4. Differential Operations with Vectors, Tensors

Scalars, vectors, and tensors are differentiated to determine rates of change (with respect to time, position)
-To carryout the differentiation with respect to a single variable, differentiate each coefficient individually.
-There is no change in order (vectors remain vectors, scalars remain scalars, etc.

$$
\frac{\partial \alpha}{\partial t} \quad \frac{\partial \underline{w}}{\partial t}=\left(\begin{array}{l}
\frac{\partial w_{1}}{\partial t} \\
\frac{\partial w_{2}}{\partial t} \\
\frac{\partial w_{3}}{\partial t}
\end{array}\right)_{123} \quad \frac{\partial B}{\partial t}=\left(\begin{array}{lll}
\frac{\partial B_{11}}{\partial t} & \frac{\partial B_{21}}{\partial t} & \frac{\partial B_{31}}{\partial t} \\
\frac{\partial B_{21}}{\partial t} & \frac{\partial B_{22}}{\partial t} & \frac{\partial B_{23}}{\partial t} \\
\frac{\partial B_{31}}{\partial t} & \frac{\partial B_{32}}{\partial t} & \frac{\partial B_{33}}{\partial t}
\end{array}\right)_{123}
$$

4. Differential Operations with Vectors, Tensors (continued)
-To carryout the differentiation with respect to 3D spatial variation, use the del (nabla) operator.
-This is a vector operator
-Del may be applied in three different ways
-Del may operate on scalars, vectors, or tensors

$$
\begin{aligned}
\text { This is written in } \\
\begin{array}{r}
\text { Cartesian } \\
\text { coordinates }
\end{array}
\end{aligned}\left\{\begin{aligned}
\nabla & \equiv \hat{e}_{1} \frac{\partial}{\partial x_{1}}+\hat{e}_{2} \frac{\partial}{\partial x_{2}}+\hat{e}_{3} \frac{\partial}{\partial x_{3}}=\binom{\frac{\partial}{\partial x_{2}}}{\frac{\partial}{\partial x_{3}}}_{123} \\
& =\sum_{p=1}^{3} \hat{e}_{p} \frac{\partial}{\partial x_{p}}=\underbrace{\hat{e}_{p} \frac{\partial}{\partial x_{p}}}
\end{aligned}\right.
$$

Einstein notation for del
4. Differential Operations with Vectors, Tensors (continued)

$\underset{\text { scalar field }}{\text { Gradient of } a}=\hat{e}_{p} \frac{\partial \beta}{\partial x_{p}}$

> The gradient of a scalar field is a vector
-gradient operation increases the order of the entity operated upon

© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology
4. Differential Operations with Vectors, Tensors (continued)
B. Vectors - gradient

$$
\begin{array}{rll}
\nabla \underline{w} \equiv & \hat{e}_{1} \frac{\partial}{\partial x_{1}} \underline{w}+\hat{e}_{2} \frac{\partial}{\partial x_{2}} \underline{w}+\hat{e}_{3} \frac{\partial}{\partial x_{3}} \underline{w} & \begin{array}{l}
\text { This is all written } \\
\text { in Cartesian } \\
\text { coordinates (basis }
\end{array} \\
& =\hat{e}_{1} \frac{\partial}{\partial x_{1}}\left(w_{1} \hat{e}_{1}+w_{2} \hat{e}_{2}+w_{3} \hat{e}_{3}\right) & \begin{array}{l}
\text { vectors are } \\
\text { constant) }
\end{array} \\
& +\hat{e}_{2} \frac{\partial}{\partial x_{2}}\left(w_{1} \hat{e}_{1}+w_{2} \hat{e}_{2}+w_{3} \hat{e}_{3}\right) & \\
& +\hat{e}_{3} \frac{\partial}{\partial x_{3}}\left(w_{1} \hat{e}_{1}+w_{2} \hat{e}_{2}+w_{3} \hat{e}_{3}\right) & \\
= & \hat{e}_{1} \hat{e}_{1} \frac{\partial w_{1}}{\partial x_{1}}+\hat{e}_{1} \hat{e}_{2} \frac{\partial w_{2}}{\partial x_{1}}+\hat{e}_{1} \hat{e}_{3} \frac{\partial w_{3}}{\partial x_{1}}+\hat{e}_{2} \hat{e}_{1} \frac{\partial w_{1}}{\partial x_{2}}+ \\
\hat{e}_{2} \hat{e}_{2} \frac{\partial w_{2}}{\partial x_{2}}+\hat{e}_{2} \hat{e}_{3} \frac{\partial w_{3}}{\partial x_{2}}+\hat{e}_{3} \hat{e}_{1} \frac{\partial w_{1}}{\partial x_{3}}+\hat{e}_{3} \hat{e}_{2} \frac{\partial w_{2}}{\partial x_{3}}+\hat{e}_{3} \hat{e}_{3} \frac{\partial w_{3}}{\partial x_{3}}
\end{array}
$$

4. Differential Operations with Vectors, Tensors (continued)
B. Vectors - gradient (continued)

Gradient of a
vector field
constants may appear on either side of the differential operator
$\nabla \underline{w} \equiv \sum_{j=1}^{3} \sum_{k=1}^{3} \hat{e}_{j} \hat{e}_{k} \frac{\partial w_{k}}{\partial x_{j}}=\hat{e}_{j} \hat{e}_{k} \frac{\partial w_{k}}{\partial x_{j}}=\underbrace{\frac{\partial w_{k}}{\partial x_{j}} \overbrace{\hat{e}_{j} \hat{e}_{k}}}$

The gradient of a vector field is

Einstein notation for gradient of a a tensor vector

Mathematics Review
4. Differential Operations with Vectors, Tensors (continued)
C. Vectors - divergence
$\left.\begin{array}{r}\text { Divergence of a } \\ \text { vector field } \\ \nabla \cdot \underline{w}\end{array} \hat{e}_{1} \frac{\partial}{\partial x_{1}}+\hat{e}_{2} \frac{\partial}{\partial x_{2}}+\hat{e}_{3} \frac{\partial}{\partial x_{3}}\right) \cdot w_{1} \hat{e}_{1}+w_{2} \hat{e}_{2}+w_{3} \hat{e}_{3}$
$=\frac{\partial w_{1}}{\partial x_{1}}+\frac{\partial w_{2}}{\partial x_{2}}+\frac{\partial w_{3}}{\partial x_{3}}$
$=\sum_{i=1}^{3} \frac{\partial w_{i}}{\partial x_{i}}=\frac{\partial w_{i}}{\partial x_{i}}$

The Divergence of a vector field is a scalar

Einstein notation for gradient of a vector
4. Differential Operations with Vectors, Tensors (continued)
C. Vectors - divergence (continued)

-divergence operation decreases the order of the entity operated upon
© Faith A. Morrison, Michigan Tech U.

Mathematics Review
4. Differential Operations with Vectors, Tensors (continued)
D. Vectors - Laplacian

Einstein $\quad \nabla \cdot \nabla \underline{w} \equiv \hat{e}_{m} \frac{\partial}{\partial x_{m}} \cdot \hat{e}_{p} \frac{\partial}{\partial x_{p}} w_{j} \hat{e}_{j}=\frac{\partial}{\partial x_{m}} \frac{\partial}{\partial x_{p}} w_{j}\left(\hat{e}_{m} \cdot \hat{e}_{p}\right) \hat{e}_{j}$
notation:

$$
\begin{aligned}
& =\frac{\partial}{\partial x_{m}} \frac{\partial}{\partial x_{p}} w_{j}\left(\delta_{m p}\right) \hat{e}_{j} \\
& =\frac{\partial}{\partial x_{p}} \frac{\partial}{\partial x_{p}} w_{j} \hat{e}_{j}<\begin{array}{c}
\text { The Laplacian } \\
\text { of a vector field } \\
\text { is a vector }
\end{array}
\end{aligned}
$$

$$
=\left(\begin{array}{l}
\frac{\partial^{2} w_{1}}{\partial x_{1}}+\frac{\partial^{2} w_{1}}{\partial x_{2}}+\frac{\partial^{2} w_{1}}{\partial x_{3}} \\
\frac{\partial^{2} w_{2}}{\partial x_{1}}+\frac{\partial^{2} w_{2}}{\partial x_{2}}+\frac{\partial^{2} w_{2}}{\partial x_{3}} \\
\frac{\partial^{2} w_{3}}{\partial x_{1}}+\frac{\partial^{2} w_{3}}{\partial x_{2}}+\frac{\partial^{2} w_{3}}{\partial x_{3}}
\end{array}\right)_{123}
$$

-Laplacian operation does not change the order of the entity operated upon

Mathematics Review

4. Differential Operations with Vectors, Tensors (continued)

E. Scalar - divergence	$\nabla \mathcal{\alpha}$	(impossible; cannot decrease order of a scalar)
F. Scalar - Laplacian	$\nabla \cdot \nabla \alpha$	
G. Tensor - gradient	$\nabla \underline{\underline{A}}$	
H. Tensor - divergence	$\nabla \cdot \underline{\underline{A}}$	
I. Tensor - Laplacian	$\nabla \cdot \nabla \underline{\underline{A}}$	

