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Rheometry (Chapter 10)

measurement

All the comparisons we have 
discussed require that we somehow 
measure the material functions on 
actual fluids.
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Tactic:  Divide the Problem in half

Modeling Calculations Experiments

Dream up models

Calculate model Build experimental 
t th t
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Standard Flows

Calculate material 
functions from 
model stresses

Calculate material 
functions from 

measured stresses
Compare

predictions for 
stresses in standard 

flows

apparatuses that 
allow measurements 

in standard flows 
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Pass judgment 
on models

Collect models and their report 
cards for future use
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Standard Flows Summary
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To measure the stresses we need for material 
functions, we must produce the defined flows
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Simple Shear flow (Drag)

Challenges:Challenges:
•Sample loading
•Maintain parallelism
•Producing linear motion
•Stress measurement (Edge effects)
•Signal strength

From the McGill website (2006): Hee Eon Park
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J. M. Dealy and S. S. Soong “A Parallel 
Plate Melt Rheometer Incorporating a 
Shear Stress Transducer,”J. Rheol. 28, 
355 (1984)

From the McGill website (2006):  Hee Eon Park, 
first-year postdoc in Chemical Engineering, 
works on a high-pressure sliding plate rheometer, 
the only instrument of its kind in the world.
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Although we stipulated simple, 
homogeneous shear flow be produced 
th h t th fl d ithroughout the flow domain, can we, 

perhaps, relax that requirement?
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Viscometric flow:  motions that are locally equivalent to steady simple 
shearing motion at every particle

•globally steady with respect to some frame of reference

•streamlines that are straight, circular, or helical

•each flow can be visualized as the relative motion of a sheaf of material 

Viscometric Flows:
1. Steady tube flow
2. Steady tangential annular flow
3 Steady torsional flow (parallel plate flow)

surfaces (slip surfaces)

•each slip surface moves without changing shape during the motion

•every particle lies on a material surface that moves without stretching 
(inextensible slip surfaces)
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3. Steady torsional flow (parallel plate flow)
4. Steady cone-and-plate flow (small cone angle)
5. Steady helical flow

Wan-Lee Yin, Allen C. Pipkin, “Kinematics of viscometric flow,” Archive for Rational Mechanics 
and Analysis, 37(2) 111-135, 1970
R. B. Bird, R. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, 2nd edition, Wiley 
(1986), section 3.7. 
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Experimental Shear Geometries (viscometric flows)
Viscometric Flows:
1. Steady tube flow
2. Steady tangential annular flow
3. Steady torsional pp flow
4. Steady cone-and-plate flow
5. Steady helical flow
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Q

Types of Shear Rheometry

Mechanical:  

•Mechanically produce linear drag flow; 
Measure (shear strain transducer): 1. planar Couette( )

Shear stress on a surface

•Mechanically produce torsional drag flow; 
Measure: (strain-gauge; force rebalance)

Torque to rotate surfaces
Back out material functions

•Produce pressure-driven flow through conduit
Measure:

P d /fl t

1. cone and plate; 
2. parallel plate;
3. circular Couette

1. planar Couette

1. capillary flow
2 li fl

© Faith A. Morrison, Michigan Tech U.
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Pressure drop/flow rate
Back out material functions

2. slit flow
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Capillary Rheometer
The basics
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Exercise: 

• What is the shear stress in capillary flow, for a fluid 
with unknown constitutive equation?

•What is the shear rate in capillary flow?
r

z
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Shear stress in capillary flow:
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What was the shear stress in drag flow?

(varies with position, i.e. inhomogeneous flow)
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Viscosity from capillary flow – inhomogeneous shear flow
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rate 
everywhere, 

but if we 
focus on the 
wall we can 
still get (R)
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Wall shear stress in capillary flow:
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Viscosity from Wall Stress/Shear rate Note:  we are assuming no-slip at the wall
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If vz(r) is known, this is easy to calculate.
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Wall shear-rate for a Newtonian fluid
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For an unknown, non-Newtonian fluid, we need to take special steps 
to determine the wall shear rate

The wall shear rate is generally greater 
than for a Newtonian fluid.

Newtonian
velocity profile

NewtoniannonR ,
vz(r)

non Newtonian

NewtonianR, r

non-Newtonian
velocity profile

20
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For a General non-Newtonian fluid

?Q

?
Something
wall shear-rate-ish

21
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Something 
wall shear-stress-ish
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Weissenberg-Rabinowitsch correction
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Capillary flow

Assumptions:
•Steady…………………………
• symmetry

•No intermittent flow allowed
•No spiraling flow allowed

Methods have been devised to account for
•Slip

 symmetry……………………
•Unidirectional …………………
•Incompressible……………….
•Constant pressure gradient…
•No slip…………………………

No spiraling flow allowed
•Check end effects
•Avoid high absolute pressures
•Check end effects
•Check wall slip

p
•End effects

23
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Slip at the wall - Mooney analysis

Slip at the wall reduces the shear 
rate near the wall.
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Slip at the wall - Mooney analysis

Slip at the wall reduces the shear 
rate near the wall.
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The Mooney correction is a correction to the 
apparent shear rate
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sometimes!

Entrance and exit effects - Bagley correction

The pressure gradient is not 
accurately represented by the raw 
pressure drop: r
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Entrance and exit effects - Bagley correction
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The Bagley correction is a correction 
to the wall shear stress 28
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The data so far:

gammdotA deltPent slope sh stress sh stress
(1/s) psi psi psi Pa

250 163.53 32.705 16.3525 1.1275E+05

a entP
R R

Now, turn apparent shear rate into 

120 107.72 22.98 11.49 7.9220E+04
90 85.311 20.172 10.086 6.9540E+04
60 66.018 16.371 8.1855 5.6437E+04
40 36.81 13.502 6.751 4.6546E+04

Figure 10.8, p. 394 Bagley, PE

, pp
wall shear rate (correct for non-

parabolic velocity profile).

32
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Weissenberg-Rabinowitsch correction
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The data corrected for entrance/exit and 
non-parabolic velocity profile:

R



 P P 

gammdotA deltPent deltPent sh stress ln(sh st) ln(gda) WR gam-dotR viscosity
(1/s) psi Pa Pa correction 1/s Pa s

250 163.53 1.1275E+06 1.1275E+05 11.63289389 5.521460918 2.0677 316.73125 3.5597E+02
120 107.72 7.4270E+05 7.9220E+04 11.2799902 4.787491743 2.0677 152.031 5.2108E+02
90 85.311 5.8820E+05 6.9540E+04 11.14966143 4.49980967 2.0677 114.02325 6.0988E+02
60 66.018 4.5518E+05 5.6437E+04 10.9408774 4.094344562 2.0677 76.0155 7.4244E+02
40 36.81 2.5380E+05 4.6546E+04 10.74820375 3.688879454 2.0677 50.677 9.1849E+02

Ra entP
RentP

R

Now, plot viscosity versus wall-
shear-rate

Figure 10.8, p. 394 Bagley, PE 35
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Viscosity of polyethylene from Bagley’s data
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Viscosity from Capillary Experiments, Summary:

1. Take data of pressure-drop versus 
flow rate for capillaries of various 
lengths; perform Bagley correction 
on p (entrance pressure losses)

)(QPraw data:

final data:
RR  /

1.0E+03

1.0E+04

is
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si
ty

, P
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s

R

R







on p (entrance pressure losses)

2. If possible, also take data for 
capillaries of different radii; perform 
Mooney correction on Q (slip)

3. Perform the Weissenberg-
Rabinowitsch correction (obtain 
correct wall shear rate)

4 Plot true viscosity versus true wall

RR 

1.0E+02

10 100 1000

Shear rate, 1/s

V
i

R

4. Plot true viscosity versus true wall 
shear rate

5. Calculate power-law m, n from fit to 
final data (if appropriate)

37
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