

CM4650 Newtonian Fluid Mechanics

Chapter 3: Newtonian Fluid Mechanics Polymer Rheole		Polymer Rheology
Mass Balance	(continued)	
Continuity eq	uation (general fluids)	
	$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \underline{v} \right) = 0$	
	$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \underline{v}\right) &= 0\\ \frac{\partial \rho}{\partial t} + \rho \left(\nabla \cdot \underline{v}\right) + \underline{v} \cdot \nabla \rho\\ \frac{D \rho}{Dt} + \rho \left(\nabla \cdot \underline{v}\right) &= 0 \end{aligned}$	= 0
	$\frac{D\rho}{Dt} + \rho \left(\nabla \cdot \underline{v} \right) = 0$	
For p=consta	nt (incompressible fluids):	
	$\nabla \cdot \underline{v} = 0$	
© Faith A. Morrison, Michigan Tech U.		

Momentum Balance (continued)
Final Assembly:

$$\begin{pmatrix} rate of increase \\ of momentum in V \end{pmatrix} = \begin{pmatrix} net flux of \\ momentum into V \end{pmatrix} + \begin{pmatrix} sum of \\ forces on V \end{pmatrix}$$

$$\iiint_{V} \frac{\partial}{\partial t} (\rho \underline{v}) dV = - \iiint_{V} \nabla \cdot (\rho \underline{v} \underline{v}) dV + \iiint_{V} \rho \underline{g} dV - \iiint_{V} \nabla \cdot \underline{\Pi} dV$$

$$\iiint_{V} \left[\frac{\partial \rho \underline{v}}{\partial t} + \nabla \cdot (\rho \underline{v} \underline{v}) - \rho \underline{g} + \nabla \cdot \underline{\Pi} \right] dV = 0$$
Because V is arbitrary, we may conclude:

$$\boxed{\frac{\partial \rho \underline{v}}{\partial t}} + \nabla \cdot (\rho \underline{v} \underline{v}) - \rho \underline{g} + \nabla \cdot \underline{\Pi} = 0$$
Microscopic momentum balance

