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CM4650 
Polymer Rheology 

Michigan Tech

– Greek for flow

Rhe-

= the study of 
deformation and flow.

Rheology

What is rheology anyway?

“What is Rheology Anyway?” Faith 
A. Morrison, The Industrial Physicist, 
10(2) 29-31, April/May 2004.
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What is rheology anyway?

To the layperson, rheology is

•Mayonnaise does not flow even under stress 
for a long time; honey always flows

•Silly Putty bounces (is elastic) but also flows 
(is viscous)

•Dilute flour-water solutions are easy to work 
with but doughs can be quite temperamental

•Corn starch and water can display strange 
behavior – poke it slowly and it deforms easily 
around your finger; punch it rapidly and your 
fist bounces off of the surface
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•Yield stresses

•Viscoelastic effects

•Memory effects

•Shear thickening and shear 
thinning

For both the layperson and the technical person, rheology is a 
set of problems or observations related to how the stress in a 

material or force applied to a material is related to 
deformation (change of shape) of the material.
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cross-section A:

What is rheology anyway?

To the scientist, engineer, or 
technician, rheology is

3

© Faith A. Morrison, Michigan Tech U.

•Processing (design, costs, 
production rates)

What is rheology anyway?

Rheology affects:

•End use (food 
texture, product pour, 
motor-oil function)

•Product quality 
(surface distortions, 
anisotropy, strength, 
structure development)

www.math.utwente.nl/ 
mpcm/aamp/examples.html 

www.corrugatorman.com/ 
pic/akron%20extruder.JPG 

Pomar et al. 
JNNFM 54 
143 1994 
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Goal of the scientist, 
engineer, or technician:

How
do we reach 
these goals?

•Understand the kinds of flow and 
deformation effects exhibited by 
complex systems 

•Apply qualitative rheological 
knowledge to diagnostic, design, or 
optimization problems

•In diagnostic, design, or 
optimization problems, use or devise
quantitative analytical tools that 
correctly capture rheological effects

5

By learning 
which 

quantitative 
models 
apply in 

what 
circum-
stances

By making 
calculations 

with models in 
appropriate 
situations

By observing the behavior 
of different systems
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•Understand the kinds of flow and 
deformation effects exhibited by 
complex systems 

•Apply qualitative rheological 
knowledge to diagnostic, design, or 
optimization problems

•In diagnostic, design, or 
optimization problems, Use or devise
quantitative analytical tools that 
correctly capture rheological effects

How?
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Learning Rheology (bibliography)

Quantitative Rheology
Morrison, Faith, Understanding Rheology (Oxford, 2001)
Bird, R., R. Armstrong, and O. Hassager, Dynamics of Polymeric 
Liquids, Volume 1 (Wiley, 1987)

Polymer Behavior
Larson, Ron, The Structure and Rheology of Complex Fluids (Oxford, 1999)
Ferry, John, Viscoelastic Properties of Polymers (Wiley, 1980)

Descriptive Rheology
Barnes, H., J. Hutton, and K. Walters, An Introduction to Rheology
(Elsevier, 1989)

Suspension Behavior
Mewis, Jan and Norm Wagner, Colloidal Suspension (Cambridge, 2012)
Macosko, Chris, Rheology:  Principles, Measurements, and Applications
(VCH Publishers, 1994)

Industrial Rheology
Dealy, John and Kurt Wissbrun, Melt Rheology and Its Role in Plastics 
Processing (Van Nostrand Reinhold, 1990)
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The Physics Behind Rheology:

1. Conservation laws
mass
momentum
energy

2. Mathematics
differential equations
vectors
tensors

3. Constitutive law = law that relates stress to 
deformation for a particular fluid

Cauchy Momentum Equation

8
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2

1
21 dx

dv
 

Non-Newtonian Fluid Mechanics

Newton’s Law of Viscosity

material parameterNewtonian fluids: 
(fluid mechanics)

•This is an empirical law 
(measured or observed)

•May be derived theoretically 
for some systems

Non-Newtonian fluids: 
(rheology)

Need a new law or new 
laws

•These laws will also either be 
empirical or will be derived 
theoretically

deformation

9
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2

1
21 dx

dv
 

Non-Newtonian Fluid Mechanics

Newtonian fluids: 
(shear flow only)

Non-Newtonian fluids: 
(all flows)

  fstress tensor

non-linear function 
(in time and position)

Rate-of-
deformation 
tensor

Constitutive Equation

10
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Introduction to Non-Newtonian Behavior

Rheological Behavior of Fluids, National 
Committee on Fluid Mechanics Films, 1964

Type of fluid Momentum balance Stress –Deformation 
relationship (constitutive 

equation)

Inviscid 
(zero viscosity, )

Euler equation (Navier-
Stokes with zero viscosity)

Stress is isotropic

Newtonian 
(finite. constant viscosity, 

)

Navier-Stokes (Cauchy 
momentum equation with 
Newtonian constitutive 

equation)

Stress is a function of the 
instantaneous velocity 

gradient 

Non-Newtonian (finite, 
variable viscosity  plus 

memory effects)

Cauchy momentum 
equation with memory 
constitutive equation

Stress is a function of the 
history of the velocity 

gradient

Velocity gradient tensor 
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Rheological Behavior of Fluids - Newtonian

1.  Strain response to imposed 
shear stress 

t

dt

d  =constant

2.  Pressure-driven flow in 
a tube (Poiseuille flow)

•shear rate is constant
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3.  Stress tensor in shear 
flow
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4

=constant

•viscosity is 
constant

•only two components 
are nonzero
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Rheological Behavior of Fluids – non-Newtonian

1.  Strain response to imposed 
shear stress

•shear rate is variable

3.  Stress tensor in shear 
flow

P

Q

•viscosity is variable •all 9 components are 
nonzero
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2.  Pressure-driven flow in 
a tube (Poiseuille flow)
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Rheological Behavior of Fluids – non-Newtonian

1.  Strain response to imposed 
shear stress

•shear rate is variable

P

Q

•viscosity is variable •all 9 components are 
nonzero
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2.  Pressure-driven flow in 
a tube (Poiseuille flow)
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Examples from the film of . . . .

Dependence on the history of the deformation gradient

Non-linearity of the function   f

•Polymer fluid pours, but springs back
•Elastic ball bounces, but flows if given enough time
•Steel ball dropped in polymer solution “bounces”
•Polymer solution in concentric cylinders – has fading memory
•Quantitative measurements in concentric cylinders show memory 
and need a finite time to come to steady state

•Polymer solution draining from a tube is first slower, then faster 
than a Newtonian fluid
•Double the static head on a draining tube, and the flow rate does 
not necessarily double (as it does for Newtonian fluids); sometimes 
more than doubles, sometimes less
•Normal stresses in shear flow
•Die swell

15
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Show NCFM Film 
on Rheological 

Behavior of Fluids

16

• Search for NCFMF
• web.mit.edu/hml/ncfmf.html
• Also on YouTube
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1. Scalar – a mathematical entity that has magnitude only

temperature T
speed v
time t
density 

e.g.:

– scalars may be constant or may be variable

Laws of Algebra 
for Scalars:

yes commutative

yes associative

yes distributive

ab = ba

a(bc) = (ab)c

a(b+c) = ab+ac

17

Mathematics Review
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Polymer Rheology

2. Vector – a mathematical entity that has magnitude and direction
force on a surface f
velocity v

e.g.:

– vectors may be constant or may be variable

Definitions

magnitude of a vector – a scalar associated with a vector

unit vector – a vector of unit length

ffvv 

v
v

v
ˆ

a unit vector in the 
direction of v

18
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Polymer Rheology

Laws of Algebra 
for Vectors:

1. Addition

a

b

a+b

2. Subtraction

a

b

a+(-b)

19
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Laws of Algebra for Vectors (continued):

3. Multiplication by scalar v

yes commutative

yes associative

yes distributive

 vv 

    vvv  

  wvwv  

4. Multiplication of vector by vector
4a. scalar (dot) (inner) product

cosvwwv  v

wNote:  we can find 
magnitude with dot 
product

vvvv

vvvvv



 20cos

20
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Laws of Algebra for Vectors (continued):

yes commutative

NO associative

yes distributive

vwwv 

zwv 

  wzvzwvz 

4a. scalar (dot) (inner) product (con’t)

evwwv ˆsin

v

w

no such operation

4b. vector (cross) (outer) product

ê is a unit vector 
perpendicular to 
both v and w
following the 
right-hand rule 21

© Faith A. Morrison, Michigan Tech U.

Laws of Algebra for Vectors (continued):

NO commutative

NO associative

yes distributive

vwwv 

   v w z v w z v w z       

     wzvzwvz 

4b. vector (cross) (outer) product (con’t)

22
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Polymer Rheology

Coordinate Systems

•Allow us to make actual calculations with vectors

Rule:  any three vectors that are non-zero and linearly
independent (non-coplanar) may form a coordinate basis

Three vectors are linearly dependent if , , and  can 
be found such that:

0,,

0







for

cba

If , , and  are found to be zero, the vectors are 
linearly independent.

23
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Polymer Rheology

How can we do actual calculations with vectors?

























3

1

332211

ˆ

ˆˆˆ

ˆˆˆ

j
jj

xyzz

y

x

zzyyxx

ea

eaeaea

a

a

a

eaeaeaa

coefficient of a in the 
direction 

yê

Rule:  any vector may be expressed as the linear combination 
of three, non-zero, non-coplanar basis vectors

any vector

24
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Polymer Rheology

   
 

 
 

333322331133

332222221122

331122111111

33221133

33221122

33221111

332211332211

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆˆˆ

ebeaebeaebea

ebeaebeaebea

ebeaebeaebea

ebebebea

ebebebea

ebebebea

ebebebeaeaeaba












Trial calculation:  dot product of two vectors

If we choose the basis to be orthonormal - mutually perpendicular 
and of unit length - then we can simplify.

25
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Polymer Rheology


0ˆˆ
0ˆˆ
1ˆˆ

31

21

11





ee
ee
ee

If we choose the basis to be orthonormal - mutually perpendicular 
and of unit length, then we can simplify.

332211

333322331133

332222221122

331122111111

ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

bababa
ebeaebeaebea

ebeaebeaebea
ebeaebeaebeaba







We can generalize this operation with a technique called Einstein notation.

26
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Polymer Rheology

Einstein Notation

a system of notation for vectors and tensors that allows for 
the calculation of results in Cartesian coordinate systems.

mmjj

j
jj

eaea

ea

eaeaeaa

ˆˆ

ˆ

ˆˆˆ
3

1

332211










•the initial choice of subscript letter is arbitrary

•the presence of a pair of like subscripts implies a 
missing summation sign

27
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Polymer Rheology

Einstein Notation (con’t)

The result of the dot products of basis vectors can be 
summarized by the Kronecker delta function


0ˆˆ
0ˆˆ
1ˆˆ

31

21

11





ee
ee
ee








pi
pi

ee ippi 0
1

ˆˆ 

Kronecker delta

28
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Polymer Rheology

Einstein Notation (con’t)

To carry out a dot product of two arbitrary vectors . . . 

   

332211

333322331133

332222221122

331122111111

332211332211

ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

bababa
ebeaebeaebea

ebeaebeaebea
ebeaebeaebea

ebebebeaeaeaba








jj

mjmj

mmjj

ba

ba

ebeaba









ˆˆ

Einstein NotationDetailed Notation

29
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Polymer Rheology

3. Tensor – the indeterminate vector product of two (or more) vectors
stress
velocity gradient 

e.g.:

– tensors may be constant or may be variable

Definitions

dyad or dyadic product – a tensor written explicitly as the 
indeterminate vector product of two vectors

da
general representation 
of a tensor




A

dyad

30
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Polymer Rheology

Laws of Algebra for Indeterminate 
Product of Vectors:

NO commutative

yes associative

yes distributive

avva 

    vabvabvab 

  wavawva 

31
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Polymer Rheology

How can we represent tensors with respect to a chosen 
coordinate system?

  





 

 











3

1

3

1

3

1

3

1

333322331133

332222221122

331122111111

332211332211

ˆˆ

ˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

k w
wkwk

k w
wwkk

eema

emea

emeaemeaemea

emeaemeaemea

emeaemeaemea

emememeaeaeama

Just follow the rules of tensor algebra

Any tensor may be written as the 
sum of 9 dyadic products of 

basis vectors

32
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Polymer Rheology

What about      ?


 


3

1

3

1
ˆˆ

i j
jiij eeAA

Same.A

Einstein notation for tensors:  drop the summation sign; 
every double index implies a summation sign has been dropped.

kppkjiij eeAeeAA ˆˆˆˆ 

Reminder: the initial choice of subscript 
letters is arbitrary

33
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Polymer Rheology

How can we use Einstein Notation to calculate dot 
products between vectors and tensors?

It’s the same as between vectors.






Ab
vua

ba

34
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Polymer Rheology

Summary of Einstein Notation

1.  Express vectors, tensors, (later, vector operators) in a Cartesian 
coordinate system as the sums of coefficients multiplying basis 
vectors - each separate summation has a different index

2.  Drop the summation signs

3.  Dot products between basis vectors result in the Kronecker delta 
function because the Cartesian system is orthonormal.

Note:

•In Einstein notation, the presence of repeated indices implies 
a missing summation sign

•The choice of initial index (i, m, p, etc.) is arbitrary - it 
merely indicates which indices change together

35
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Polymer Rheology

3. Tensor – (continued)

Definitions
Scalar product of two tensors

mkkmpiip eeMeeAMA ˆˆ:ˆˆ: 

carry out the dot 
products indicatedmkpikmip eeeeMA ˆˆ:ˆˆ

  

kmmk

impkkmip

mikpkmip

MA

MA

eeeeMA









ˆˆˆˆ

“p” becomes “k”
“i” becomes “m”

36
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Polymer Rheology

But, what is a tensor really?

32)( 2  xxxfyscalar function:

A tensor is a handy representation of a Linear Vector Function

a mapping of values of x onto values of y

)(vfw vector function:

a mapping of vectors of v into vectors w

How do we express a 
vector function?

37

Multiplying vectors and tensors is 
a convenient way of representing 

the actions of a linear vector 
function (as we will now show).

Mathematics Review
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Polymer Rheology

What is a linear function?

Linear, in this usage, has  a precise, mathematical definition.

Linear functions (scalar and vector) have the 
following two properties:

)()()(

)()(

wfxfwxf

xfxf


 

It turns out . . . 

38
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Polymer Rheology

Tensors are Linear Vector Functions

Let f(a) = b be a  linear vector function.

We can write a in Cartesian coordinates.

beaeaeafaf

eaeaeaa




)ˆˆˆ()(

ˆˆˆ

332211

332211

Using the linear properties of  f, we can distribute the function action:

befaefaefaaf  )ˆ()ˆ()ˆ()( 332211

These results are just vectors, we will 
name them v, w, and m.

39

bmeaweaveaaf  321 ˆˆˆ)(

Mathematics Review
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Polymer Rheology

Tensors are Linear Vector Functions (continued)

befaefaefaaf  )ˆ()ˆ()ˆ()( 332211

Now we note that the coefficients ai may be written as,

v w m

bmawavaaf  321)(

332211 ˆˆˆ eaaeaaeaa 

Substituting,
The 

indeterminate 
vector product 
has appeared!

40
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  bmeweveaaf  321 ˆˆˆ)(

Mathematics Review
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Polymer Rheology

Using the distributive law, we can factor out the dot product with a:

This is just a tensor 
(the sum of dyadic 

products of vectors)
  Mmeweve  321 ˆˆˆ

bMaaf )(

Tensor operations 
are convenient to use 
to express linear 
vector functions.

CONCLUSION:
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3. Tensor – (continued)

More Definitions
Identity Tensor

123

332211

100
010
001

ˆˆˆˆˆˆˆˆ
















 eeeeeeeeI ii

A
eeA

eeA
eeeeAIA

kiik

kpkiip

kkpiip







ˆˆ
ˆˆ

ˆˆˆˆ

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3. Tensor – (continued) More Definitions

Zero Tensor

123
000
000
000

0 














Magnitude of a Tensor

  
kmmk

mikpkmip

mkkmpiip

AA
eeeeAA

eeAeeAAA

AA
A








ˆˆˆˆ
ˆˆ:ˆˆ:

2

:

products 
across the 
diagonal
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3. Tensor – (continued) More Definitions

Tensor Transpose

  ikik
T

kiik
T eeMeeMM ˆˆˆˆ 

Exchange the 
coefficients across the 
diagonal

CAUTION:

     
 

ijpjip

T
jipjip

T
kpjipjik

T
jppjkiik

T

eeCA
eeCA

eeCAeeCeeACA

ˆˆ
ˆˆ

ˆˆˆˆˆˆ




 

It is not equal to:    
jijppi

T
jipjip

T

eeCA
eeCACA

ˆˆ
ˆˆ




I recommend you 
always interchange the 
indices on the basis 
vectors rather than on 
the coefficients.
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3. Tensor – (continued) More Definitions

Symmetric Tensor                      e.g.

kiik

T

MM
MM



123
653
542
321















Antisymmetric Tensor                  e.g.

kiik

T

MM
MM



123
053
502
320
















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3. Tensor – (continued) More Definitions

Tensor order

Scalars, vectors, and tensors may all be considered to 
be tensors (entities that exist independent of coordinate 
system).  They are tensors of different orders, however.

order = degree of complexity

scalars 

vectors 

tensors

higher-
order 
tensors

0th -order tensors

1st -order tensors

2nd -order tensors

3rd -order tensors

30

31

32

33

Number of 
coefficients 
needed to 
express the 
tensor in 3D 
space
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3. Tensor – (continued) More Definitions

Tensor Invariants

vv 

Scalars that are associated with tensors; these are 
numbers that are independent of coordinate system.

vectors: The magnitude of a vector is a 
scalar associated with the 
vector

It is independent of coordinate 
system, i.e. it is an invariant.

tensors: There are three invariants 
associated with a second-order 
tensor.

A
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Tensor Invariants

AtrAtraceIA 

For the tensor written in Cartesian coordinates:

332211 AAAAAtrace pp 

 

  hpjhpjA

kppkA

AAAAAAtraceIII

AAAAAAtraceII



 :

Note:  the definitions of invariants written in terms of 
coefficients are only valid when the tensor is written in 
Cartesian coordinates.
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4. Differential Operations with Vectors, Tensors

Scalars, vectors, and tensors are differentiated to determine 
rates of change (with respect to time, position)

123

3

2

1


































t

w
t

w
t

w

t

w

•To carryout the differentiation with respect to a single
variable, differentiate each coefficient individually.

123

333231

232221

312111






















































t

B

t

B

t

B
t

B

t

B

t

B
t

B

t

B

t

B

t

B

t


•There is no change in order (vectors remain vectors, scalars 
remain scalars, etc.
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4. Differential Operations with Vectors, Tensors  (continued)

p
p

p p
p x

e
x

e

x

x

x

x
e

x
e

x
e
























































ˆˆ

ˆˆˆ

3

1

3

2

1

3
3

2
2

1
1

123

•To carryout the differentiation with respect to 
3D spatial variation, use the del (nabla) 
operator.

•This is a vector operator

•Del may be applied in three different ways

•Del may operate on scalars, vectors, or tensors

This is written in 
Cartesian 

coordinates

Einstein notation for del

Del Operator
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4. Differential Operations with Vectors, Tensors  (continued)

p
p x

e

x

x

x

x
e

x
e

x
e



























































ˆ

ˆˆˆ

123
3

2

1

3
3

2
2

1
1

This is written in 
Cartesian 
coordinates

A.  Scalars - gradient

Gibbs 
notation

Gradient of a 
scalar field

•gradient operation increases the order of the 
entity operated upon

The gradient of 
a scalar field is a 

vector
The gradient operation 

captures the total spatial 
variation of a scalar, 

vector, or tensor field.
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4. Differential Operations with Vectors, Tensors  (continued)

 

 

 

3

3
33

3

2
23

3

1
13

2

3
32

2

2
22

2

1
12

1

3
31

1

2
21

1

1
11

332211
3

3

332211
2

2

332211
1

1

3
3

2
2

1
1

ˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆ

x

w
ee

x

w
ee

x

w
ee

x

w
ee

x

w
ee

x

w
ee

x

w
ee

x

w
ee

x

w
ee

ewewew
x

e

ewewew
x

e

ewewew
x

e

w
x

ew
x

ew
x

ew



































































 This is all written 
in Cartesian 
coordinates (basis 
vectors are 
constant)

B. Vectors - gradient

The basis vectors 
can move out of 
the derivatives 

because they are 
constant (do not 

change with 
position)
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4. Differential Operations with Vectors, Tensors  (continued)

kj
j

k

j

k
kj

j k j

k
kj ee

x

w

x

w
ee

x

w
eew ˆˆˆˆˆˆ

3

1

3

1 










 
 

B. Vectors - gradient (continued)

Gradient of a 
vector field

Einstein notation 
for gradient of a 
vector

The gradient of 
a vector field is 

a tensor

constants may appear 
on either side of the 
differential operator
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4. Differential Operations with Vectors, Tensors  (continued)

i

i

i i

i

x

w

x

w
x

w

x

w

x

w

ewewew
x

e
x

e
x

ew















































3

1

3

3

2

2

1

1

332211
3

3
2

2
1

1 ˆˆˆˆˆˆ

C. Vectors - divergence

Divergence of a 
vector field

Einstein notation 
for divergence of 
a vector

The Divergence 
of a vector field 

is a scalar
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4. Differential Operations with Vectors, Tensors  (continued)

j

j

mj
m

j
jm

m

j
jj

m
m

x

w
x

w
ee

x

w
ew

x
ew

















 ˆˆˆˆ

C. Vectors - divergence (continued)

Using Einstein 
notation

constants may appear 
on either side of the 
differential operator

This is all written 
in Cartesian 
coordinates (basis 
vectors are 
constant)

•divergence operation decreases the order of the 
entity operated upon
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4. Differential Operations with Vectors, Tensors  (continued)

 

 

1233

3
2

2

3
2

1

3
2

3

2
2

2

2
2

1

2
2

3

1
2

2

1
2

1

1
2

ˆ

ˆ

ˆˆˆˆˆˆ





























































































x

w

x

w

x

w
x

w

x

w

x

w
x

w

x

w

x

w

ew
xx

ew
xx

eeew
xx

ew
x

e
x

ew

jj
pp

jmpj
pm

jpmj
pm

jj
p

p
m

m



D. Vectors - Laplacian

Using 
Einstein 

notation:

The Laplacian 
of a vector field 

is a vector

•Laplacian operation does 
not change the order of the 
entity operated upon
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4. Differential Operations with Vectors, Tensors  (continued)

E. Scalar - divergence

F. Scalar - Laplacian

G.  Tensor - gradient

H.  Tensor - divergence

I.  Tensor - Laplacian



A

A

A

 (impossible; cannot 
decrease order of a scalar)
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5. Curvilinear Coordinates

These coordinate systems are ortho-normal, but they are not 
constant (they vary with position).

This causes some non-intuitive effects when derivatives are taken.

Cylindrical zr ,, zr eee ˆ,ˆ,ˆ 

Spherical  ,,r  eeer ˆ,ˆ,ˆ

See 
figures 
2.11 and 
2.12
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5. Curvilinear Coordinates (continued)

 

 zzrrzyx

zzrr

zzrr

eveveve
z

e
y

e
x

evevevv

evevevv

ˆˆˆˆˆˆ

ˆˆˆ

ˆˆˆ































First, we need to write this 
in cylindrical coordinates.

zz

yx

yxr

ee

eee

eee

ˆˆ

ˆcosˆsinˆ

ˆsinˆcosˆ













zz

ry

rx








sin

cossolve for 
Cartesian 

basis 
vectors and 
substitute 

above

substitute above 
using chain rule 

(see next slide for 
details)

59

Mathematics Review

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology















































 


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





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















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




















rry

z

zyy

r

ry

rrx

z

zxx

r

rx

e
z

e
y

e
x zyx

















cos
sin

sin
cos

ˆˆˆ








eee

eee

ry

rx

ˆcosˆsinˆ

ˆsinˆcosˆ




zz
x

y
ry

yxrrx












1

22

tansin

cos




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5. Curvilinear Coordinates (continued)

z
e

r
e

r
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e
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e
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e
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
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
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
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 

 
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ˆˆˆ
1

ˆ

ˆˆˆˆ

ˆˆˆˆ
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












































Result:

Now, proceed:

(We cannot use 
Einstein notation 
because these are 
not Cartesian 
coordinates)
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5. Curvilinear Coordinates (continued)

 

 
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


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


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5. Curvilinear Coordinates (continued)

This term is not intuitive, 
and appears because the 

basis vectors in the 
curvilinear coordinate 

systems vary with position.
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5. Curvilinear Coordinates (continued)

Final result for divergence of a 
vector in cylindrical coordinates:
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
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5. Curvilinear Coordinates (continued)

Curvilinear Coordinates (summary)

•The basis vectors are ortho-normal

•The basis vectors are non-constant (vary with position)

•These systems are convenient when the flow system 
mimics the coordinate surfaces in curvilinear coordinate 
systems.

•We cannot use Einstein notation – must use Tables in 
Appendix C2 (pp464-468).
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6. Vector and Tensor Theorems 
and definitions

In Chapter 3 we review Newtonian fluid 
mechanics using the vector/tensor 
vocabulary we have learned thus far.  We 
just need a few more theorems to prepare 
us for those studies.  These are presented 
without proof.

Gauss Divergence Theorem

 
SV

dSbndVb ˆ

This theorem establishes the utility of the 
divergence operation.  The integral of the 

divergence of a vector field over a volume is 
equal to the net outward flow of that property 

through the bounding surface.

outwardly
directed unit 
normal
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V

n̂
S

b

dS
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6. Vector and Tensor Theorems (continued)

Leibnitz Rule




























dx
t

txf

dxtxf
dt

d

dt

dI

dxtxfI

),(

),(

),(

for differentiating integrals

constant limits

one 
dimension, 
constant 
limits

68



CM4650 Vectors and Tensors

35

Mathematics Review

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology

6. Vector and Tensor Theorems (continued)

Leibnitz Rule

),(),(
),(

),(

),(

)(

)(

)(

)(

)(

)(
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dt

d
tf

dt

d
dx

t

txf

dxtxf
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d

dt
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dxtxfJ

t

t

t

t

t

t





























for differentiating integrals

variable limits

one 
dimension, 
variable
limits
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6. Vector and Tensor Theorems (continued)

Leibnitz Rule

 







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tS

surface

tV

tV

tV

dSnvfdV
t

tzyxf

dVtzyxf
dt

d

dt

dJ

dVtzyxfJ

for differentiating integrals

three
dimensions, 
variable
limits

velocity of the surface element dS
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6. Vector and Tensor Theorems (continued)

Substantial Derivative
),,,( tzyxf

x-component 
of velocity 
along that path

xyzxytxztyzt

xyzxytxztyzt
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f
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f
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







































































time rate of 
change of f 
along a chosen 
path

When the chosen path is 
the path of a fluid 
particle, then these are 
the components of the 
particle velocities.

Consider a function

true for any 
path:

choose 
special path:
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6. Vector and Tensor Theorems (continued) Substantial Derivative
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

Substantial Derivative

When the chosen 
path is the path of 
a fluid particle, 
then the space 
derivatives are the 
components of the 
particle velocities.
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