

Shear measurement	Geometries'			
Material Function	Geometry	Magnitude of Shear Stress 121	Shear Rate ý	Measured Material Function
Calculations	Capillary flow (wall conditions) $\mathcal{P}_0, \mathcal{P}_L = \text{modified pressure at } z = 0, L$ Q = flow rate L = copillary length $\mathcal{R} = \frac{1}{4} \left[3 + \frac{4 \ln(4Q)r R^3}{4 \ln r_R} \right]$ $\tau_R = \tau_{r_L} _{r=R}$	$\frac{(\mathcal{P}_0 - \mathcal{P}_L)R}{2L}$	$\frac{4Q}{\pi R^3}\mathcal{R}$	$\eta = \frac{\tau_R}{4Q/\pi R^3} \mathcal{R}^{-1}$
	Parallel disk (at rim) T' = torque on top plate $\Omega = angular velocity of top plate, > 0$ H = gap $\mathcal{R} = \frac{1}{4} \left[3 + \frac{d \ln (T/2\pi R^3)}{d \ln \gamma_R} \right]$ $\dot{\gamma}_R = \dot{\gamma}(R)$	$\frac{2\mathcal{T}}{\pi R^3}\mathcal{R}$	$\frac{r\Omega}{H}$	$\eta = \frac{2\tilde{T}}{\pi R^3 \dot{\gamma}_R} \mathcal{R}$
	Cone and plate T = torque on plate F = thrust on plate $\Omega = \text{angular velocity of cone, } > 0$ $\Theta_0 = \text{cone angle}$	$\frac{3T}{2\pi R^3}$	$\frac{\Omega}{\Theta_0}$	$\begin{split} \eta &= \frac{3\mathcal{T}\Theta_0}{2\pi R^3\Omega} \\ \Psi_1 &= \frac{2\mathcal{T}\Theta_0^2}{\pi R^2\Omega^2} \end{split}$
	Countre (bob turning) T = torque on inner cylinder, < 0 $\Omega = \text{angular velocity of bob, } > 0$ R = outer radius $\kappa R = \text{inner radius}$ L = length of bob	$\frac{-T}{2\pi R^2 L \kappa^2}$	$\frac{\kappa\Omega}{1-\kappa}$	$\eta = \frac{\mathcal{T}(\kappa - 1)}{2\pi R^2 L \kappa^3 \Omega}$
so Macosko, Part II	Concrete (cup turning) $\vec{T} = torque on inner cylinder, > 0$ $\Omega = angular velocity of cup, > 0$ R = outer radius $\kappa R = inner radius$ L = hereith of bob	$\frac{\mathcal{T}}{2\pi R^2 L \kappa^2}$	$\frac{\kappa\Omega}{1-\kappa}$	$\eta = \frac{\mathcal{T}(1-\kappa)}{2\pi R^2 L \kappa^3 \Omega}$

TABLE 10.3 Comparison of Expe	rimental Features of Four Com	mon Shear Geometries						
Feature	Parallel Disk	Cone and Plate	Capillary	Couette (Cup and Bob)				
Stress range	Good for high viscosity	Good for high viscosity	Good for high viscosities	Good for low viscosities				
Flow stability	Edge fracture at modest rates	Edge fracture at modest rates	Melt fracture at very high rates, i.e., distorted extrudates and pressure fluctuations are observed	Taylor cells are observed at hig Re due to inertia; elastic cells a observed at high De				
Sample size and sample loading	< 1 g; easy to load	< 1 g; highly viscous materials can be difficult to load	40 g minimum; easy to load	10-20 g; highly viscous mater can be difficult to load				
Data handling	Correction on shear rate needs to be applied; this correction is ignored in most commercial software packages	Straightforward	Multiple corrections need to be applied	Straightforward				
Homogeneous?	No; shear rate and shear stress vary with radius	Yes (small core angles)	No; shear rate and shear stress vary with radius	Yes (narrow gap)				
Pressure effects	None	None	High pressures in reservoir cause problems with compressibility of melt	None				
Shear rates	Maximum shear rate is limited by edge fracture; usually cannot obtain shear-thinning data	Maximum shear rate is limited by edge fracture; usually cannot obtain shear-thinning data	. Very high rates accessible .	Maximum shear rate is limited by sample leaving cup due to either inertia or elastic effects; also 3-D secondary flows deve (instability)				
Special features	Good for stiff samples, even gels; wide range of temperatures possible	Ψ_1 measurable; wide range of temperatures possible	Constant- Q or constant- ΔP modes available; wide range of temperatures possible	Narrow gap required; usually limited to modest temperature (e.g., $0 < T < 60^{\circ}$ C)				

Elongational	Feature	Melt Stretching	MBER	Filament Stretching	Binding/ Cogswell
Pros and Cons	Stress Range	Good for high viscosity	Good for high viscosity	Good for low viscosity at room temperature	Good for high and low viscosities
	Flow stability	Subject to gravity, surface tension and air currents	Can be unstable at high rates	Subject to gravity, surface tension and air currents	Unstable at very high rates
	Sample size and sample loading	10 g; care must be taken to minimize end effects	<2 g; requires careful preparation and loading	<1 g; easy to load	40 g minimum; easy to load
	Data handling	Straightforward, but does not result in any elongational material functions	Straightforward; more involved if strain is measured	Two tests are required to account for strain inhomogeneities	Cogswell— straightforward Binding—more complicated but not difficult
	Homogeneous?	No, not at ends	Could be with care	No, not at ends	No-mixed shear and elongational flow
	Pressure effects	No	No	No	Yes— compressibility of melt reservoir could cause difficulties
	Elongation rates	Maximum rates depend on clamp speeds	Maximum elongation rate is limited by ability to maintain the sample in steady flow	Maximum rates depend on plate speeds; minimum rates depend on the ratio of gravity and viscous effects	High and low rates possible
	Special features	Cannot reach high strains or steady state; wide range of temperatures is possible; the instrument is commercially available	Often strain is not measured but is calculated from the imposed strain rate; a wide range of temperatures is possible; the instrument is commercially available	Currently limited to room temperature liquids	Is based on a presumed funnel- shaped flow—this may not take place; wide range of temperatures possible

VOLUME 60, NUMBER 12	PHYSICAL REVIEW LETTERS	21 March 1988
	Diffusing-Wave Spectroscopy	
D. J. I ⁽²⁾ D Depart	Pine, ^(1,2) D. A. Weitz, ⁽¹⁾ P. M. Chaikin, ^(1,3) and E. Herbolzheim ⁽¹⁾ Exxon Research and Engineering. Annandale, New Jersey 08801 epartment of Physics, Haverford College, Haverford, Pennsylvania 190 ment of Physics, University of Pennsylvania, Philadelphia, Pennsylvani (Received 26 October 1987)	ner ⁽¹⁾ 041 ia 19104
We obtain us which exhibit str of the transport different scatteri trol over the tim utility by studyin	ful information from the intensity autocorrelations of light scatter ong multiple scattering. A phenomenological model, which exploits the of light, is shown to be in excellent agreement with experimental ag geometries. The dependence on geometry provides an important er e scale probed. We call this technique diffusing-wave spectroscopy, is giffusion in a strongly interacting colloidal gass.	ed from systems e diffusive nature data for several xperimental con- and illustrate its
PACS numbers: 42	2.20.Ji, 05.40.+j	
Strong multiple scatter	ring of light + model = rheological materia	al functions
5 1 1		

Tanner and Walters, *Rheology: An Historical Perspective*, Elsevier, 1998, pp138-9 Starita decided to start another company to make the Mechanical Spectrometer, leaving Macosko with Rheometrics and a substantial debt. Amongst other things, this series of events led Macosko into a deep Christian faith. One of the fruits of this religious conversion was a willingness to turn over all the stock and the patent rights to Starita.

events led Macosko into a deep Christian faith. One of the fruits of this religious conversion was a willingness to turn over all the stock and the patent rights to Starita. In 1973, Starita left GE to guide Rheometrics into a successful commercial company and hence provide the makers of the Weissenberg Rheogoniometer with their first effective competition. Macosko was hired as a consultant to the firm and still continues in that role. Starita himself held a prominent leadership position in Rheometrics for over two decades, until he sold his interest in the mid nineties. Although it may not be immediately apparent from the foregoing discussion, the normal stress facility on what became known as the Rheometric's Mechanical Spectrometer' essentially grew out of a rheometer (the Orthogonal Rheometer) which was originally constructed to investigate the linear time dependent behaviour of polymeric systems, through

Although it may not be immediately apparent from the foregoing discussion, the normal stress facility on what became known as the Rheometrics 'Mechanical Spectrometer' essentially grew out of a rheometer (the Orthogonal Rheometer) which was originally constructed to investigate the linear time dependent behaviour of polymeric systems, through such functions as the storage and loss moduli. In the same way, the third commercial player in the area of all-purpose rheometers, namely Bohlin, entered the field through a restricted rheometrical background. Leif Bohlin had worked in the Department of Food Technology at the Chemical Center, University of Lund, Sweden. There, he had developed a stress-relaxation instrument to investigate the long-time stress-relaxation of wheat flour dough. Later, a controlled-strain oscillation instrument was also developed to study coagulation and gelation of various food-related substances. These developments utilimately led to the construction of the Bohlin VOR rheometer during late 1982 and early 1983, the first commercial instrument being delivered in May 1983. Bohlin rheoing Ab. One stunted development in rheometer development concerns the instrument firm Instron. In 1970, R I Tanner became a rheological consultant to the firm with a view to giving advice on a possible rotary rheometer. Development and design progressed

to giving advice on a possible rotary rheometer. Development and design progressed favourably, but there was a hiatus of two years following the launch of the Rheometrics' instrument in 1970; one of the main reasons being the possibility of an Instron bury-out of the fledgling Rheometrics Company. However, no agreement was reached and, after two years, Instron resumed development on the rheometer. By the time the 3250 instrument was ready in 1975, Rheometrics had a five years start. Furthermore, the Instron development was moved to the UK and it is hardly surprising that the instrument failed to make inroads into the expanding US rheometer market - a clear example of the business maxim that 'hesitation is deadly'.

108