Chapter 3: Newtonian Fluid Mechanics

TWO GOALS

- Derive governing equations (mass and momentum balances)
- Solve governing equations for velocity and stress fields

QUICK START

First, before we get deep into derivation, let's do a Navier-Stokes problem to get you started in the mechanics of this type of problem solving.

EXAMPLE: Drag flow between infinite parallel plates

- Newtonian
- Steady state
- Incompressible fluid
- Very wide, long
- Uniform pressure

\[\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}_{123} \]
Chapter 3: Newtonian Fluid Mechanics

TWO GOALS

• Derive governing equations (mass and momentum balances)
• Solve governing equations for velocity and stress fields

Mass Balance

Consider an arbitrary control volume \(V \) enclosed by a surface \(S \)

\[
\begin{align*}
\left(\text{rate of increase} \right) &= \left(\text{net flux of mass into } CV \right) \\
\left(\text{of mass in } CV \right) &= \left(\text{net flux of mass into } CV \right)
\end{align*}
\]
Chapter 3: Newtonian Fluid Mechanics

Mass Balance (continued)

Consider an arbitrary volume V enclosed by a surface S.

\[
\text{rate of increase of mass in } V = \frac{d}{dt} \left(\iiint_V \rho \, dV \right)
\]

\[
\text{net flux of mass into } V \text{ through surface } S = -\iint_S \rho \hat{n} \cdot \mathbf{v} \, dS
\]

(continued)

Leibnitz rule

\[
\frac{d}{dt} \left(\iiint_V \rho \, dV \right) = -\iint_S \rho \hat{n} \cdot \mathbf{v} \, dS
\]

\[
\iint_V \frac{\partial \rho}{\partial t} \, dV = -\iint_S \hat{n} \cdot (\rho \mathbf{v}) \, dS
\]

Gauss Divergence Theorem

\[
\iiint_V \left(\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) \right) \, dV = 0
\]
Mass Balance (continued)

Since \(V \) is arbitrary,

\[
\iiint_V \left(\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) \right) dV = 0
\]

Continuity equation: microscopic mass balance

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0
\]

Continuity equation (general fluids)

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0
\]

\[
\frac{\partial \rho}{\partial t} + \rho (\nabla \cdot \mathbf{v}) + \mathbf{v} \cdot \nabla \rho = 0
\]

\[
\frac{D \rho}{D t} + \rho (\nabla \cdot \mathbf{v}) = 0
\]

For \(\rho = \text{constant} \) (incompressible fluids):

\[
\nabla \cdot \mathbf{v} = 0
\]
Consider an arbitrary control volume V enclosed by a surface S.

Momentum is conserved.

\[
\text{(rate of increase of momentum in CV)} = \text{(net flux of momentum into CV)} + \text{(sum of forces on CV)}
\]

- resembles the rate term in the mass balance
- resembles the flux term in the mass balance
- Forces: body (gravity) molecular forces

\[
\text{Momentum Balance}
\]

\[
\frac{d}{dt} \int_V \rho \mathbf{v} \, dV = \int_S \rho \mathbf{v} \cdot \mathbf{n} \, dS + \int_{CV} \mathbf{F} \cdot d\mathbf{a}
\]
Momentum Balance

\[\left(\text{rate of increase} \right) \left(\text{of momentum in} \ V \right) = \frac{d}{dt} \left(\iiint_V \rho \mathbf{v} \, dV \right) = \iiint_V \frac{\partial}{\partial t} (\rho \mathbf{v}) \, dV \]

Leibnitz rule

\[\left(\text{net flux of} \right) \left(\text{momentum into} \ V \right) = -\iiint_S \mathbf{n} \cdot (\rho \mathbf{v}) \, dS = -\iiint_V \nabla \cdot (\rho \mathbf{v}) \, dV \]

Gauss Divergence Theorem

Forces on \(V \)

Body Forces (non-contact)

\[\left(\text{force on} \ V \right) \left(\text{due to} \ g \right) = \iiint_V \rho g \, dV \]
Molecular Forces (contact) – this is the tough one

\[f = \frac{\text{stress at } P}{\text{on } dS} \]

choose a surface through \(P \)

the force on that surface

We need an expression for the state of stress at an arbitrary point \(P \) in a flow.

Molecular Forces (continued)

Think back to the molecular picture from chemistry:

The specifics of these forces, connections, and interactions must be captured by the molecular forces term that we seek.
Molecular Forces (continued)

• We will concentrate on expressing the molecular forces mathematically;
• We leave to later the task of relating the resulting mathematical expression to experimental observations.

First, choose a surface:
• arbitrary shape
• small

\[\text{stress at } P \text{ on } dS = f \]

What is \(f \)?

Consider the forces on three mutually perpendicular surfaces through point \(P \):
Molecular Forces (continued)

\[a = a_1 \hat{e}_1 + a_2 \hat{e}_2 + a_3 \hat{e}_3 \]
\[= \Pi_{11} \hat{e}_1 + \Pi_{12} \hat{e}_2 + \Pi_{13} \hat{e}_3 \]
\[b = b_1 \hat{e}_1 + b_2 \hat{e}_2 + b_3 \hat{e}_3 \]
\[= \Pi_{21} \hat{e}_1 + \Pi_{22} \hat{e}_2 + \Pi_{23} \hat{e}_3 \]
\[c = c_1 \hat{e}_1 + c_2 \hat{e}_2 + c_3 \hat{e}_3 \]
\[= \Pi_{31} \hat{e}_1 + \Pi_{32} \hat{e}_2 + \Pi_{33} \hat{e}_3 \]

\[\Pi_{pk} \]

So far, this is nomenclature; next we relate these expressions to force on an arbitrary surface.
Molecular Forces (continued)

How can we write \(f \) (the force on an arbitrary surface \(dS \)) in terms of the \(\Pi_{pk} \)?

\[
f = f_1 \hat{e}_1 + f_2 \hat{e}_2 + f_3 \hat{e}_3
\]

- \(f_1 \) is force on \(dS \) in 1-direction
- \(f_2 \) is force on \(dS \) in 2-direction
- \(f_3 \) is force on \(dS \) in 3-direction

There are three \(\Pi_{pk} \) that relate to forces in the 1-direction:

\(\Pi_{11}, \Pi_{21}, \Pi_{31} \)

\(\hat{n} \cdot \hat{e}_1 dS \)
Molecular Forces (continued)

f_i, the force on dS in 1-direction, is composed of THREE parts:

1. **first part:**
 \[
 (\Pi_{11}) \begin{bmatrix}
 \text{projection of} \\
 dA \text{ onto the} \\
 1-\text{surface}
 \end{bmatrix} = \Pi_{11}\hat{n} \cdot \hat{e}_1 \, dS
 \]

2. **second part:**
 \[
 (\Pi_{21}) \begin{bmatrix}
 \text{projection of} \\
 dA \text{ onto the} \\
 2-\text{surface}
 \end{bmatrix} = \Pi_{21}\hat{n} \cdot \hat{e}_2 \, dS
 \]

3. **third part:**
 \[
 (\Pi_{31}) \begin{bmatrix}
 \text{projection of} \\
 dA \text{ onto the} \\
 3-\text{surface}
 \end{bmatrix} = \Pi_{31}\hat{n} \cdot \hat{e}_3 \, dS
 \]

The sum of these three $= f_i$

© Faith A. Morrison, Michigan Tech U.
Molecular Forces (continued)

f_1, the force in the 1-direction on an arbitrary surface dS is composed of THREE parts.

$$f_1 = \Pi_{11}\hat{n} \cdot \hat{e}_1 \, dS + \Pi_{21}\hat{n} \cdot \hat{e}_2 \, dS + \Pi_{31}\hat{n} \cdot \hat{e}_3 \, dS$$

Using the distributive law:

$$f_1 = \hat{n} \cdot \left(\Pi_{11}\hat{e}_1 + \Pi_{21}\hat{e}_2 + \Pi_{31}\hat{e}_3 \right) \, dS$$

Force in the 1-direction on an arbitrary surface dS

The same logic applies in the 2-direction and the 3-direction.

$$f_2 = \hat{n} \cdot \left(\Pi_{12}\hat{e}_1 + \Pi_{22}\hat{e}_2 + \Pi_{32}\hat{e}_3 \right) \, dS$$

$$f_3 = \hat{n} \cdot \left(\Pi_{13}\hat{e}_1 + \Pi_{23}\hat{e}_2 + \Pi_{33}\hat{e}_3 \right) \, dS$$

Assembling the force vector:

$$\mathbf{f} = f_1\hat{e}_1 + f_2\hat{e}_2 + f_3\hat{e}_3$$

$$= dS \, \hat{n} \cdot \left(\Pi_{11}\hat{e}_1 + \Pi_{21}\hat{e}_2 + \Pi_{31}\hat{e}_3 \right) \hat{e}_1$$

$$+ dS \, \hat{n} \cdot \left(\Pi_{12}\hat{e}_1 + \Pi_{22}\hat{e}_2 + \Pi_{32}\hat{e}_3 \right) \hat{e}_2$$

$$+ dS \, \hat{n} \cdot \left(\Pi_{13}\hat{e}_1 + \Pi_{23}\hat{e}_2 + \Pi_{33}\hat{e}_3 \right) \hat{e}_3$$
Assembling the force vector:

\[\mathbf{f} = f_1 \hat{\mathbf{e}}_1 + f_2 \hat{\mathbf{e}}_2 + f_3 \hat{\mathbf{e}}_3 \]

\[= dS \mathbf{n} \cdot \bigg(\Pi_{11} \hat{\mathbf{e}}_1 + \Pi_{21} \hat{\mathbf{e}}_2 + \Pi_{31} \hat{\mathbf{e}}_3 \bigg) \hat{\mathbf{e}}_1 \\
+ dS \mathbf{n} \cdot \bigg(\Pi_{12} \hat{\mathbf{e}}_1 + \Pi_{22} \hat{\mathbf{e}}_2 + \Pi_{32} \hat{\mathbf{e}}_3 \bigg) \hat{\mathbf{e}}_2 \\
+ dS \mathbf{n} \cdot \bigg(\Pi_{13} \hat{\mathbf{e}}_1 + \Pi_{23} \hat{\mathbf{e}}_2 + \Pi_{33} \hat{\mathbf{e}}_3 \bigg) \hat{\mathbf{e}}_3 \]

\[= dS \mathbf{n} \cdot \bigg[\Pi_{11} \hat{\mathbf{e}}_1 \hat{\mathbf{e}}_1 + \Pi_{21} \hat{\mathbf{e}}_2 \hat{\mathbf{e}}_1 + \Pi_{31} \hat{\mathbf{e}}_3 \hat{\mathbf{e}}_1 \\
+ \Pi_{12} \hat{\mathbf{e}}_1 \hat{\mathbf{e}}_2 + \Pi_{22} \hat{\mathbf{e}}_2 \hat{\mathbf{e}}_2 + \Pi_{32} \hat{\mathbf{e}}_3 \hat{\mathbf{e}}_2 \\
+ \Pi_{13} \hat{\mathbf{e}}_1 \hat{\mathbf{e}}_3 + \Pi_{23} \hat{\mathbf{e}}_2 \hat{\mathbf{e}}_3 + \Pi_{33} \hat{\mathbf{e}}_3 \hat{\mathbf{e}}_3 \bigg] \]

linear combination of
dyadic products = tensor

Total stress tensor
(molecular stresses)
Momentum Balance (continued)

\[
\left(\frac{\text{rate of increase}}{\text{of momentum in } V} \right) = \left(\text{net flux of momentum into } V \right) + \left(\text{sum of forces on } V \right)
\]

\[
\iiint_v \frac{\partial}{\partial t} (\rho \mathbf{v}) dV = -\iiint_v \nabla \cdot (\rho \mathbf{v}) dV + \iiint_v \rho \mathbf{g} dV + \text{molecular forces}
\]

\[
\text{molecular forces} = \iiint_s \left(\text{molecular forces on } dS \right)
\]

\[
= \iiint_s \mathbf{n} \cdot \left(-\tau \right) dS
\]

\[
= \iiint_v \nabla \cdot \left(-\tau \right) dV
\]

We use a stress sign convention that requires a negative sign here.

Gauss Divergence Theorem

UR/Bird choice: positive compression (pressure is positive)

Gauss Divergence Theorem

© Faith A. Morrison, Michigan Tech U.
Momentum Balance

\[\mathbf{F}_{on} = \sum_{S} \mathbf{n} \cdot (-\mathbf{\Pi}) dS = \sum_{S} \mathbf{n} \cdot (\mathbf{\Pi}) dS \]

\[\mathbf{\Pi}_{yx} \quad \mathbf{\Pi}_{yx} \]

UR/Bird choice: fluid at lesser \(y \) exerts force on fluid at greater \(y \)

(IFM/Mechanics choice: (opposite))

Final Assembly:

\[\frac{\partial}{\partial t} (\rho \mathbf{v}) dV = -\nabla \cdot (\rho \mathbf{v} \mathbf{v}) dV + \sum \rho \mathbf{g} dV - \sum \nabla \cdot \mathbf{\Pi} dV \]

\[\sum \left[\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) - \mathbf{\rho} \mathbf{g} + \nabla \cdot \mathbf{\Pi} \right] dV = 0 \]

Because \(V \) is arbitrary, we may conclude:

Microscopic momentum balance

\[\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) - \mathbf{\rho} \mathbf{g} + \nabla \cdot \mathbf{\Pi} = 0 \]
Momentum Balance (continued)

Microscopic momentum balance

\[\frac{\partial \rho v}{\partial t} + \nabla \cdot (\rho v v) - \rho g + \nabla \cdot \Pi = 0 \]

After some rearrangement:

\[\rho \left(\frac{\partial v}{\partial t} + v \cdot \nabla v \right) = -\nabla \cdot \Pi + \rho g \]

Equation of Motion

\[\rho \frac{Dv}{Dt} = -\nabla \cdot \Pi + \rho g \]

Now, what to do with \(\Pi \)?

Pressure

definition: An isotropic force/area of molecular origin. Pressure is the same on any surface drawn through a point and acts normally to the chosen surface.

\[\text{pressure} = p \mathbf{I} = p \hat{e}_1 \hat{e}_1 + p \hat{e}_2 \hat{e}_2 + p \hat{e}_3 \hat{e}_3 = \begin{pmatrix} p & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p \end{pmatrix}_{123} \]

Test: what is the force on a surface with unit normal \(\hat{n} \)?
Momentum Balance
(continued)
Polymer Rheology

back to our question,

Now, what to do with Π?
Pressure is part of it.
There are other, nonisotropic stresses

Extra Molecular Stresses

definition: The extra stresses are the molecular stresses that are not isotropic

$$\tau \equiv \Pi - p I$$

Extra stress tensor, i.e. everything complicated in molecular deformation

Now, what to do with τ?
This becomes the central question of rheological study

Momentum Balance
(continued)
Polymer Rheology

Stress sign convention affects any expressions with $\Pi, \tilde{\Pi}$ or $\tau, \tilde{\tau}$

$$\Pi \equiv \tau + p I$$

$\tilde{\Pi} \equiv \tilde{\tau} - p I$

<table>
<thead>
<tr>
<th>UR/Bird choice: fluid at lesser y exerts force on fluid at greater y</th>
</tr>
</thead>
<tbody>
<tr>
<td>(IFM/Mechanics choice: (opposite))</td>
</tr>
</tbody>
</table>

© Faith A. Morrison, Michigan Tech U.
Constitutive equations for Stress

- are tensor equations
- relate the velocity field to the stresses generated by molecular forces
- are based on observations (empirical) or are based on molecular models (theoretical)
- are typically found by trial-and-error
- are justified by how well they work for a system of interest
- are observed to be symmetric

Observation: the stress tensor is symmetric

Microscopic momentum balance

\[
\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \nabla \cdot \mathbf{\tau} + \rho \mathbf{g}
\]

Equation of Motion

In terms of the extra stress tensor:

\[
\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p - \nabla \cdot \mathbf{\tau} + \rho \mathbf{g}
\]

Equation of Motion

Cauchy Momentum Equation

Components in three coordinate systems (our sign convention):

Newtonian Constitutive equation

\[\tau = -\mu \left(\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right) \]

• for incompressible fluids (see text for compressible fluids)
• is empirical
• may be justified for some systems with molecular modeling calculations

Note: \[\cdot = +\mu \left(\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right) \]

How is the Newtonian Constitutive equation related to Newton’s Law of Viscosity?

\[\tau = -\mu \left(\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right) \]

\[\tau_{21} = -\mu \frac{\partial \mathbf{v}_1}{\partial x_2} \]

• incompressible fluids
• rectilinear flow (straight lines)
• no variation in \(x_2 \)-direction
Back to the momentum balance . . .

\[\rho \left(\frac{\partial \textbf{v}}{\partial t} + \textbf{v} \cdot \nabla \textbf{v} \right) = -\nabla p - \nabla \cdot \tau + \rho \textbf{g} \]

\[\tau = -\mu \left(\nabla \textbf{v} + (\nabla \textbf{v})^T \right) \]

We can incorporate the Newtonian constitutive equation into the momentum balance to obtain a momentum-balance equation that is specific to incompressible, Newtonian fluids.

Navier-Stokes Equation

\[\rho \left(\frac{\partial \textbf{v}}{\partial t} + \textbf{v} \cdot \nabla \textbf{v} \right) = -\nabla p + \mu \nabla^2 \textbf{v} + \rho \textbf{g} \]

- incompressible fluids
- Newtonian fluids

Note: The Navier-Stokes is unaffected by the stress sign convention.
Navier-Stokes Equation

\[
\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g}
\]

Newtonian Problem Solving

EXAMPLE: Drag flow between infinite parallel plates

- Newtonian
- steady state
- incompressible fluid
- very wide, long
- uniform pressure

from QUICK START
EXAMPLE: Poiseuille flow between infinite parallel plates

- Newtonian
- Steady state
- Incompressible fluid
- Infinitely wide, long

EXAMPLE: Poiseuille flow in a tube

- Newtonian
- Steady state
- Incompressible fluid
- Long tube
EXAMPLE: Torsional flow between parallel plates

- Newtonian
- Steady state
- Incompressible fluid
- \(\nu = zf(r) \)