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What about the shear normal 
stresses,   from capillary data? 

Extrudate swell - relation to N1 is model dependent 
(see discussion in Macosko, p254)

Assuming unconstrained 
recovery after steady shear, 
K-BKZ model with one 
relaxation time
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Not a great method; can perhaps be 
used to index materials
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38Macosko, Rheology:  Principles, Measurements, 
and Applications, VCH 1994.

 ?  (cannot obtain from capillary flow, but…)

We can obtain   from slit-flow data:  Hole Pressure-Error 

Pressure transducers mounted in an access channel (hole) do not 
measure the same pressure as those that are “flush-mounted”:
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Hou, Tong, deVargas, Rheol. Acta 1977, 16, 544
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Lodge, in Rheological Measurement, Collyer, Clegg, eds. 
Elsevier, 1988
Macosko, Rheology:  Principles, Measurements, and 
Applications, VCH 1994.











w

h
h d

pd
pNN




ln

ln
321

Circular hole:

(We can of course obtain  also from slit-
flow data; the equations are analogous to 

the capillary flow equations)
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Limits on Measurements:  Flow instabilities in rheology
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Limits on Measurements:  Flow instabilities in rheology

Flow driven 
by constant 
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D. Kalika and M. Denn, J. Rheol. 31, 815 (1987)

Slip-Stick 
Flow
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Torsional Parallel Plates
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( p a e
section)

To calculate shear rate:
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To calculate shear stress, look at EOM:
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neglect 
inertia

•Form of velocity
•no -dependence
•symmetric stress tensor
•neglect inertia
•no slip
•isothermal
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The experimentally measurable variable is the torque 
to t rn the plate
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  
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Following Rabinowitsch, replace stress with viscosity, r 
with shear rate, and differentiate.
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

cross-sectional
view: 

Torsional Parallel-Plate Flow - Viscosity

Measureables:
Torque  to turn plate
Rate of angular rotation 
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slope is a 
function of R
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Torsional Parallel-Plate Flow – Viscosity – Approximate method
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Applications, VCH 1994, p220

(but making a material assumption)

Torsional Parallel-Plate Flow – Normal Stresses

Similar tactics, logic (see Macosko, p221)
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(Not a direct material funcion)
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Torsional Cone and Plate
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section)

To calculate shear rate:




r
BrA

v



















)(

0

0

2

)(







 
















r
v

BrAv

(due to boundary conditions)

 
 

   
?

0

00

00

2

sin
sin

sin
sin

0
























































r

v

rr

v

r

v

r

r

v

r

r

r 



 r  

(plane

0

51

© Faith A. Morrison, Michigan Tech U.

section)



12/10/2012

8

 


 
r

r

v






















20

0

0

  00

 


0
Result:

 

 

 r  

(plane
section)

0

Note:  The shear rate is a constant.

constant











r

rr


















0

0

00

(viscometric flow)

The extra stresses ij are only a function of the 
shear rate, thus the ij are constant as well. 

R lt constant Assume:
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ijResult: constant

Torsional cone and plate is a 
homogeneous shear flow.

Assume:
•Form of velocity
•no -dependence
•no slip
•isothermal

C

The experimentally measurable variable is the torque 
to t rn the cone
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TT z 

For an arbitrary fluid, we are 
able to relate the torque and 

the shear stress.
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

Torsional Cone-and-Plate Flow - Viscosity

Measureables:
Torque  to turn cone
Rate of angular rotation 



  (-plane
section)

Since shear rate is constant 
everywhere so is extra stress and we

3
constant

T 

 r  

 R

 polymer melt

The introduction of the cone 
means that shear rate is 
independent of r. 0
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(and no material assumptions)

To calculate normal stresses, look at EOM:
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inertia
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The experimentally measurable variable is the fluid 
thrust on the plate minus the thrust of Patm:
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Integrate:
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atmPRrdrN 2
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2     

. . . 



Torsional Cone-and-Plate Flow – 1st Normal Stress

Measureables:
Normal thrust F 
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1

2
)(





R

F


of the cone can be 

related directly to the 
first normal stress 

coefficient.

(see also DPL pp522)

59
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If we obtain  as a 
function of r / R, we 
can also obtain 2.

Torsional Cone-and-Plate Flow – 2nd Normal Stress

  2
0221

2
0 ln2    atmP

R

r

•MEMS used to manufacture sensors at different radial positions

•S. G. Baek and J. J. Magda, J. Rheology, 47(5), 1249-1260 (2003)
•J. Magda et al. Proc. XIV International Congress on Rheology, Seoul, 2004.

RheoSense Incorporated 
(www.rheosense.com)

60

© Faith A. Morrison, Michigan Tech U.

Comparison with other 
instruments

RheoSense Incorporated

S. G. Baek and J. J. Magda, J. Rheology, 47(5), 1249-1260 (2003)
61
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fluid

Couette Flow (1890)

 
(-plane
section)

•Tangential annular flow
•Cup and Bob geometry

Treated in detail in Macosko, pp 188-205

cup

bob

air pocket

Assume:

62

© Faith A. Morrison, Michigan Tech U.

Macosko, Rheology:  Principles, Measurements, 
and Applications, VCH 1994.

•Form of velocity
•no -dependence
•symmetric stress tensor
•Neglect gravity
•Neglect end effects
•no slip
•isothermal

Couette Flow

Assume:
•Form of velocity
•no -dependence
•symmetric stress tensor
•Neglect gravity
•Neglect end effects
•no slip

 

R

LR

T








322

1


p
•isothermal

outer

inner

R

R


•End effects are not negligible
•Wall slip occurs with many systems
•Inertia is not always negligible

As with many measurement systems, the 
assumptions made in the analysis do not 
always hold:

BUT
•Generates a lot of signal
•Can go to high shear rates
•Is widely available
•Is well understood

63
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Macosko, Rheology:  Principles, Measurements, 
and Applications, VCH 1994.

•Inertia is not always negligible
•Secondary flows occur (cup turning is more stable than bob 
turning to inertial instabilities; there are elastic instabilities; there are 
viscous heating instabilities)

•Alignment is important
•Viscous heating occurs
•Methods for measuring 1 are error prone
•Cannot measure 2

Is well understood
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For the PP and CP geometries, we can also calculate G’, G”:

0

0
4
0

cos2)(
)(

sin2)(
)(









HTG

R

HTG









Parallel plate
Amplitude of 

oscillation

0
4

)(



R



0
3

00

0
3
00

2

cos3
)(

2

sin3
)(







R

T

R

T





Cone and plate

Amplitude of 
oscillation

© Faith A. Morrison, Michigan Tech U.

64

•A typical diameter is between 8 and 25mm; 30-40mm are also used
•To increase accuracy, larger plates (R larger) are used for less viscous materials 
to generate more torque.
•Amplitude may also be increased to increase torque
•A complete analysis of SAOS in the Couette geometry is given in Sections 8.4.2-3

Limits on Measurements:  Flow instabilities in rheology

Cone and plate/Parallel plate flow

Figures 6.7 and 6.8, p. 175 Hutton; PDMS
65

© Faith A. Morrison, Michigan Tech U.



12/10/2012

15

1923 GI Taylor; inertial instability
1990 Ron Larson, Eric Shaqfeh, Susan Muller; elastic instability

Limits on Measurements:  Flow instabilities in rheology

Taylor-Couette flow

66

© Faith A. Morrison, Michigan Tech U.

•GI Taylor "Stability of a viscous liquid contained between two 
rotating cylinders," Phil. Trans. R. Soc. Lond. A 223, 289 (1923)
•Larson, Shaqfeh, Muller, “A purely elastic instability in Taylor-
Couette flow,”J. Fluid Mech, 218, 573 (1990)

log

Why do we need more than one 
method of measuring viscosity?

Torsional flows

o

Capillary/Slit flows

log

•At low rates, torques/pressures 
become low 
•At high rates, torques/pressures 
become high; flow instabilities set in 67

© Faith A. Morrison, Michigan Tech U.
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Shear measurement
Material Function 
Calculations

©
 F

aith A
. MM

orrison, M
ichigan Tech U

.

See also Macosko, Part II

Shear measurements
Pros and Cons

© Faith A. Morrison, Michigan Tech U.

69
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Stress/Strain Driven Drag
Multipurpose rheometers

Pressure-driven Shear Optical

(diffusive wave spectroscopy; G’G”)

(plus attachments on multipurpose 
rheometer)

Interfacial Rheology

(Slit flow; microfluidics)

(capillary, slit flow; melts)

rheometer)

© Faith A. Morrison, Michigan Tech U.

70

Interfacial Rheology

(drag flow on interface)

Elongational Flow Measurements

fluid

71

© Faith A. Morrison, Michigan Tech U.
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 x1

 x3

x1

Experimental Elongational Geometries

fluidair-bed to support sample
x1

 x3

to to+t to+2t

h(t)R(t)
x3

 h(t)R(t)

 R(to)

 h(to)
x1

thin, lubricating
layer on each
plate

72
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load
cell

measures
f

Uniaxial Extension

)(

)(

tA

tf
rrzz 

tensile force

r

z

cell force

fluid
sample

)(tftime-dependent 
cross-sectional area

teAtA 0
0)( For homogeneous flow:

   
000

0)(










A

etf t
rrzz







73
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ideal elongational
deformation

end effects

experimental
challenges

Experimental Difficulties in Elongational Flow

initial

inhomogeneities

initial

final

final

effect of gravity,
drafts, surface tension

final

74

© Faith A. Morrison, Michigan Tech U.

Filament Stretching Rheometer (FiSER)

Tirtaatmadja and Sridhar, J. Rheol., 37, 1081-1102 
(1993)

•Optically monitor 
the midpoint size
•Very susceptible to 
environment
•End Effects

McKinley, et al., 15th Annual Meeting of 
the International Polymer Processing 
Society, June 1999.

75

© Faith A. Morrison, Michigan Tech U.
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Filament Stretching Rheometer

“The test sample (a) undergoing investigation is 
placed between two parallel, circular discs (b) and 
(c) with diameter 2R0=9 mm. The upper disc is 
attached to a movable sled (d), while the lower 
disc is in contact with a weight cell (e). The upper 

(Design based on Tirtaatmadja and Sridhar)

sled is driven by a motor (f), which also drives a 
mid-sled placed between the upper sled and the 
weight cell; two timing belts (g) are used for 
transferring momentum from the motor to the 
sleds. The two toothed wheels (h), driving the 
timing belts have a 1:2 diameter ratio, ensuring 
that the mid-sled always drives at half the speed 
of the upper sled. This means that if the mid-sled 
is placed in the middle between the upper and the 
lower disc at the beginning of an experiment, it 
will always stay midway between the discs. On 

76

© Faith A. Morrison, Michigan Tech U.

Bach, Rasmussen, Longin, Hassager, JNNFM 108, 
163 (2002)

y y y
the mid-sled, a laser (i) is placed for measuring 
the diameter of the mid-filament at all times.

•Steady and startup flow
•RecoveryRecovery
•Good for melts

RHEOMETRICS RME 1996 (out of production)
77

© Faith A. Morrison, Michigan Tech U.
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Achieving commanded 
strain requires great 
care.

Use of the video cameraUse of the video camera 
(although tedious) is 
recommended in order 
to get correct strain rate.

78

© Faith A. Morrison, Michigan Tech U.

Sentmanat Extension Rheometer (2005) 

•Originally developed for rubbers, 
good for melts
•Measures elongational viscosity, 
startup, other material functions
•Two counter-rotating drums
•Easy to load; reproducible

www.xpansioninstruments.com

79

© Faith A. Morrison, Michigan Tech U.

http://www.xpansioninstruments.com/rheo-optics.htm
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Comparison on 
different host 
instruments

Sentmanat et al., J. Rheol., 49(3) 585 (2005)

Comparison with other 
instruments (literature)

80

© Faith A. Morrison, Michigan Tech U.

CaBER Extensional Rheometer 

•Polymer solutions
•Works on the principle of capillary filament break up
•Cambridge Polymer Group and HAAKE

For more on theory see:  campoly.com/notes/007.pdf

Brochure:  www.thermo.com/com/cda/product/detail/1,,17848,00.html

•Impose a rapid step elongation

Operation

•Impose a rapid step elongation
•form a fluid filament, which continues to deform
•flow driven by surface tension
•also affected by viscosity, elasticity, and mass transfer
•measure midpoint diameter as a function of time
•Use force balance on filament to back out an apparent 
elongational viscosity

81
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Capillary breakup 
experiments

•Must know surface tension
•Transient agreement is 
poor
•Steady state agreement is 
acceptable
•Be aware of effect 
modeling assumptions on 

Comments

Anna and McKinley, J. Rheol. 45, 115 (2001). 

Filament 
stretching 
apparatus

g p
reported results

82
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funnel-flow
i

Elongational Viscosity via Contraction Flow:  
Cogswell/Binding Analysis

Fluid elements along 
the centerline undergo 

id bl

y
z

corner
vortex

region

R(z)

considerable 
elongational flow

By making strong 

Ro

assumptions about the 
flow we can relate the 
pressure drop across 
the contraction to an 
elongational viscosity

83
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This flow is produced in some capillary rheometers:

r
z

entrance region

r
z

entrance region

r
z

entrance region

r
z

entrance region

L

P

L

P

L

PP trueentranceatmreservoir 







We can use this 
“di d d”

P(z)

raw

p

L

 
 
 

p 

2R well-developed flow

exit region

2R well-developed flow

exit region

2R well-developed flow

exit region

2R well-developed flow

exit region

“discarded” 
measurement to rank 

elongational properties

84
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zz=0 z=L

corrected

p

L

 
 
 

1000
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end fQfP 
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Figure 10.8, p. 394 Bagley, PE

1250 


seffects

end

a

P

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y = 32.705x + 163.53

R2 = 0.9987

y = 22.98x + 107.72

R2 = 0.9997

y = 20 172x + 85 311800

1000

1200

ss
ur

e,
 250

120

90

60

)( 1sa

y  20.172x + 85.311

R2 = 0.9998

y = 16.371x + 66.018

R2 = 0.9998

y = 13.502x + 36.81

R2 = 1

200

400

600

800

S
te

ad
y 

S
ta

te
 P

re
s

The intercepts are equal to

60

40

0

0 10 20 30 40

L/R

The intercepts are equal to 
the entrance/exit pressure 
losses; these are obtained 

as a function of apparent 
shear rate

Figure 10.8, p. 394 Bagley, PE 86
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Assumptions for the Cogswell Analysis
• incompressible fluid 
• funnel-shaped flow; no-slip on funnel surface 
• unidirectional flow in the funnel region 
• well developed flow upstream and downstream
• -symmetry 
• pressure drops due to shear and elongation 

 y
 z

R(z)
p essu e d ops due to s ea a d e o gat o

may be calculated separately and summed to 
give the total entrance pressure-loss
• neglect Weissenberg-Rabinowitsch correction
• shear stress is related to shear-rate through a 
power-law
• elongational viscosity is constant
• shape of the funnel is determined by the 
minimum generated pressure drop 
• no effect of elasticity (shear normal stresses 

 Ro





n

a

m 



neglected) 
• neglect inertia

constant



 aR m

F. N. Cogswell, Polym. Eng. Sci. (1972) 12, 64-73. 
F. N. Cogswell, Trans. Soc. Rheol. (1972) 16, 383-403.87
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  aR 
aR  

Cogswell Analysis

elongation rate
1 nm 

 22112 



o

3
4

R

Q
a 
 

  )1(
8

3
2211  npent

elongation rate

elongation normal 
stress

am

 
aR

ent

o

pn






22

2211
)1(

32

9






elongation 

viscosity
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Cogswell Analysis – using Excel

 
  aR

o




1 n
am 

From shear:

  2211 


(Binding’s data)

RAW DATA RAW DATA Cogswell Cogswell
gammdotA deltPent(psi) deltPent(Pa) sh stress(Pa) N1(Pa) e_rate elongvisc 3*shearVisc

250 163.53 1.13E+06 1.13E+05 -6.27E+05 2.25E+01 2.79E+04 1.55E+03
120 107.72 7.43E+05 7.92E+04 -4.13E+05 1.15E+01 3.59E+04 2.27E+03
90 85.311 5.88E+05 6.95E+04 -3.27E+05 9.56E+00 3.42E+04 2.65E+03
60 66.018 4.55E+05 5.64E+04 -2.53E+05 6.69E+00 3.79E+04 3.23E+03
40 36 81 2 54E+05 4 65E+04 1 41E+05 6 59E+00 2 14E+04 4 00E+03

 22112  o

3
4

R

Q
a 
 

entp
entp R

3
o




89
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40 36.81 2.54E+05 4.65E+04 -1.41E+05 6.59E+00 2.14E+04 4.00E+03

  )1(
8

3
2211  npentResults in one data point for 

elongational viscosity for each 
entrance pressure loss (i.e. 
each apparent shear rate)
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Assumptions for the Binding Analysis
• incompressible fluid 
• funnel-shaped flow; no-slip on funnel surface 
• unidirectional flow in the funnel region 
•well developed flow upstream and downstream 
•  -symmetry 
• shear viscosity is related to shear-rate through a  y

 z
R(z)y g

power-law 
• elongational viscosity is given by a power law
• shape of the funnel is determined by the minimum 
work to drive flow 
• no effect of elasticity (shear normal stresses 
neglected) 
• the quantities               and               , related to the 
shape of the funnel, are neglected; implies that the 
radial velocity is neglected when calculating the rate of 

 2dzdR 22 dzRd

 Ro

R(z)

1


t

n
aR m 

deformation 
• neglect energy required to maintain the corner 
circulation 
• neglect inertia

1 t
ol 

D. M. Binding, JNNFM (1988) 
27, 173-189.

90

© Faith A. Morrison, Michigan Tech U.

Binding Analysis
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viscosity
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Binding Analysis

Evaluation Procedure

Note:  there is a non-iterative solution method 
described in the text; The method using Solver is 
preferable, since it uses all the data in finding 
optimal values of l and t.

1. Shear power-law parameter n must be known; 
must have data for pent versus Q

2. Guess t, l
3. Evaluate Int by numerical integration over 
4. Using Solver, find the best values of t and l that 

are consistent with the pent versus Q data

92
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Results in values of t, l for a 
model (power-law)

Binding Analysis – using Excel Solver

Evaluate integral 
numerically








 1 1

1113
2  d

n
I

t
n y

 






0

112  d
n

I n
nt

hbbarea )(
2

1
21 

phi f(phi) areas
0 0

0.005 0.023746502 5.93663E-05
0.01 0.047492829 0.000178098

0.015 0.071238512 0.000296828
0.02 0.094982739 0.000415553

0 025 0 118724352 0 000534268
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Summing:
Int= 1.36055

0.025 0.118724352 0.000534268
0.03 0.142461832 0.000652965

0.035 0.166193303 0.000771638
0.04 0.189916517 0.000890275

0.045 0.213628861 0.001008863
0.05 0.237327345 0.001127391

0.055 0.261008606 0.00124584
0.06 0.2846689 0.001364194

0.065 0.308304107 0.001482433
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Binding Analysis – using Excel Solver

Optimize t, l using Solver

t_guess= 1.2477157
l_guess= 11991.60895

predicted exptal
DeltaPent DeltaPent difference

1.26E+06 1.13E+06 1.35E-02
6 88E+05 7 43E+05 5 51E-03

******* SOLVER SOLUTION ********

 
 2

2

actual

actualpredicted 
By varying these cells:

94

6.88E 05 7.43E 05 5.51E 03
5.43E+05 5.88E+05 6.02E-03
3.89E+05 4.55E+05 2.14E-02
2.78E+05 2.54E+05 9.28E-03

target cell 5.57E-02

© Faith A. Morrison, Michigan Tech U.

Sum of the differences:
Minimize this cell

1.E+04

1.E+05

y 
(P

a 
s)

Example 
calculation 
from 
Bagley’s 
Data

  )(Binding 
  )(Cogswell 

This curve was calculated 
using the procedure in the 
textSolver solution

y = 6982.5x-0.5165

R2 = 0.9998
1.E+02

1.E+03

h
ea

r 
o

r 
el

o
n

g
at

in
al

 v
is

co
si

ty

shear viscosity

Cogswell elong visc

Trouton prediction

Binding elong visc

Binding Solver

  

  3

95

1.E+00

1.E+01

1.E+00 1.E+01 1.E+02 1.E+03

rate of deformation (1/s)

sh Power (shear viscosity)

Bagley's data from Figure 10.8 Understanding Rheology 
Morrison; assumed contraction was 12.5:1

© Faith A. Morrison, Michigan Tech U.
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Rheotens (Goettfert)

www.goettfert.com/downloads/Rheotens_eng.pdf

"Rheotens test is a rather complicated function of the characteristics of the polymer, dimensions 
of the capillary, length of the spin line and of the extrusion history"

from their brochure:

•Does not measure material 
functions without constitutive model

•small changes in material 
properties are reflected in curves

•easy to usey

•excellent reproducibility

•models fiber spinning, film casting

•widespread application

96
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"The rheology of the rheotens test,“ M.H. 
Wagner, A. Bernnat, and V. Schulze, J. Rheol. 

Raw data

An elongational viscosity may be 
extracted from a “grand master 
curve” under some conditions

g , , ,
42, 917 (1998)

vs. draw ratioGrand master curve exit dievvV 
factorshift b

Draw resonance

97
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Elongational
measurements
Pros and Cons

© Faith A. Morrison, Michigan Tech U.

98

Extensional

(dual drum windup)

Measurement of elongational
viscosity is still a labor of love.

(filament stretching)

(capillary breakup)

© Faith A. Morrison, Michigan Tech U.

99

(drum windup)
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Newer 
emphasis:

© Faith A. Morrison, Michigan Tech U.

100
C. Clasen and G. H. McKinley, "Gap-dependent microrheometry of 
complex liquids," JNNFM, 124(1-3), 1-10 (2004)

http://www.ksvnima.com/file/ksv-nima-isrbrochure.pdf

KSV NIMA Interfacial Shear Rheometer

•a probe floats on an interface;
•is driven magnetically; 
•material functions are inferred.

© Faith A. Morrison, Michigan Tech U.
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102
www.lsinstruments.ch/technology/diffusing_wave_spectroscopy_dws/
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103

Strong multiple scattering of light  + model = rheological material functions

•D.J. Pine, D.A. Weitz, P.M. Chaikin, and E. Herbolzheimer,“Diffusing-
Wave Spectroscopy,” Phys. Rev. Lett. 60, 1134-1137 (1988).
•Bicout, D., and Maynard, R., “Diffusing wave spectroscopy in 
inhomogeneous flows,” J. Phys. I 4, 387–411. 1993
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Flow Birefringence - a non-invasive way to measure stresses

no net force, isotropic chain,
isotropic polarization

For many polymers, 

n

n

force applied, anisotropic chain,
i t i l i ti bi f i t

IBCn  

stress and refractive-
index tensors are coaxial 
(same principal axes):

Stress-Optical Law

n2

n1

anisotropic polarization = birefringent

104
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Large-Amplitude Oscillatory Shear
A window into nonlinear viscoelasticity

105

© Faith A. Morrison, Michigan Tech U.

Gareth McKinley, Plenary, International Congress on Rheology, Lisbon, August, 2012 
http://web.mit.edu/nnf/ICR2012/ICR_LAOS_McKinley_For%20Distribution.pdf  
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Summary

•Shear measurements are readily made
•Choice of shear geometry is driven by fluid properties, shear rates
•Care must be taken with automated instruments (nonlinear response, 

SHEAR

instrument inertia, resonance, motor dynamics, modeling assumptions)

•Elongational properties are still not routine
•Newer instruments (Sentmanat,CaBER) have improved the possibility of 

ELONGATION

•Microrheometry

( ) p p y
routine elongational flow measurements
•Some measurements are best left to the researchers dedicated to them 
due to complexity (FiSER)
•Industries that rely on elongational flow properties (fiber spinning, foods) 
have developed their own ranking tests
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Tanner and Walters, 
Rheology: An Historical 
Perspective, Elsevier, 
1998, pp138-9
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Tanner and Walters, 
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