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Abstract 
 
A new modeling approach is proposed for predicting the bulk electromechanical properties of 
piezoelectric composites.  The proposed model offers the same level of convenience as the well-
known Mori-Tanaka method.  The electromechanical properties of four piezoelectric polymer 
composite materials are predicted with the proposed, Mori-Tanaka, Self-consistent methods, and 
detailed finite element analyses are conducted over full ranges of reinforcement volume 
fractions.  The presented data offer a comprehensive comparison of the four modeling 
approaches for a wide range of matrix and reinforcement electromechanical properties, 
reinforcement geometry, and reinforcement volume fraction.  By comparison with the finite 
element data, it is shown that the proposed model predicts properties that are, in some cases, 
more accurate than the Mori-Tanaka and Self-consistent schemes.   
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Introduction 
 
Piezoelectric materials are excellent candidates for use in sensors and actuators because of their 
ability to couple electrical and mechanical energy.  For some applications, it is necessary to use 
composite materials in which one or more of the constituents have piezoelectric properties.  To 
facilitate the design of these piezoelectric composite systems, convenient and accurate structure-
property relationships must be developed.   
 
Numerous attempts have been made to develop models to relate bulk electromechanical 
properties of composite materials to the electromechanical properties of individual constituents.   
Simple estimates, utilizing Voigt or Reuss-type approaches, have been used to predict the 
behavior of a limited class of composite geometries [1-4].  Upper and lower bounds for the 
electromechanical moduli have been determined [5-8].  Finite element analysis has also been 
used to predict electromechanical properties [9, 10].  Even though finite element analysis has the 
best potential for accurately predicting composite properties for any composite geometry, the 
solutions can be very expensive and time-consuming. 
 
Several authors have extended Eshelby’s [11] classical solution of an infinite medium containing 
a single ellipsoidal inclusion to include piezoelectric constituents [12-15].  Also referred to as the 
dilute solution, this approach ignores the interactions of the inclusions that occur at finite 
inclusion volume fractions.  Other studies [14, 16-19] have focused on the classical extensions of 
Eshelby’s solution for finite inclusion volume fractions, i.e., the Mori-Tanaka [20, 21], Self-



consistent [22, 23], and differential [24, 25] approaches.  Analytical solutions for specific 
composite systems have also been determined [26-32].  Even though the overall framework of 
these approaches provides estimates for a wide range of inclusion sizes, geometries, and 
orientations, each of these methods suffers from drawbacks associated with accuracy and 
computational convenience. 
 
In this paper, a model is proposed for predicting the coupled electromechanical properties of 
piezoelectric composites.  This model is an extension of a technique originally developed for 
predicting mechanical properties of composites by generalizing the Mori-Tanaka and Self-
consistent approaches [33].  First, the overall constitutive modeling of piezoelectric materials is 
discussed, followed by a description of the proposed model.  Finally, the electromechanical 
properties of four different piezoelectric composite systems are predicted using the proposed, 
Mori-Tanaka, Self-consistent, and finite element models.  The four piezoelectric composite 
systems used in this study were chosen to represent a wide range of practical materials: a 
graphite/Poly(vinylidene fluoride) (PVDF) composite, a Silicon Carbide (SiC)/PVDF particulate 
composite, a fibrous Lead Zirconate Titanate (PZT)/polyimide composite, and a PZT/polyimide 
particulate composite. 
 
Constituent materials 
 
The matrix and inclusion constituents used in this study were chosen such that the composite 
materials had four combinations of piezoelectric constituents and reinforcement geometries.  The 
graphite/PVDF and SiC/PVDF composites have a piezoelectric polymer matrix with fiber and 
particle reinforcement, respectively.  The PZT/polyimide composites have a piezoelectric 
inclusion with fiber and particle reinforcements.   
 
PVDF is a orthotropic, semi-crystalline polymer which exhibits a piezoelectric effect with an 
electric field applied along the 3-axis.  Typical electromechanical properties of PVDF are given 
in Table 1 (these properties were supplied by NASA Langley Research Center).  LaRC-SI is a 
thermoplastic polyimide that was developed for aerospace applications.  The properties of LaRC-
SI used in this study correspond to the system with a 3% stoichiometric imbalance at room 
temperature [34] and are also shown in Table 1.  The PVDF polymer was reinforced with both 
infinitely-long graphite fibers and spherical SiC particles.  The fibers were unidirectionally 
aligned along the PVDF 1-axis.  This alignment was chosen for the modeling because of the 
desire to maintain a high level of material compliance (therefore maximizing the piezoelectric 
effect) in the transverse directions, while providing reinforcement in the direction in which little 
piezoelectric effect and maximum mechanical reinforcement are required.  The LaRC-SI 
polymer was reinforced with both infinitely-long PZT-7A fibers and spherical PZT-7A particles.  
PZT-7A is a ceramic that exhibits a piezoelectric effect with electric fields applied along all three 
principle axes.  The PZT-7A fibers were unidirectionally aligned with the fiber 3-axis as the 
fiber-length axis.  This alignment was chosen to maintain consistency with previous analyses [8, 
14, 19], which ultimately provides alignment of the fibers during the poling process in the 
fabrication of these materials.  All of the inclusion electromechanical properties are given in 
Table 1.   
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Micromechanics modeling 
 
1. Piezoelectric materials 
 
There are three standard notation systems that are commonly used to describe the constitutive 
modeling of linear-piezoelectric materials.  Using the conventional indicial notation in which 
repeated subscripts are summed over the range of i,j,m,n = 1,2,3, the constitutive equations are 
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where σij, εij, Ei, and Di are the stress tensor, strain tensor, electric field vector, and the electric 
displacement vector, respectively.  The quantities Cijmn, enij, and κin are the elastic stiffness 
tensor, the piezoelectric tensor, and the permittivity tensor, respectively.  The divergence 
equations, which are the elastic equilibrium and Gauss’ law, are, respectively, 
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where the subscripted comma denotes partial differentiation.  The gradient equations, which are 
the strain-displacement equations and electric field-potential, are, respectively, 
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where ui and φ are the mechanical displacement and electric potential, respectively.   
 
In the modeling of piezoelectric materials, it is more convenient to restate Eqn. (1) so that the 
elastic and electric variables are combined to yield a single constitutive equation.  This notation 
is identical to the conventional indicial notation with the exception that lower case subscripts 
retain the range of 1-3 and capitalized subscripts take on the range of 1-4, with repeated 
capitalized subscripts summed over 1-4.  In this notation, Eqn. (1) is 
 
 Σ =iJ iJMn MnE Z  (4) 
 
where Σij, EiJMn, and ZMn are, respectively, 
 

  (5) 
= 1,2,3

= 4
σ⎧

Σ = ⎨
⎩

ij
iJ

i

J
D J

 

 3



 

, 1, 2,3
1,2,3; 4
4; 1,2,3

, 4

=⎧
⎪ = =⎪= ⎨ = =⎪
⎪−κ =⎩

ijmn

nij
iJMn

imn

in

C J M
e J M

E
e J M

J M

 (6) 

 

  (7) 
1,2,3

4
ε =⎧

= ⎨ =⎩
mn

Mn
n

M
Z

E M
 
The piezoelectric constitutive equation can be further simplified by expressing Eqn. (4) in matrix 
notation  
 
 =Σ ΕZ  (8) 
 
where the boldface indicates either a 9×9 matrix (E) or a 9×1 column vector (Σ, Z) 
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In Eqn. (11), C, e, and κ denote the elastic stiffness matrix, the piezoelectric constant matrix, and 
the permittivity matrix, respectively.  The superscript t denotes a matrix transposition.  Note that 
γij = 2εij in order to keep E a symmetric matrix.  From Eqns (8) - (11), the constitutive equation 
for an orthotropic piezoelectric material is  
 

 

11 11 12 13 31

22 12 22 23 32

33 13 23 33 33

23 44 15

13 55 15

12 66

1 15 1

2 15 2

3 31 32 33 3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0

C C C e
C C C e
C C C e

C e
C e

C
D e
D e
D e e e

σ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢σ⎢ ⎥ ⎢
σ⎢ ⎥ ⎢
⎢ ⎥ ⎢σ⎢ ⎥ ⎢
⎢ ⎥ ⎢σ =
⎢ ⎥ ⎢σ⎢ ⎥ ⎢
⎢ ⎥ ⎢ −κ
⎢ ⎥ ⎢

−κ⎢ ⎥ ⎢
⎢ ⎥ ⎢ −κ⎣ ⎦ ⎣ ⎦

11

22

33

23

13

12

1

2

3

E
E
E

ε⎡ ⎤
⎥ ⎢ ⎥ε⎥ ⎢ ⎥
ε⎥ ⎢ ⎥

⎥ ⎢ ⎥γ⎥ ⎢ ⎥
⎥ ⎢ ⎥γ
⎥ ⎢ ⎥γ⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥⎣ ⎦

 (12) 

 

 4



where the contracted Voigt notation is used.  In Eqn. (12), the 3-axis is aligned with the principle 
direction of polarization.   
 
2. Electromechanical properties of composites 
 
Using the direct approach [14, 35, 36] for the estimate of overall properties of heterogeneous 
materials, the volume-averaged piezoelectric fields of the composite with a total of N phases are 
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where cr is the volume fraction of phase r, the overbar denotes a volume-averaged quantity, the 
subscript r denotes the phase, and  r = 1 is the matrix phase.  The constitutive equation for each 
phase is given by Eqn. (8).  For a piezoelectric composite subjected to homogeneous elastic 
strain and electric field boundary conditions, Z0, it has been shown that 0=Z Z [16].  The 
constitutive equation for the piezoelectric composite can be expressed in terms of the volume-
averaged fields 
 
 = EZΣ  (15) 
 
The volume-average strain and electric field in phase r is 
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where Ar is the concentration tensor of phase r, and 
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where I is the identity tensor.  Combining Eqns. (13)-(17) yields the electromechanical modulus 
of the composite in terms of the constituent moduli  
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Various procedures exist for evaluating the concentration tensor.  The most widely used 
approaches are the Mori-Tanaka and Self-consistent schemes.   
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For the Mori-Tanaka approach, the concentration tensor is 
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where  is the dilute concentration tensor given by Adil
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In Eqn. (20) Sr is the constraint tensor for phase r, which is analogous to the Eshelby tensor used 
in determining elastic properties of composite materials [11].  The constraint tensor is evaluated 
as a function of the lengths of the principle axes of the reinforcing phase r, , and the 
electromechanical properties of the surrounding matrix  

r
ia
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The complete expression for Eqn. (21) is given elsewhere [16].  While the Mori-Tanaka 
approach provides for a quick and simple calculation of the bulk composite electromechanical 
properties, it has been shown that it yields predicted mechanical properties that are relatively low 
and high for composites with stiffer inclusions and matrix, respectively [33].  This issue could 
possibly lead to less accurate estimations of the electromechanical moduli, especially for 
relatively large inclusion volume fractions [37-39]. 
 
In the Self-consistent scheme, the concentration tensor is 
  
 ( ) 11 −−⎡ ⎤= + −⎣ ⎦A I S E E Er r r  (22) 
 
where E is the unknown electromechanical moduli of the composite, and the constraint tensor, 
Sr, is evaluated as a function of E and .  Since the electromechanical moduli of the composite 
appears in both Eqns. (22) and (18), iterative schemes or numerical techniques are ultimately 
required for the prediction of the electromechanical moduli of composites using the Self-
consistent method.  This approach results in slow and complicated calculations. 

r
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It has been demonstrated [33] that a more general form of the concentration tensor can be used 
for the prediction of mechanical properties of composites.  Extending this concept to the 
prediction of electromechanical properties results in  
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where E0 is the electroelastic moduli of the reference medium, and the constraint tensor is 
evaluated using E0 and .  Therefore, it is assumed that the reference medium is the material r
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that immediately surrounds the inclusion for the evaluation of the constraint and concentration 
tensors.  Naturally, the electroelastic moduli of the reference medium can have a wide range of 
values, however, it is most realistic to assume that they are similar to the moduli of the overall 
composite, as is the case in the Self-consistent method.   
 
For convenience, a simple, yet accurate, estimation of the overall electroelastic moduli can be 
chosen for the reference medium so that the overall properties of the piezoelectric composite can 
be calculated using Eqns. (18) and (23).  Even though a simple and accurate estimation of the 
reference medium means that the electroelastic moduli can be calculated without Eqns. (18) and 
(23), this framework allows for the computation of the moduli for various inclusion sizes, 
geometries, and orientations.  The reference medium is approximated with a set of equations that 
are similar to the Halpin-Tsai relation [40], which is extended here for multiple inclusions and 
piezoelectric composites  
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Eqns. (24) and (25) indicate that as c1 → 1 and cr → 1, 0

iJKlE  → 1
iJKlE  and 0

iJKlE  → r
iJKlE , 

respectively.    
 
Eqns. (18) and (23)-(25) were used to calculate the electromechanical properties for the four 
composite systems for inclusion volume fractions ranging from 0% to the maximum theoretical 
limits, which are about 90% and 75% for fibrous and particulate composites, respectively.  The 
constraint tensor in Eqn. (23) was evaluated numerically using Gaussian quadrature [41].  The 
fibers were modeled as infinitely long cylinders and the particles were modeled as spheres.  
Perfect bonding between the inclusions and matrix was assumed. 
 
Finite element analysis 
 
Another approach to estimate the electromechanical properties of piezoelectric composites is 
finite element analysis of a representative volume element (RVE) of the material.  Whereas the 
methods of the previous section provide relatively quick predictions by assuming that the stress 
and strain fields inside the inclusions are constant, finite element analysis predicts these fields in 
the inclusion and matrix, and thus, provides a more realistic prediction to the overall 
electromechanical moduli of the composite.  This added accuracy comes at a price, however, 
since each independent property of the piezoelectric composite (16 independent parameters are 
shown in Eqn. (12)) must be determined by a single finite element analysis.  In parametric 
studies where many combinations of inclusion shape and volume fraction must be considered, 
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the finite element approach can become very time-consuming and expensive.  Therefore, in this 
study, the finite element results are used to check the accuracy of the modeling methods 
discussed in the previous section. 
 
The finite element model was developed and executed using ANSYS® 7.0.  Representative 
volume elements (RVEs) of fiber- and particulate-reinforced composites were meshed using 10-
noded electromechanical tetrahedral elements with 40 degrees of freedom, three displacements 
and an electric potential at each node (SOLID98).  The fibrous composite RVE (Fig. 1) 
simulated a hexagonal packing arrangement, with a maximum fiber volume fraction of about 
90%.  The particulate composite RVE (Fig. 2) had hexagonal packing in one plane with a 
maximum particle volume fraction of about 60%.  For each finite element analysis, the desired 
volume fraction was obtained by adjusting the dimensions of the RVE while keeping the 
reinforcement size constant.  The properties of the materials are shown in Table 1.  Additional 
reinforcement and matrix material were connected to each of the eight faces of both the fibrous 
and particulate RVEs to form the full finite element models (Figs. 1 and 2).   
 
For homogeneous applied elastic strains and electric fields, the displacements and voltages on 
the boundary of the full finite element models were, respectively, 
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where B indicates the boundary of the full finite element model.  A total of 16 boundary 
conditions were applied to the finite element models for each combination of material type and 
volume fraction.  Each boundary condition was used to predict one of the independent 
electroelastic constants in Eqn. (12).  The electroelastic constants and the corresponding applied 
strains, electric fields, and the boundary conditions calculated using Eqn. (26) are listed in Tables 
2 to 6.  For each set of boundary conditions, all unspecified strains and electric fields in Tables 2 
to 6 are zero.  It is noted at this point that the boundary conditions specified in Eqn. (26) are 
often referred to as kinematic boundary conditions.  These boundary conditions are not applied 
directly to the boundary of the RVE.  Instead, they are applied to the boundary of the full finite 
element model.  Therefore, the resulting deformations of the RVE are not over-constrained.  
Over-constrained RVE edges are a result of applying the kinematic boundary conditions directly 
to the boundary of the RVE [42].   
 
The elastic strain energy, dielectric energy, and electromechanical energy of a piezoelectric 
material are, respectively,  
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where  is the energy of element m, n is the total number of finite elements in the RVE, and V 
is the volume of the RVE.  The energies where calculated for each element in the RVE volumes 
for each set of boundary conditions (Tables 2 to 6) applied to the full finite element model 
boundary.  The total energies of the RVEs were determined by summing the energies of each 
RVE element, as indicated by the first equality in Eqn. (27).  The corresponding elastic, 
dielectric, and piezoelectric constants were subsequently calculated using the second equality in 
Eqn. (27).   

mU

 
Results and Discussion 
 
The Young’s moduli, Y1, Y2, and Y3; shear moduli, G23, G13, and G12; piezoelectric constants, e15, 
e31, e32, e33; and dielectric constants, κ1/κ0, κ2/κ0, and κ3/κ0; for the four materials discussed in 
this paper are presented below.  The subscripts of these quantities indicate the corresponding 
axes, as shown in Eqn. (12), and the permittivity of free space, κ0, is 8.85×10-12 C/m2.   
 
1. Graphite/PVDF fiber composite 
 
The Young’s moduli of the graphite/PVDF composite are shown in Fig. 3 as a function of the 
graphite fiber volume fraction for the results obtained with the finite element analysis, the 
proposed model discussed above, the Mori-Tanaka model, and the Self-consistent method.  For 
the Young’s modulus parallel to the fiber-alignment direction, Y1, all four models predict the 
same values for the entire range of fiber volume fractions.  For the two transverse moduli, Y2 and 
Y3, the Mori-Tanaka and finite element models match very well for the entire range of fiber 
volume fractions, while the proposed and Self-consistent models over-predict the Young’s 
moduli for fiber volume fractions over 40%. 
 
The shear moduli of this material for the entire range of fiber volume fractions are shown in Fig. 
4.  For the longitudinal shear moduli, G13 and G12, the proposed model has a closer agreement 
with the finite element model than the Mori-Tanaka and Self-consistent models have with the 
finite element model for fiber volume fractions above 40%.  For the transverse shear modulus, 
G23, the proposed, Mori-Tanaka, and the Self-consistent all predict slight higher values than the 
finite element model, with the Mori-Tanaka showing the closest agreement. 
 
The piezoelectric constants, e31, e32, and e33, are shown in Fig. 5 as a function of the fiber volume 
fraction.  The four models predict nearly equal values of e31 and e32 over the entire range.  For 
the piezoelectric constant e33, the proposed and Self-consistent results over-predict the finite 
element model, while the Mori-Tanaka method shows good agreement with the finite element 
model.   
 
The dielectric constants, κ1/κ0, κ2/κ0, and κ3/κ0, are shown in Fig. 6.  All four models predict 
identical values for all three dielectric constants for the complete range of fiber volume fractions. 
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2. SiC/PVDF particle composite 
 
The Young’s moduli of the SiC/PVDF composite are shown in Fig.7 as a function of particle 
volume fraction.  At particle volume fractions of about 20% and lower, all four models predict 
nearly identical moduli.  At higher particle volume fractions, the proposed model predicts moduli 
that have closer agreement with the finite element results than has the predicted values from the 
Mori-Tanaka model.  For particle volume fractions higher than 20%, the Self-consistent 
approach significantly over-predicts the other three models. 
 
The three shear moduli are shown in Fig. 8 for the entire range of particle volume fractions.  For 
all three shear moduli, at volume fractions of 50% and less, the Mori-Tanaka and finite element 
models have close agreement, with the proposed model over-predicting the shear moduli.  For a 
volume fraction of 60%, the shear moduli of the finite element model start increasing 
dramatically, and the proposed model shows closer agreement with the finite element model than 
does the Mori-Tanaka approach.  For particle volume fractions over 20%, the Self-consistent 
approach significantly over-estimates all three shear moduli. 
 
The piezoelectric constants are shown in Fig. 9 as a function of particle volume fraction.  For the 
constant e31, the proposed model data matches the finite element data more closely than does the 
Mori-Tanaka and Self-consistent approaches.  For the constant e32, all four models predict nearly 
identical values for the entire range of particle volume fractions.  For the piezoelectric constant 
e33, the Mori-Tanaka approach exhibits the closest agreement with the finite element predictions, 
especially for particle volume fractions above 30%. 
 
The three dielectric constants for the composite are shown in Fig. 10.  Similar to the 
graphite/PVDF composite, all four models predict identical values for all three dielectric 
constants for the entire range of particle volume fractions. 
 
3. PZT-7A/polyimide fiber composite 
 
The Young’s moduli of the PZT-7A composite are shown in Fig. 11 for the entire range of fiber 
volume fractions.  For the longitudinal Young’s modulus, Y3, all three models predict the same 
values over the complete range of volume fractions.  For the transverse Young’s moduli, Y1 and 
Y2, the Mori-Tanaka and finite element models have close agreement up to a fiber volume 
fraction of 80%.  At a fiber volume fraction of 90%, the proposed model exhibits the closest 
agreement to the finite element model.  The Self-consistent method significantly over-predicts 
the finite element model at fiber volume fractions above 50%. 
 
The shear moduli of the composite are plotted as a function of fiber volume fraction in Fig. 12.  
For the longitudinal shear moduli, G23 and G13, and the transverse shear modulus, G12, the 
proposed, Mori-Tanaka, and Self-consistent models over-predict the finite element model for the 
entire range of volume fractions.  While the Mori-Tanaka model exhibits the closest agreement 
with the finite element model, the Self-consistent significantly ever-estimates the finite element 
model data. 
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The piezoelectric constants of this material are shown in Fig. 13.  For the constants e31 = e32 and 
e33, all four models predict very similar values for the entire range of fiber volume fractions.  For 
e15, both the proposed and Mori-Tanaka models closely agree with the finite element model for 
the entire range of volume fractions.  The Self-consistent method significantly over-estimates e15 
for the fiber volume fractions above 30%.   
 
The dielectric constants are shown in Fig. 14 as a function of fiber volume fraction.  For the 
transverse dielectric constants, κ1/κ0 and κ2/κ0, the Mori-Tanaka model predicts the finite 
element model data better than does the proposed and Self-consistent models for fiber volume 
fractions above 50%.  For the longitudinal dielectric constant, κ3/κ0, the four models predict 
nearly identical values over the entire range of volume fractions. 
 
4. PZT-7A/polyimide particle composite 
 
The Young’s moduli of the PZT-7A/LaRC-SI particulate composite are shown in Fig. 15 as a 
function of particle volume fraction.  For both the transverse Young’s moduli, Y1 and Y2, and the 
longitudinal Young’s modulus, Y3, the proposed model agrees closely with the finite element 
model for the entire range of particle volume fractions considered.  The Mori-Tanaka and Self-
consistent models significantly under-predict and over-predict, respectively, the finite element 
data for volume fractions above 50%. 
 
The shear moduli of this material for the range of volume fractions are shown in Fig. 16.  For the 
longitudinal shear moduli, G23 and G13, and the transverse shear modulus, G12, the proposed, 
Mori-Tanaka, and Self-consistent models over-predict the finite element model data for the 
entire range of considered particle volume fractions, with the Mori-Tanaka exhibiting the closest 
agreement.  For particle volume fractions above 20%, the Self-consistent model significantly 
over-predicts both the longitudinal and transverse shear moduli. 
 
The piezoelectric constants are shown in Fig. 17 as a function of particle volume fraction.  For 
all four constants, e15, e31 = e32, and e33, the finite element, proposed, and Mori-Tanaka models 
show close agreement up to a particle volume fraction of 40%.  For the constants e15 and e32, the 
Mori-Tanaka model has the closest agreement with the finite element model in the particle 
volume fraction range between 40% and 50%.  At a particle volume fraction of 60%, the 
proposed model exhibits the closest agreement with the finite element model.  For e31 = e32, the 
proposed model shows the closest match with the finite element model for particle volume 
fractions above 40%.  For particle volume fractions above 20%, the Self-consistent results are 
dramatic and do not appear to closely predict any of the piezoelectric constants. 
 
The dielectric constants of the material are shown in Fig. 18.  For the transverse dielectric 
constants, κ1/κ0 and κ2/κ0, and the longitudinal dielectric constant, κ3/κ0, the predicted values 
from the Mori-Tanaka model agree with the finite element model up to a particle volume fraction 
of about 50%.  Above that value, the Mori-Tanaka model under-predicts the finite element data 
for κ1/κ0 and κ2/κ0.  At that point, the proposed model exhibits better agreement with the finite 
element model.  For particle volume fractions above 20%, the Self-consistent approach 
significantly over-estimates both transverse and longitudinal dielectric constants. 
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Summary and Conclusions 
 
A new modeling approach has been proposed for predicting the bulk electromechanical 
properties of piezoelectric composites.  The proposed model offers the same level of 
convenience as the Mori-Tanaka method, that is, it does not require iterative or numerical 
schemes for obtaining the predicted properties, as is required with the Self-consistent and 
differential schemes.  The electromechanical properties of four piezoelectric polymer composite 
materials were predicted with the proposed, Mori-Tanaka, Self-consistent methods, and detailed 
finite element analyses for a wide range of matrix and reinforcement electromechanical 
properties, geometry, and volume fraction.  The four piezoelectric composite materials 
considered were: a graphite/PVDF composite, a SiC/PVDF particulate composite, a fibrous PZT-
7A/LaRC-SI composite, and a PZT-7A/LaRC-SI particulate composite.   
 
It was shown that the proposed model yields predicted properties that were, in some cases, more 
accurate than the Mori-Tanaka and Self-consistent schemes.  In particular, the proposed model 
exhibits equal or closer agreement with the finite element model than does the Mori-Tanaka and 
Self-consistent schemes for the prediction of several electromechanical properties.  For the 
PVDF matrix composites these properties include the longitudinal shear and longitudinal 
Young’s moduli and all dielectric constants for the graphite/PVDF composite; and all Young’s 
moduli, all shear moduli (for volume fractions above 50%), the piezoelectric constants e31 and 
e32, and all dielectric constants for the SiC/PVDF composite.  For the PZT-reinforced composites 
these include the longitudinal Young’s modulus, the piezoelectric constants e33 and e15, and the 
longitudinal dielectric constant of the fibrous PZT-7A/LaRC-SI composite; and all of the 
Young’s moduli, all of the piezoelectric constants, and the longitudinal dielectric constant (for 
volume fractions above 60%) of the particulate PZT-7A/LaRC-SI composite.  Based on these 
results, the choice of the most accurate model (between the proposed, Mori-Tanaka, and Self-
consistent methods) for a specific piezoelectric composite material should be based on the 
constituent properties and the geometry and volume fraction of the inclusions. 
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Table 1. Electromechanical properties of matrix and inclusion materials 

Property PVDF LaRC-SI Graphite 
fiber 

SiC 
particle 

PZT-7A 

C11 (GPa) 3.8 8.1 243.7 483.7 148.0 
C12 (GPa) 1.9 5.4 6.7 99.1 76.2 
C13 (GPa) 1.0 5.4 6.7 99.1 74.2 
C22 (GPa) 3.2 8.1 24.0 483.7 148.0 
C23 (GPa) 0.9 5.4 9.7 99.1 74.2 
C33 (GPa) 1.2 8.1 24.0 483.7 131.0 
C44 (GPa) 0.7 1.4 11.0 192.3 25.4 
C55 (GPa) 0.9 1.4 27.0 192.3 25.4 
C66 (GPa) 0.9 1.4 27.0 192.3 35.9 
κ1/κ0 7.4 2.8 12.0 10.0 460.0 
κ2/κ0 9.3 2.8 12.0 10.0 460.0 
κ3/κ0 7.6 2.8 12.0 10.0 235.0 

e15 (C/m2) 0.0 0.0 0.0 0.0 9.2 
e31 (C/m2) 0.024 0.0 0.0 0.0 -2.1 
e32 (C/m2) 0.001 0.0 0.0 0.0 -2.1 
e33 (C/m2) -0.027 0.0 0.0 0.0 9.5 
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Table 2. Boundary conditions for axial stiffness components 

Property 
Applied strain 

and 
electric field 

Displacements 
and 

electric potential 
Elastic energy 

C11
o o
11ε = ε  

( )
( )
( )
( )

o
1 1

2

3

0
0
0

u B x
u B
u B

B

= ε
=
=

φ =

 ( )2o
112e

VU C= ε  

C22
o o
22ε = ε  

( )
( )
( )
( )

1
o

2 2

3

0

0
0

u B
u B x

u B
B

=
= ε
=

φ =

 ( )2o
222e

VU C= ε  

C33
o o
33ε = ε  

( )
( )

( )
( )

1

2
o

3 3

0
0

0

u B
u B

u B x
B

=
=

= ε
φ =

 ( )2o
332e

VU C= ε  

 
 

Table 3. Boundary conditions for plane-strain bulk moduli 

Property 
Applied strain 

and 
electric field 

Displacements 
and 

electric potential 
Elastic energy 

K23
o o
22 33ε = ε = εo  

( )
( )
( )
( )

1
o

2 2
o

3 3

0

0

u B
u B x
u B x

B

=
= ε
= ε

φ =

 ( )2o
232e

VU K= ε

 

K13
o o
11 33ε = ε = εo  

( )
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( )
( )

o
1 1

2
o

3 3

0

0

u B x
u B

u B x
B

= ε
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= ε
φ =

 ( )2o
132e
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K12
o o
11 22ε = ε = εo  

( )
( )
( )
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o
1 1

o
2 2

3 0
0

u B x
u B x

u B
B

= ε
= ε
=

φ =

 ( )2o
122e

VU K= ε
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Table 4. Boundary conditions for shear stiffness components 

Property 
Applied strain 

and 
electric field 

Displacements 
and 

electric potential 
Elastic energy 

C44

o
o
23 2

γ
ε =  

( )
( ) ( )
( ) ( )

( )

1

o
2 3

o
3 2

0

2

2

0

u B

u B x

u B x

B

=

= γ

= γ
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( )2o
442e

VU C= γ

 

C55

o
o
13 2

γ
ε =  

( ) ( )
( )

( ) ( )
( )

o
1 3

2

o
3 1

2

0

2

0

u B x

u B

u B x

B

= γ

=

= γ

φ =

( )2o
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VU C= γ

 

C66

o
o
12 2

γ
ε =  

( ) ( )
( ) ( )

( )
( )

o
1 2

o
2 1

3

2

2

0
0

u B x

u B x

u B
B

= γ

= γ

=
φ =

( )2o
662e

VU C= γ

 

 
 
 
 

Table 5. Boundary conditions for dielectric constants 

Property 
Applied strain 

and 
electric field 

Displacements 
and 

electric potential 

Dielectric 
energy 

κ1/κ0
o o
1E E=  

( )
( )
( )

( )

1

2

3
o

1

0
0
0

u B
u B
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B E x

=
=
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2E E=  
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0
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κ3/κ0
o o
3E E=  

( )
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1

2

3
o

3

0
0
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u B
u B
u B
B E x

=
=
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φ = −

 ( )2o
32d

VU E= κ
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Table 6. Boundary conditions for piezoelectric constants 

Property 
Applied strain 

and 
electric field 

Displacements 
and 

electric potential 

Electromechanical 
energy 

e15

o
o
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E E
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Figure 1. Finite element RVE of fiber composite 
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Figure 2. Finite element RVE of particle composite 
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Figure 3. Young’s moduli vs. fiber volume fraction for graphite/PVDF composite 
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Figure 4. Shear moduli vs. fiber volume fraction for graphite/PVDF composite 
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Figure 5. Piezoelectric constants vs. fiber volume fraction for graphite/PVDF composite 
 

6

7

8

9

10

11

12

0 10 20 30 40 50 60 70 80 9
Fiber volume fraction (%)

D
ie

le
ct

ric
 c

on
st

an
t

0

Finite element, κ1/κ0
Finite element, κ2/κ0
Finite element, κ3/κ0
Proposed, κ1/κ0
Proposed, κ2/κ0
Proposed, κ3/κ0

Mori-Tanaka, κ1/κ0
Mori-Tanaka, κ2/κ0
Mori-Tanaka, κ3/κ0
Self-Consistent, κ1/κ0
Self-Consistent, κ2/κ0
Self-Consistent, κ3/κ0

Finite element, κ1/κ0
Finite element, κ2/κ0
Finite element, κ3/κ0
Proposed, κ1/κ0
Proposed, κ2/κ0
Proposed, κ3/κ0

Mori-Tanaka, κ1/κ0
Mori-Tanaka, κ2/κ0
Mori-Tanaka, κ3/κ0
Self-Consistent, κ1/κ0
Self-Consistent, κ2/κ0
Self-Consistent, κ3/κ0

 
 

Figure 6. Dielectric constants vs. fiber volume fraction for graphite/PVDF composite 
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Figure 7. Young’s moduli vs. particle volume fraction for SiC/PVDF composite 
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Figure 8. Shear moduli vs. particle volume fraction for SiC/PVDF composite 
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Figure 9. Piezoelectric constants vs. particle volume fraction for SiC/PVDF composite 
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Figure 10. Dielectric constants vs. particle volume fraction for SiC/PVDF composite 
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Figure 11. Young’s moduli vs. fiber volume fraction for PZT-7A/LaRC-SI composite 
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Figure 12. Shear moduli vs. fiber volume fraction for PZT-7A/LaRC-SI composite 
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Figure 13. Piezoelectric constants vs. fiber volume fraction for PZT-7A/LaRC-SI composite 
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Figure 14. Dielectric constants vs. fiber volume fraction for PZT-7A/LaRC-SI composite 
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Figure 15. Young’s moduli vs. particle volume fraction for PZT-7A/LaRC-SI composite 
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Figure 16. Shear moduli vs. particle volume fraction for PZT-7A/LaRC-SI composite 
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Figure 17. Piezoelectric constants vs. particle volume fraction for PZT-7A/LaRC-SI composite 
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Figure 18. Dielectric constants vs. particle volume fraction for PZT-7A/LaRC-SI composite 
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