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TWO GOALS

•Derive governing equations (mass and momentum balances

•Solve governing equations for velocity and stress fields

73

QUICK START

First, before we get deep into 
derivation, let’s do a Navier-Stokes 
problem to get you started in the 
mechanics of this type of problem 
solving.

x1

x2

x3

H

W V

v1(x2)

x1

x2

x3

H

W V

v1(x2)

EXAMPLE:  Drag flow 
between infinite 
parallel plates

•Newtonian
•steady state
•incompressible fluid
•very wide, long
•uniform pressure

74
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TWO GOALS

•Derive governing equations (mass and momentum balances

•Solve governing equations for velocity and stress fields

Mass Balance


















CVtoinmass

offluxnet

VCinmassof

increaseofrate

Consider an arbitrary control 
volume V enclosed by a surface S

75

Mathematics Review

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology

V

n̂
S

b

dS
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Mass Balance



















V

dV
dt

d

Vinmassof

increaseofrate


Polymer Rheology

(continued) Consider an 
arbitrary 
volume V

enclosed by a 
surface S

 
















S

dSvn

Ssurfacethrough

Vtoinmass

offluxnet

ˆ

outwardly 
pointing unit 
normal
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Mass Balance

Polymer Rheology

(continued)
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dSvndV
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Leibnitz 
rule

Gauss 
Divergence 
Theorem
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Mass Balance

Polymer Rheology

(continued)

  0



 




V

dVv
t


Since V is 
arbitrary,

  0



v
t



Continuity equation:  
microscopic mass balance
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Mass Balance

Polymer Rheology

(continued)
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0
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Continuity equation (general fluids)

For =constant (incompressible fluids):

0 v
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Polymer Rheology

Consider an 
arbitrary 

control volume 
V enclosed by 

a surface S


























CVonforces

ofsum

CVtoinmomentum

offluxnet

VCinmomentumof

increaseofrate

Momentum is conserved.

resembles the 
rate term in the 
mass balance

resembles the 
flux term in the 
mass balance

Forces:
body (gravity)

molecular forces

Momentum Balance
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Polymer Rheology

V

n̂
S

b

dS

Momentum Balance
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Polymer Rheology(continued)
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dVv
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dVv
dt

d

Vinmomentumof

increaseofrate





 

  dVvv

dSvvn
Vtoinmomentum

offluxnet

V

S
















ˆ

Leibnitz 
rule

Gauss 
Divergence 
Theorem
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Polymer Rheology(continued)










V

dVg
gtodue

Vonforce


Body Forces (non-contact)

Forces on V
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Polymer Rheology

Molecular Forces  (contact) – this is the tough one

We need an expression for the 
state of stress at an arbitrary 

point P in a flow.

P

dS
dSon
Pat

stress
f


















choose a surface 
through P

the 
force on 
that 
surface

85

Molecular Forces
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(continued)

Think back to the molecular 
picture from chemistry:

The specifics of these forces, 
connections, and interactions 

must be captured by the 
molecular forces term that we 

seek.
86
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(continued)

•We will concentrate on expressing the molecular 
forces mathematically;

•We leave to later the task of relating the resulting 
mathematical expression to experimental observations.

•arbitrary shape
•small

First, choose a 
surface: n̂

f
dS

fdS

dSon

Pat

stress


















What is f ?

87

P

x3

x2

x1

ab

c

1̂e

2ê
3ê

Consider the forces on 
three mutually 
perpendicular surfaces 
through point P:

© Faith A. Morrison, Michigan Tech U.
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(continued)

a is stress on a “1” surface at P

a surface with 
unit normal 1̂e

b is stress on a “2” surface at P

c is stress on a “3” surface at P

We can write these vectors in a 
Cartesian coordinate system:

313212111

332211

ˆˆˆ
ˆˆˆ

eee
eaeaeaa




stress on a “1” 
surface in the 1-
direction
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Molecular Forces
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(continued)

a is stress on a “1” surface at P

b is stress on a “2” surface at P

c is stress on a “3” surface at P

333232131

332211

323222121

332211

313212111

332211

ˆˆˆ
ˆˆˆ

ˆˆˆ
ˆˆˆ

ˆˆˆ
ˆˆˆ

eee
ecececc

eee
ebebebb

eee
eaeaeaa










Stress on a “p” 
surface in the   
k-direction

pkSo far, this is 
nomenclature; next we 

relate these 
expressions to force 

on an arbitrary 
surface.
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(continued)

n̂

f
dS

How can we write f (the force 

on an arbitrary surface dS) in 
terms of the pk?

332211 ˆˆˆ efefeff 
f1 is force on dS in 

1-direction f2 is force on dS in 
2-direction

f3 is force on dS in 
3-direction

There are three pk that relate to 
forces in the 1-direction: 

312111 ,, 
91

Molecular Forces
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(continued)

How can we write f (the force on an 
arbitrary surface dS) in terms of the 
quantities  pk?

332211 ˆˆˆ efefeff 

f1 , the force on dS in 1-direction, can be broken into 
three parts associated with the three stress components:
.

312111 ,, 

n̂

f
dS

 

 area
area

force

dSen
surface

theontodA
ofprojection



























 11111 ˆˆ

1

dSen 1̂ˆ 

first part:
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(continued)

f1 , the force on dS in 1-direction, is composed of THREE parts:

 

 

  dSen
surface

theontodA
ofprojection

dSen
surface

theontodA
ofprojection

dSen
surface

theontodA
ofprojection

33131

22121

11111

ˆˆ
3

ˆˆ
2

ˆˆ
1



























































first part:

second part:

third part:
stress on a 
2 -surface 

in the 1-
direction

the sum of these three = f1

93

© Faith A. Morrison, Michigan Tech U.

94



CM4650 Newtonian Fluid Mechanics

12

Molecular Forces

© Faith A. Morrison, Michigan Tech U.

(continued)

f1 , the force in the 1-direction on an arbitrary surface dS is 
composed of THREE parts.

dSendSendSenf 3312211111 ˆˆˆˆˆˆ 

appropriate 
area

stress

  dSeeenf 3312211111 ˆˆˆˆ 

Using the distributive law:

Force in the 1-direction on an 
arbitrary surface dS
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Molecular Forces
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(continued)

The same logic applies in the 2-direction and the 3-direction

 
 
  dSeeenf

dSeeenf
dSeeenf

3332231133

3322221122

3312211111

ˆˆˆˆ
ˆˆˆˆ

ˆˆˆˆ





Assembling the force vector:

 
 
  3333223113

2332222112

1331221111

332211

ˆˆˆˆˆ
ˆˆˆˆˆ

ˆˆˆˆˆ

ˆˆˆ

eeeendS
eeeendS

eeeendS

efefeff
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(continued)

Assembling the force vector:

 
 
 



333332233113

233222222112

133112211111

3333223113

2332222112

1331221111

332211

ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

ˆˆˆˆˆˆˆ

ˆˆˆˆˆ
ˆˆˆˆˆ

ˆˆˆˆˆ

ˆˆˆ

eeeeee
eeeeee

eeeeeendS

eeeendS
eeeendS

eeeendS

efefeff













linear combination of 
dyadic products = tensor 97

Molecular Forces
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(continued)

Assembling the force vector:
















 

ndSf

eendS

eendS

eeeeee
eeeeee

eeeeeendSf

mppm

p m
mppm

ˆ

ˆˆˆ

ˆˆˆ

ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

ˆˆˆˆˆˆˆ

3

1

3

1

333332233113

233222222112

133112211111

Total stress tensor
(molecular stresses)
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Polymer Rheology(continued)

   
forces

molecular
dVgdVvvdVv

t VVV





 

























Vonforces

ofsum

Vtoinmomentum

offluxnet

Vinmomentumof

increaseofrate

 

 


























V

S

S

dV

dSn

dS

onforces

molecular

forces

molecular

ˆ Gauss 
Divergence 
Theorem
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We use a stress sign 
convention that 
requires a negative 
sign here.

Momentum Balance
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Polymer Rheology(continued)

   
forces

molecular
dVgdVvvdVv

t VVV





 

























Vonforces

ofsum

Vtoinmomentum

offluxnet

Vinmomentumof

increaseofrate

 

 


























V

S

S

dV

dSn

dS

onforces

molecular

forces

molecular

ˆ Gauss 
Divergence 
Theorem

UR/Bird choice: 
positive 

compression 
(pressure is 

positive)
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Polymer Rheology(continued)

     
S S

on dSndSnF
~ˆˆ

UR/Bird 
choice: fluid at 
lesser y exerts 

force on fluid at 
greater y

101

(IFM/Mechanics 
choice: (opposite)

yx
yx~

surface

Momentum Balance
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Polymer Rheology(continued)

     



VVVV

dVdVgdVvvdVv
t

























Vonforces
ofsum

Vtoinmomentum
offluxnet

Vinmomentumof
increaseofrate

Final Assembly:

  0



 




V

dVgvv
t

v




  0



gvv
t

v 
Because V is arbitrary, we may conclude:

Microscopic 
momentum 
balance
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Polymer Rheology(continued)

g
Dt

vD

gvv
t

v











 



Microscopic 
momentum 

balance
  0




gvv
t

v 

After some rearrangement:

Equation of 
Motion

Now, what to do with        ?

103

Momentum Balance
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Polymer Rheology(continued)

Now, what to do with        ? Pressure is part of it.

Pressure

definition:  An isotropic force/area of molecular origin.  Pressure is 
the same on any surface drawn through a point and acts normally to 
the chosen surface.

123

332211

00
00
00

ˆˆˆˆˆˆ

















p
p

p
eepeepeepIppressure

Test:  what is the force on a 
surface with unit normal     ?n̂
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Polymer Rheology(continued)

Now, what to do with        ? Pressure is part of it.

Extra Molecular Stresses

definition:  The extra stresses are the 
molecular stresses that are not isotropic

Ip

Extra stress 
tensor,

There are other, nonisotropic stresses

i.e. everything complicated in 
molecular deformation

Now, what to do with        ? This becomes the central 
question of rheological study

back to our question,

105

Momentum Balance
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Polymer Rheology(continued)

Ip

Ip









~~

106

UR/Bird 
choice: fluid at 
lesser y exerts 

force on fluid at 
greater y

(IFM/Mechanics 
choice: (opposite)

Stress sign 
convention affects 
any expressions 
with           or  ~

,  ~,
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Polymer Rheology(continued)

Constitutive equations for Stress

•are tensor equations

•relate the velocity field to the stresses 
generated by molecular forces

•are based on observations (empirical) or are 
based on molecular models (theoretical)

•are typically found by trial-and-error

•are justified by how well they work for a 
system of interest

•are observed to be symmetric
Observation: the stress 

tensor is symmetric

)

,(

propertiesmaterial

vf 
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Momentum Balance
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Polymer Rheology(continued)

gvv
t

v
 



 

Microscopic 

momentum 
balance

Equation of 
Motion

gpvv
t

v
 



 



In terms of the extra stress tensor:

Equation of 
Motion

Cauchy 
Momentum 
Equation

108

http://www.chem.mtu.edu/~fmorriso/cm310/Navier2007.pdf

Components in three coordinate systems (our sign convention):
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Polymer Rheology(continued)

Newtonian Constitutive equation

  Tvv  

•for incompressible fluids (see text for 
compressible fluids)

•is empirical

•may be justified for some systems with 
molecular modeling calculations

109  Tvv  ~Note:

Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

How is the Newtonian 
Constitutive equation related to 
Newton’s Law of Viscosity?

  Tvv  
2

1
21 x

v




 

•incompressible fluids
•rectilinear flow (straight lines)
•no variation in x3-direction

•incompressible fluids
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Momentum Balance
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Polymer Rheology(continued)

gpvv
t

v
 



 

 Equation of 

Motion

  Tvv  

Back to the momentum balance . . . 

We can incorporate the Newtonian 
constitutive equation into the momentum 
balance to obtain a momentum-balance 

equation that is specific to incompressible, 
Newtonian fluids

111

Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

gvpvv
t

v
 



 

 2

Navier-Stokes Equation

•incompressible fluids
•Newtonian fluids

112

Note:  The Navier-Stokes is 
unaffected by the stress sign 
convention.
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Momentum Balance
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Polymer Rheology(continued)

gvpvv
t

v
 



 

 2

Navier-Stokes Equation

113

Newtonian 
Problem 
Solving

x1

x2

x3

H

W V

v1(x2)

EXAMPLE:  Drag flow 
between infinite 
parallel plates

•Newtonian
•steady state
•incompressible fluid
•very wide, long
•uniform pressure

114
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EXAMPLE:  Poiseuille 
flow between infinite 
parallel plates

•Newtonian
•steady state
•Incompressible fluid
•infinitely wide, long

x1

x2

x3

W

2H

x1=0
p=Po

x1=L
p=PL

v1(x2)

115

EXAMPLE:  Poiseuille 
flow in a tube

•Newtonian
•Steady state
•incompressible fluid
•long tube

cross-section A:A

r
z

r

z

L
vz(r)

R

fluid
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EXAMPLE:  Torsional 
flow between parallel 
plates

•Newtonian
•Steady state
•incompressible fluid
ఏݒ• ൌ ሻݎሺ݂ݖ

r

z

H

cross-sectional
view:

R
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