0% 0% OX The Divergence
B 3 aW. B aW. of a vector field
& 6Xi 8)(i is a scalar

—

Einstein notation
for divergence of
a vector

54
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review
4. Differential Operations with \Vectors, Tensors (continued)

C. Vectors - divergence (continued)

constants may appear
on either side of the

Using Einstein differential operator

notation /\
3 ow,

JJ_aXm

_ 9V
axj

entity operated upon

V-w=6,— W =—26,-6=—27;

Polymer Rheology

This is all written
in Cartesian
coordinates (basis
vectors are
constant)

OW.:
m

28

«divergence operation decreases the order of the

55
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Mathematics Review Polymer Rheology
4. Differential Operations with Vectors, Tensors (continued)
D. Vectors - Laplacian
' 0 0 0 0
USing - g.yw=6,- "6 -~ we =————w, (6,6
Einstein x, Pox, TV oox, ox, P
PR p p
notation:
0 0 ( )
o ox, 1 o)
Xm OXp :
o o The Laplacian
=——W; § <@mmmm | (f 3 vector field
OXp OX, is a vector
62 62 62
W, oW, 0w
o OX OX
82W2 62W2 62W2 eLaplacian operation does
= + not change the order of the
3)(1 aXZ 5X3 entity operated upon
oW, w0
~ s OV OV
56
X, X 0% 23 e _ o
aith A. Morrison, Michigan Tech U.
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4. Differential Operations with \Vectors, Tensors (continued)

(impossible; cannot

E. Scalar - divergence ><05
decrease order of a scalar)

F. Scalar - Laplacian ~ V-Va
G. Tensor - gradient VA
H. Tensor - divergence V-A

I. Tensor - Laplacian  v.vA

57
© Faith A. Morrison, Michigan Tech U.
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5. Curvilinear Coordinates

Cylindrical r,o0,z ér ’ ée ’ éz See

figures
Spherical r,o, g 6 @ 2.11and
’ AR 2.12

These coordinate systems are ortho-normal, but they are not
constant (they vary with position).

This causes some non-intuitive effects when derivatives are taken.

58
© Faith A. Morrison, Michigan Tech U.
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5. Curvilinear Coordinates (continued)

V=V +V,E,+V,E

J

First, we need to write thi
in cylindrical coordinates.

©

(aA o . aAj .
=|—€ +_—€6 +—€ -(vrer

solve for | €, =cos@ €, +sinde, X = I COS &
Cartesian - -
basis €, =—sIng €, +cosd & y=rsing substitute above
vectors and 6, =6, 71=12 using chain rule
substitute (see next slide for
above details)
59
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+V,e, + vzez)

Faith A. Morrison, Michigan Tech U.

Mathematics Review

€,=cos@é —sind g,
€, =sinfé +cosd g,

—
dy/ _owr oy o0 oy o _

OX 6r@/ 00 0Xx 01 OX
61//_871//8r+87(//%+81//62

oy oroy 00 oy ooy

Vi = a_'//éx+a_'//éy+a_wéz
OX oy oz

Polymer Rheology

RN 2

/x_rcose r= +y
[ y=rsing 9=tan’1(%j
| =1

oy cosO+ 6://[ sin 9)

or ol r
8:// 9+87 cos&j
ar o6 r

60
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5. Curvilinear Coordinates (continued)

Result: V:(ﬁé + 2 +aézj
P oy ¥ oz

Now, proceed:

Q)
Qb

(We cannot use

Einstein notation . 0 A~ A~ ~
because these are =€ 6_ ’ (Vr r Vo€ TV,E, )+
not Cartesian r
coordinates) ~ 1 a
8,=—-(v,& +v,8,+V,8 )+
roo
0 A A
A %0 7%z
5 ( +Vv,e,+Vv e )

Polymer Rheology

61
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5. Curvilinear Coordinates (continued)

L 0 [

V-v= e— v,€,

a

f\ 7%(6
i

.10 . . lové o

€,———V,e, =€, -—
roo r oo

_é.l( 08, éavr)
¢ 00 " 00

08 o
00 00

:eg

('D)

Polymer Rheology

(D)

V,8,+V,8,)

8,+V,68,+V,8,)

(cosee +sing é )

=-singé, +cosf e,

62
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5. Curvilinear Coordinates (continued)

| =

10v,8
“r 00

A

0 4
€)———"V,6 =

“rog "

(D>

“r
1

1
==V
r

r

Polymer Rheology

. 1( 08, . av,j
&, =|v, —L+& ——
o6 00

6 (vé +é a"rj
0 r rve rae

This term is not intuitive,
and appears because the
basis vectors in the
curvilinear coordinate
systems vary with position.

63
© Faith A. Morrison, Michigan Tech U.
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5. Curvilinear Coordinates (continued)

Final result for divergence of a
vector in cylindrical coordinates:

V.Vzé‘ri.
- or
~ 10
€, ——
roo

~ 0
e —.
A

z

Polymer Rheology

(vré, +V,€, +V,E, )+

(vré, +V,€, +V,E, )+

(Vrér + Vaée + Vzéz)

Yoy Mo 1%

or r o6

ov,
oz
64
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5. Curvilinear Coordinates (continued)
Curvilinear Coordinates (summary)

*The basis vectors are ortho-normal
*The basis vectors are non-constant (vary with position)

*These systems are convenient when the flow system
mimics the coordinate surfaces in curvilinear coordinate
systems.

*\WWe cannot use Einstein notation — must use Tables in
Appendix C2 (pp464-468).

65
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6. Vector and Tensor Theorems  In Chapter 3 we review Newtonian fluid
and definitions mechanics using the vector/tensor

vocabulary we have learned thus far. We
just need a few more theorems to prepare
us for those studies. These are presented
without proof.

Gauss Divergence Theorem outwardly
directed unit

,[Ijvb dv =jjﬁb ds normal
v S

This theorem establishes the utility of the
divergence operation. The integral of the
divergence of a vector field over a volume is
equal to the net outward flow of that property
through the bounding surface.

66
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6. Vector and Tensor Theorems (continued)

L_eibnitz Rule for differentiating integrals \
/\ﬂ
constant Iimits<jj‘ f (X,t) dx
@ one
B dimension,
d_l — ij' f (x,1) dx > constant
dt dt* limits
_ f ot (%) o
) at )

© Faith A. Morrison, Michigan Tech U.
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6. Vector and Tensor Theorems (continued)
L_eibnitz Rule for differentiating integrals A
At)
= J f(x,t) dx variable limits
a(t)
dd d 3-”e :
us J‘ f(x,1) dx |m_enS|on,
dt  dt variable
a(t) | t
IMItS
Bt
of (x,t) dﬁ
=] = f(ﬂt)——f( 1)
a(t)
69
© Faith A. Morrison, Michigan Tech U.
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6. Vector and Tensor Theorems (continued)

\

L_eibnitz Rule for differentiating integrals
J :III f(x,y,z,t)dVv
V(t)
I” three
f(x,y,z,t)dv dimensions,
dt dt variable
8f (X, y z,t) limits
- JJ] dV + JI (73urface )
V(t) S(t)
velocity of the surface element dS
J
70
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6. Vector and Tensor Theorems (continued)

Substantial Derivative

wetorany E(ﬂj dx{ﬂ}
OX ot oy

Polymer Rheology

Consider a function f (X, Y, z,t)

dy+(ﬂj dz+ (afj dt
ot 0z ot/

choose
special path: ﬂ A (ﬂj %4_ (ﬂj
dt  \ox/, dt \ay/,

2.(%)_2.(2)
Ldt\az/ dt o/,

yzt xyt
time rate of
change of f X-component When the chosen path is
along a chosen of velocity the path of a fluid
path along that path particle, then these are

the components of the
particle velocities.

71
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When the chosen
path is the path of
a fluid particle,

then the space d_ = %
derivatives are the dt dt
components of the -

Polymer Rheology

6. Vector and Tensor Theorems (continued)  Substantial Derivative

(afj dy (af) dz (afj
+ —+ —+| =
dt 07/ At \ot/

&
particle velocities. df 8f af 1 of
d_ along VZ + E
e’x)zﬁﬁmcle xzt >< j Xyz
'
v- Vi
Substantial Derivative
df Df of
(_j alon =Tt _+ny
dt a pagrticle Dt at
path
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