Geometric constructions of quantum codes

Jürgen Bierbrauer, D. Bartoli, S. Marcugini, and F. Pambianco

Abstract. We give a geometric description of binary quantum stabilizer codes. In the case of distance \(d = 4 \) this leads to the notion of a quantum cap. We describe several recursive constructions for quantum caps and construct in particular quantum 36-and 38-caps in \(PG(4, 4) \). This yields quantum codes with new parameters \([36, 26, 4]\) and \([38, 28, 4]\).

1. Introduction

It has been shown in [6] that certain additive quaternary codes give rise to quantum codes. We use the following definition:

Definition 1. A quaternary quantum stabilizer code is an additive quaternary code \(C \) which is contained in its dual, where duality is with respect to the symplectic form.

A pure \([n, l, d]\)-code is a quaternary quantum stabilizer code of binary dimension \(n - l \) and dual distance \(\geq d \).

The spectrum of quantum stabilizer codes of distance 2 is easily determined. The complete determination of the parameter spectrum of additive quantum codes of distance 3 is given in [3]. The analogous problem for \(d = 4 \) is wide open. A recent result is the non-existence of a \([13, 5, 4]\) quantum code, see [5].

In [4] we formulate the problem in geometric terms. Here we concentrate on the special case when \(d = 4 \) and the code is quaternary linear. This leads to the following definition:

Definition 2. A set of \(n \) points in \(PG(m - 1, 4) \) is pre-quantum if it satisfies the following equivalent conditions:

- The corresponding quaternary \([n, m]\) code has all weights even.
- Each hyperplane meets the set in the same parity as the cardinality of the set.

It is a quantum cap if moreover it is a cap and generates the entire ambient space.

It is in fact easy to see that the conditions in Definition 2 are equivalent. The translation result is the following (see [4]):

Theorem 1. The following are equivalent:

- A pure quantum code \([n, n - 2m, 4]\) which is linear over \(\mathbb{F}_4 \).
• A quantum n-cap in $PG(m - 1, 4)$.

The relation between the two items of Theorem 1 is as follows: let C be the quaternary linear code describing the $[\lfloor n, n - 2m, 4 \rfloor]$-quantum code and M a generator matrix of C. Then M is an (m, n)-matrix with entries from F_4. A corresponding quantum cap is described by the projective points defined by the columns of M.

In this paper we concentrate on quantum caps in $PG(3, 4)$ and in $PG(4, 4)$. In the next section we review a known recursive construction. In the final section we construct quantum 36-and 38-caps in $PG(4, 4)$. This yields positive answers to the existence questions of quantum codes $[[36, 26, 4]]$ and $[[38, 28, 4]]$ that remained open in the database [9]. These quantum codes are best possible as $[[36, 26, 5]]$- and $[[38, 28, 5]]$-quantum codes cannot exist.

2. A recursive construction

The most obvious recursive construction is the following:

Theorem 2. Let K_1, K_2 be disjoint pre-quantum sets in $PG(m - 1, 4)$. Then $K_1 \cup K_2$ is pre-quantum.

Let $K_1 \subset K_2$ be pre-quantum sets. Then also $K_2 \setminus K_1$ is pre-quantum.

The proof is trivial. Theorem 2 leads to the question when a subset of a pre-quantum set is pre-quantum. This can be expressed in coding-theoretic terms.

Definition 3. Let M be a quaternary (m, n)-matrix whose columns generate different points, and K the corresponding n-set of points in $PG(m - 1, 4)$. The associated binary code A is the binary linear code of length n generated by the supports of the quaternary codewords of the code generated by M.

Observe that by definition K is pre-quantum if and only if A is contained in the all-even code. This leads to the following characterization:

Theorem 3. Let $K \subset PG(m - 1, 4)$ be pre-quantum and $K_1 \subseteq K$. Then K_1 (and its complement $K \setminus K_1$) is pre-quantum if and only if the characteristic vector of K_1 is contained in the dual A^\perp of the binary code A associated to K.

This is essentially Theorem 7 of [6]. It can be used in two ways. One is to start from a quantum cap K and construct (pre-)quantum caps $K_1 \subset K$ contained in it. This is the point of view taken by Tonchev in [11]. In fact the maximum size of a cap in $PG(4, 4)$ is 41, there are two such caps and one is quantum. Also, there is a uniquely determined 40-cap in $AG(4, 4)$ and it is quantum (for these facts see [7, 8]). Tonchev starts from the quantum 41-cap and determines its quantum subcaps. This leads to quantum caps of sizes $n \in \{10, 12, 14 - 27, 29, 31, 33, 35\}$ in $PG(4, 4)$. It is easy to see that the smallest pre-quantum cap in any dimension is the hyperoval in the plane. By Theorem 2 it follows that this method cannot produce quantum caps of sizes between 36 and 40 in $PG(4, 4)$. Tonchev then applies the same method to the Glynn cap (a 126-cap in $PG(5, 4)$) and also produces a linear $[[27, 13, 5]]$ quantum code.

We take a more geometric point of view. Here is a direct application of Theorem 2:

Corollary 1. Assume there exist a quantum i-cap in $AG(m - 1, 4)$ and a pre-quantum j-cap in $AG(m - 1, 4)$. Then there is a quantum $(i + j)$-cap in $PG(m, 4)$.
planes in 10 hyperovals and Fano planes play a central role in the construction of the large Witt each bundle of lines through a point of the Fano plane. There are 168 hyperovals Fano planes. □

As an example, the union of two hyperovals on different planes H_1, H_2 of $PG(3, 4)$ is a quantum 12-cap provided $H_1 \cap H_2$ is an exterior line of both hyperovals. In the next section we briefly describe the quantum caps in $PG(3, 4)$ as they are needed as ingredients for the recursive constructions.

3. Quantum caps in $PG(3, 4)$

It can be shown that the sizes of quantum caps in $PG(3, 4)$ are 8, 12, 14 and 17 (see [1]). Theorem 1 shows that this can be expressed equivalently as follows: pure linear $[[n, n-8, 4]]$-quantum codes exist precisely for $n \in \{8, 12, 14, 17\}$. Here the 7-cap is the elliptic quadric, obviously quantum. The construction of a quantum 12-cap was described in the previous section. The quantum 8-cap A can be described as the set-theoretic difference of $PG(3, 2)$ and a Fano subplane. It has the peculiarity not to contain a coordinate frame. Another description of A is based on hyperovals: choose hyperovals O_1, O_2 on two planes which share two points on the line of intersection. The symmetric sum $O_1 + O_2$ is then the quantum 8-cap.

The quantum 14-cap in $PG(3, 4)$ is a highly interesting object. It is the uniquely determined complete 14-cap in $PG(3, 4)$. Its group of automorphisms is the semidirect product of an elementary abelian group of order 8 and $GL(3, 2)$ (see [7]). It contains 7 hyperovals. Here is a construction using only hyperovals: there is a configuration in $PG(3, 4)$ consisting of three collinear planes and a hyperoval in plane, where the line of intersection is a secant for all three hyperovals. The symmetric sum of two hyperovals is then our quantum 8-cap and the union of all three hyperovals is the quantum 14-cap. This shows also that we can think of the 14-cap as a disjoint union of a hyperoval and a quantum 8-cap. In Section 6 we will construct a quantum 38-cap in $PG(4, 4)$ based on four copies of the quantum 14-cap on four hyperplanes. For that purpose we give a more detailed description.

Definition 4. Let O be a hyperoval and Π_0 a Fano plane of $PG(2, 4)$. Then O and Π_0 are well-positioned if $O \cap \Pi_0 = \emptyset$ and if the three lines of Π_0 containing the points of O are concurrent in a point $P \in \Pi_0$. Write then $\Pi_0 = \Pi(P, O)$.

Lemma 1. Let O be a hyperoval in $PG(2, 4)$. There are precisely 15 Fano planes in $PG(2, 4)$ which are well-positioned with respect to O.

Proof. This follows directly from the definition. Those 15 Fano planes are the $\Pi_0(P)$ where P varies over the points outside O. Recall that $PG(2, 4)$ and its hyperovals and Fano planes play a central role in the construction of the large Witt design as it is described for example in Hughes-Piper [10]. There are 360 Fano planes in $PG(2, 4)$ and each is well-positioned with respect to 7 hyperovals, one for each bundle of lines through a point of the Fano plane. There are 168 hyperovals and so it is not surprising that each hyperoval is well-positioned with respect to 15 Fano planes. □

Lemma 2. Let E be a plane in $PG(3, 4)$ and $O \subset E$ a hyperoval. Let $\Pi \subset PG(3, 4)$ be a $PG(3, 2)$ and $\Pi_0 = \Pi \cap E$ a Fano plane. Let $A = \Pi \setminus \Pi_0$. Then $A \cup O$ is a cap if and only if O and Π_0 are well-positioned in E.
Proof. Let \(P \in \Pi_0 \) and \(O \) the union of the points \(\not\in \Pi_0 \) on the union of the lines of \(\Pi_0 \) through \(P \). The fact that \(\Pi_0 \) is a blocking set in \(E \) shows that \(O \) is a cap, hence a hyperoval. \(\square \)

Lemma 2 shows one way to describe the complete 14-caps in \(PG(3, 4) \) : start from a subgeometry \(\Pi = PG(3, 2) \) and a Fano plane \(\Pi_0 \subset \Pi \). Let \(A = \Pi \setminus \Pi_0 \) and \(E \) the subplane \(PG(2, 4) \) generated by \(\Pi_0 \). Pick \(P \in \Pi_0 \) and let \(O \) be the union of the points of \(E \setminus \Pi_0 \) on the lines of \(\Pi_0 \) through \(P \). Then \(A \cup O \) is a complete (quantum) 14-cap. This is not a parametrization as each 14-cap can be written like that in 7 ways.

4. Applications of Theorem 2

Application of Corollary 1 to the quantum caps in \(PG(3, 4) \) (only the elliptic quadric is not affine) and to the pre-quantum 6-cap (the hyperoval in a plane) yields quantum caps in \(PG(4, 4) \) of sizes

\[14 + 6 = 20, 12 + 6 = 18, 8 + 6 = 14, 14 + 8 = 22, 14 + 12 = 26, \]
\[14 + 14 = 28, 12 + 8 = 20, 12 + 12 = 24, 8 + 8 = 16. \]

Corollary 1 can be slightly generalized so as to allow the use of the elliptic quadric \(K_1 \) on \(H_1 \). Let \(\{ P \} = K_1 \cap S \) and \(K_2 \subset AG(3, 4) \) a pre-quantum cap. Then \(K_1 \cup K_2 \) is a quantum cap provided \(K_2 \cup \{ P \} \) is a cap. This works for \(j = 6, 8 \) and thus yields quantum caps of sizes \(17 + 6 = 23, 17 + 8 = 25 \) in \(PG(4, 4) \). It does not work for \(j = 12 \) or \(j = 14 \) as those quantum caps in \(AG(3, 4) \) are complete in \(PG(3, 4) \) (see [2]). The union of two disjoint hyperovals on two planes which meet in a point yields a quantum 12-cap in \(PG(4, 4) \).

5. A more general recursive construction

Theorem 4. Let \(\Pi_1, \Pi_2 \) be different hyperplanes of \(PG(m, 4) \) and \(K_i \subset \Pi_i \) be pre-quantum caps such that \(K_1 \cap \Pi_1 \cap \Pi_2 = K_2 \cap \Pi_1 \cap \Pi_2 \). Then the symmetric sum \(K_1 + K_2 = (K_1 \setminus K_2) \cup (K_2 \setminus K_1) \) is a pre-quantum cap.

Proof. It is clear that \(K_1 + K_2 \) is a cap. Only the quantum condition needs to be verified. Let \(H \) be a hyperplane. If \(H \) contains \(\Pi_1 \cap \Pi_2 \) there is no problem. Assume this is not the case. Then \(H \) meets each of \(\Pi_1, \Pi_2, \Pi_1 \cap \Pi_2 \) in a hyperplane. By the pre-quantum condition applied to \(K_i \subset \Pi_i \) it follows that the sets \((K_1 \cap K_2) \setminus H, K_1 \setminus (K_2 \cup H), K_2 \setminus (K_1 \cup H) \) all have the same parity. \(\square \)

If we apply Theorem 4 to an elliptic quadric on one of the hyperplanes then we must choose an elliptic quadric on the second hyperplane as well. This leads to quantum 24- and 32-caps. The other ingredients can be combined. Observe that all of them have planes with 0 or 2 or 4 intersection points and all but the 8-cap also contain a hyperoval. This leads to quantum caps of sizes

\[6 + 8 = 14, 8 + 8 = 16, 4 + 8 = 12, 4 + 10 = 14, 8 + 10 = 18, 10 + 10 = 20, \]
\[6 + 6 = 12, 6 + 10 = 16, 6 + 12 = 18, 10 + 12 = 22, 12 + 12 = 24, 8 + 8 = 16, \]
\[8 + 12 = 20, 8 + 14 = 22, 12 + 12 = 24, 12 + 14 = 26, 14 + 14 = 28. \]

6. New quantum caps in \(PG(4, 4) \).

Let \(F_4 = \{ 0, 1, \omega, \overline{\omega} \} \). In this section we will write for brevity \(2 = \omega, 3 = \overline{\omega} \).
A quantum 36-cap in $PG(4,4)$. Fix a plane E and three different hyperplanes H_1, H_2, H_3 containing E. Let $V \cup \{N\}$ be an oval in E, let $K_3 \subset H_3$ be a quantum 12-cap (union of two hyperovals) such that $K_3 \cap E = V$ and let $K_i, i = 1, 2$ be elliptic quadrics in H_i such that $H_i \cap E = V \cup \{N\}$. Define

$$K = K_1 \cup K_2 \cup K_3 \setminus \{N\}.$$

Then $|K| = 4 + 12 + 12 + 8 = 36$. We claim that K is pre-quantum. Let H be a hyperplane. There is no problem if H contains E. Let $y = H \cap E$, a line. As K_3 is pre-quantum it generates no problems. It is obvious that H intersects $K_1 \setminus E$ and $K_2 \setminus E$ in the same cardinality. This proves the statement.

In order to obtain the promised quantum cap it remains to be shown that K can be chosen to be a cap. Here is one such quantum cap:

$$
\begin{pmatrix}
0000 & 00000000000 & 11111111111 & 1111 & 1111 \\
0000 & 11111111111 & 00000000000 & 1111 & 1111 \\
0101 & 000111222333 & 000111222333 & 0123 & 0123 \\
1211 & 001223002022 & 223001022002 & 1133 & 0011 \\
1031 & 02031033212 & 022133112030 & 2031 & 0202
\end{pmatrix}
$$

A quantum 38-cap in $PG(4,4)$. Start from a subplane $E = PG(2,4)$ of $PG(4,4)$ defined by $x_1 = x_2 = 0$ and a hyperoval O of E which we choose as the union of $P_0 = (0 : 0 : 1 : y : y^2)$ for $y \in GF(4)$, $P_\infty = (0 : 0 : 0 : 0 : 1)$ and the nucleus $N = (0 : 0 : 0 : 1 : 0)$. Concretely

$$O = \{00100, 00010, 00001, 00111, 00123, 00132\}.$$

Next choose a point $Q \in E \setminus O$. Without restriction $Q = (0 : 0 : 1 : 1 : 0)$. Then Q is on two exterior lines with respect to O. Those are $[1 : 1 : 2]$ and $[1 : 1 : 3]$. The points $\neq Q$ on $[1 : 1 : 2]$ are $R_1 = 013, R_2 = 013, R_3 = 122, R_4 = 131$ where we used an obvious notational convention. Consider the Fano planes $F_i = \Pi(R_i, O)$ (see Definition 4). By definition F_i is well-positioned with respect to O.

Consider now the four hyperplanes H_1, H_2, H_3, H_4 containing E which are defined by $x_1 = 0, x_2 = 0, x_3 = 3x_1$ and $x_2 = 2x_1$, respectively. Representatives for points in $H_3 \setminus E$ will always be written in the form $01*, 10*, 21*, 31*$, respectively. Let now G_i be a subspace $PG(3,2)$ of H_i which contains the Fano plane F_i and let $A_i = G_i \setminus F_i, i = 1, 2, 3, 4$. Then A_i is a quantum 8-cap in H_i and $A_4\cup O$ is a quantum 14-cap. Let $K = O \cup A_1 \cup A_2 \cup A_3 \cup A_4$. Then K is a quantum set of 38 points. It is a quantum cap if and only if it is a cap. The question is if G_i can be chosen in a way such that this is the case. It seems to be advantageous to switch to vector space language. Then $F_1 = \langle 013, 022, 203 \rangle$ where $\langle \rangle$ denotes the three-dimensional space over GF generated by those vectors. Likewise $F_2 = \langle 103, 202, 203 \rangle$ and $F_3 = \langle 122, 011, 301 \rangle, F_4 = \langle 131, 023, 303 \rangle$.

Lemma 3.

$S_4 = F_1 + F_3 = \langle 002, 020, 033, 100, 303 \rangle, S_3 = F_1 + F_4 = \langle 001, 030, 013, 100, 310 \rangle,$

$S_2 = 3F_1 + F_4 = \langle 001, 010, 023, 320, 200 \rangle, S_1 = F_2 + F_3 = \langle 002, 030, 021, 200, 320 \rangle$.

Furthermore $2F_2 \subset S_4, 3F_2 \subset S_3, 2F_3 \subset S_2, F_4 \subset S_1$.

This is easy to check. Let now

$$G_1 = 01a_1 + F_1, G_2 = 10a_2 + F_2, G_3 = 21a_3 + F_3, G_4 = 31a_4 + F_4.$$
The cap condition is then equivalent to the following four conditions being satisfied:

- \(b_4 = a_1 + 2a_2 + a_3 \not\in S_4 \)
- \(b_3 = a_1 + 3a_2 + a_4 \not\in S_3 \)
- \(b_2 = 3a_1 + 2a_3 + a_4 \not\in S_2 \)
- \(b_1 = a_2 + a_3 + a_4 \not\in S_1 \)

Observe \(b_1 = b_3 + b_4, b_2 = b_3 + 2b_4 \). It follows that all we need to find are elements \(b_3 \not\in S_3, b_4 \not\in S_4 \) such that \(b_3 + b_4 \not\in S_1, b_3 + 2b_4 \not\in S_2 \). One possible choice is \(b_3 = 011, b_4 = 001 \) and \(a_1 = 220, a_2 = 113, a_3 = 000, a_4 = 103 \). Here is the cap:

\[
\begin{pmatrix}
000000 & 00000000 & 11111111 & 22222222 & 33333333 \\
000000 & 11111111 & 00000000 & 11111111 & 11111111 \\
100111 & 22202000 & 10312032 & 01031232 & 10120323 \\
010123 & 23021301 & 11131333 & 02103213 & 03201321 \\
001132 & 03231012 & 30102321 & 02113302 & 32001132 \\
\end{pmatrix}
\]

References

Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan 49931 (USA)

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Perugia (Italy)

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Perugia (Italy)

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Perugia (Italy)