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Abstract

We investigate the C0 interior penalty Galerkin (C0 IPG) method for biharmonic eigenvalue problems with the
boundary conditions of the clamped plate, the simply supported plate and the Cahn-Hilliard type. We prove the
convergence of the method and present numerical results to illustrate its performance. We also compare the C0 IPG
method with the Argyris C1 finite element method, the Ciarlet-Raviart mixed finite element method, and the Morley
nonconforming finite element method.
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1 Introduction
In this paper we consider the numerical solution of several eigenvalue problems for the biharmonic operator. Such
problems appear for example in mechanics (vibration and buckling of plates [22, 14, 23, 30]) and inverse scattering
theory (the transmission eigenvalue problem [33]). Finite element methods for eigenvalue problems usually are based
on numerical methods for the corresponding source problems, and there are three classical approaches to discretizing
the biharmonic equation in the literature. The first approach uses conforming finite elements, for example, the Argyris
finite element method [2] or the partition of unity finite element method [34, 29, 16]. These methods require globally
continuously differentiable finite element spaces, which are difficult to construct and implement (in particular for three
dimensional problems). The second approach uses classical nonconforming finite elements such as the Adini element
[1] or the Morley element [27, 31, 32]. A disadvantage is that such elements do not come in a natural hierarchy
and existing nonconforming elements only involve low order polynomials that are not efficient for capturing smooth
solutions. The third classical approach to discretizing the biharmonic operator uses mixed finite element methods
[15, 4, 26] that only require continuous Lagrange finite element spaces. However, for the boundary conditions of
simply supported plates, some mixed finite element methods can result in spurious solutions on non-convex domains
(Sapondjan paradox [28]). This is also the case for the boundary conditions of the Cahn-Hilliard type that appear in
mathematical models for phase separation phenomena. The solution of the saddle point problems resulting from the
use of a mixed finite element method is also more involved than that for a direct discretization of the fourth order
operator.
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An alternative to the three classical approaches is provided by the C0 interior penalty Galerkin (C0 IPG) method
developed in the last decade [17, 12, 8]. This is a discontinuous Galerkin method based on standard continuous finite
element spaces usually used for second order elliptic problems. The lowest order methods in this approach are almost
as simple as classical nonconforming finite element methods and are much simpler than finite element methods using
continuously differentiable basis functions. Unlike classical nonconforming finite element methods, higher order
finite elements can be used in this approach to capture smooth solutions efficiently. Furthermore, the C0 IPG method
converges for the biharmonic source problem with boundary conditions of the clamped plate, the simply supported
plate and the Cahn-Hilliard type. It also preserves the symmetric positive-definiteness of the continuous problems.
This last property is very attractive for eigenvalue problems since it means that the convergence for the eigenvalue
problem can be derived from the convergence for the source problem by using the classical spectral approximation
theory. In contrast, the convergence of mixed finite element methods for the source problem does not necessarily lead
to convergence for the eigenvalue problem unless the mixed method is chosen carefully [7].

In this paper we extend the C0 IPG method to biharmonic eigenvalue problems. We show that the method con-
verges for all three types of boundary conditions, and we present numerical results that validate the theory. We also
compare the performance of the C0 IPG method, the Argyris C1 finite element method, the Ciarlet-Raviart mixed
finite element method and the Morley nonconforming finite element method.

We note that numerical results for a related C0 discontinuous Galerkin method were presented in [35] for the plate
vibration and buckling problems on a square with the boundary conditions of simply supported plates. However the
convergence of the method for the eigenvalue problems was not addressed.

The rest of the paper is organized as follows. In Section 2 we introduce the biharmonic eigenvalue problems for
the boundary conditions of the clamped plate, the simply support plate, and the Cahn-Hilliard type. In Section 3 we
define the C0 IPG method for the biharmonic eigenvalue problems and establish its convergence. Numerical examples
of the C0 IPG method are presented in Section 4. In Section 5 we compare the C0 IPG method with the Argyris C1

finite element method, the Ciarlet-Raviart mixed finite element method and the Morley finite element method. We end
the paper with some concluding remarks in Section 6.

2 Biharmonic eigenvalue problems
Let Ω denote a bounded Lipschitz polygonal domain in R2 with boundary ∂Ω, and let n denote the unit outward
normal. We consider biharmonic eigenvalue problems with three types of boundary conditions.

Clamped Plate (CP)

u =
∂u

∂n
= 0 on ∂Ω (2.1)

Simply Supported Plate (SSP)

u = 4u = 0 on ∂Ω (2.2)

Cahn-Hilliard Type (CH)

∂u

∂n
=
∂4u
∂n

= 0 on ∂Ω (2.3)

The biharmonic eignevalue problem for plate vibration is to find u 6= 0 and λ ∈ R such that

∆2u = λu in Ω

together with the boundary conditions (2.1), (2.2) or (2.3). We shall refer to them as the V-CP problem, the V-SSP
problem and V-CH problem respectively.

The biharmonic eigenvalue problem for plate buckling is to find u 6= 0 and λ ∈ R such that

∆2u = −λ∆u in Ω
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together with the boundary conditions (2.1), (2.2) or (2.3). We shall refer to them as the B-CP problem, the B-SSP
problem and B-CH problem respectively.

Let the bilinear forms a(·, ·) and b(·, ·) be defined by

a(u, v) =

∫
Ω

D2u : D2v dx, (2.4)

where D2u : D2v =
∑2
i,j=1 uxixjvxixj is the Frobenius inner product of the Hessian matrices of u and v, and

b(u, v) =


(u, v) =

∫
Ω

uv dx for plate vibration,

(∇u,∇v) =

∫
Ω

∇u · ∇v dx for plate buckling.
(2.5)

The weak formulation of the biharmonic eigenvalue problem is to seek (u, λ) ∈ V × R such that u 6= 0 and

a(u, v) = λb(u, v) ∀ v ∈ V, (2.6)

where

V = H2
0 (Ω) for V-CP and B-CP, (2.7)

V = H2(Ω) ∩H1
0 (Ω) for V-SSP and B-SSP, (2.8)

V = {v ∈ H2(Ω) : ∂v/∂n = 0 on ∂Ω and (v, 1) = 0} for V- CH and B-CH. (2.9)

Remark 2.1. Since the bilinear form a(·, ·) is symmetric positive-definite on V for all three types of boundary condi-
tions, the biharmonic eigenvalues being considered are positive. Note that we have excluded the trivial eigenvalue 0
from the CH problem by imposing the zero mean constraint.

In the rest of this section, we list some facts which are helpful for the validation of numerical methods. For the
V-CP problem on the unit square, an accurate lower bound for the first eigenvalue is 1294.933940 given by Wieners
[36]. An accurate upper bound is 1294.9339796 given by Bjørstad and Tjøstheim [5].

For the V-SSP problem on convex domains, the biharmonic eigenvalues are just the squares of the eigenvalues for
the Laplace operator with the homogeneous Dirichlet boundary condition. The V-SSP eigenvalues for the unit square
are therefore given by

4π4, 25π4, 25π4, 64π4, 100π4, 100π4, . . . (2.10)

with the corresponding eigenfunctions

sin(πx1) sin(πx2), sin(2πx1) sin(πx2), sin(πx1) sin(2πx2), sin(2πx1) sin(2πx2), sin(3πx1) sin(πx2),

sin(πx1) sin(3πx2), . . .

Similarly, for the V-CH problem on convex domains, the positive biharmonic eigenvalues are given by the square
of the positive eigenvalues for the Laplace operator with the homogeneous Neumann boundary condition. Therefore
the V-CH eigenvalues on the unit square are given by

π4, π4, 4π4, 16π4, 16π4, 25π4, 25π4, . . . (2.11)

with the corresponding eigenfunctions

cos(πx1), cos(πx2), cos(πx1) cos(πx2), cos(2πx1), cos(2πx2), cos(2πx1) cos(πx2), cos(πx1) cos(2πx2), . . .

We will also consider an L-shaped domain whose vertices are

(0, 0), (1/2, 0), (1/2, 1/2), (1, 1/2), (1, 1), (0, 1).
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For the V-SSP problem on the L-shape domain, some of the eigenvalues are from (2.10) because the restrictions of
the corresponding eigenfunctions on the L-shaped domain also satisfy the boundary conditions in (2.2). For example,
the eigenfunction for the unit square

sin(2πx1) sin(2πx2)

is also an eigenfunction for the L-shaped domain with the same eigenvalue. Similarly, for the V-CH problem, the
eigenfunctions

cos(2πx1) and cos(2πx2),

for the unit square are also eigenfunctions for the L-shaped domain.
For the B-CP problem on the unit square, an accurate approximation 52.34469116 for the first eigenvalue is given

in [5]. For the B-SSP problem on the unit square the first eigenvalue is the simple eigenvalue 2π2 ≈ 19.73920880
with eigenfunction sin(πx1) sin(πx2). For the B-CH problem on the unit square, the first eigenvalue is the double
eigenvalue π2 ≈ 9.869604401 whose eigenspace is spanned by the functions cos(πx1) and cos(πx2).

3 The C0 IPG method for biharmonic eigenvalue problems

Let Th be a regular triangulation of Ω with mesh size h and Ṽh ⊂ H1(Ω) be the Pk Lagrange finite element space
(k ≥ 2) associated with Th. Let Eh be the set of the edges in Th. For edges e ∈ Eh that are the common edge of two
adjacent triangles T± ∈ Th and for v ∈ Ṽh, we define the jump of the flux to be

J∂v/∂neK =
∂vT+
∂ne

∣∣∣
e
−
∂vT−
∂ne

∣∣∣
e
,

where ne is the unit normal pointing from T− to T+. We let

∂2v

∂n2
e

= ne · (D2v)ne

and define the average normal-normal derivative to be{{
∂2v

∂n2
e

}}
=

1

2

(
∂2vT+
∂n2

e

+
∂2vT−
∂n2

e

)
.

For e ∈ ∂Ω, we take ne to be the unit outward normal and define

J∂v/∂neK = − ∂v

∂ne
and

{{
∂2v

∂n2
e

}}
=
∂2v

∂n2
e

.

Let R+ be the set of positive real numbers. The C0 IPG method for the biharmonic eigenvalue problem is to find
(uh, λh) ∈ Vh × R+ such that uh 6= 0 and

ah(uh, v) = λhb(uh, v) ∀ v ∈ Vh, (3.1)

where the choices of Vh and ah(·, ·) depend on the boundary conditions.

CP For this boundary condition the choices for Vh and ah(·, ·) are given by

Vh = Ṽh ∩H1
0 (Ω), (3.2)

ah(w, v) =
∑
T∈Th

∫
T

D2w : D2v dx+
∑
e∈Eh

∫
e

{{
∂2w

∂n2
e

}}s
∂v

∂ne

{
+

{{
∂2v

∂n2
e

}}s
∂w

∂ne

{
ds

+ σ
∑
e∈Eh

1

|e|

∫
e

s
∂w

∂ne

{ s
∂v

∂ne

{
ds, (3.3)
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where σ > 0 is a (sufficiently large) penalty parameter.

SSP For this boundary condition we use the same Vh in (3.2) and the bilinear form

ah(w, v) =
∑
T∈Th

∫
T

D2w : D2v dx+
∑
e∈Eih

∫
e

{{
∂2w

∂n2
e

}}s
∂v

∂ne

{
+

{{
∂2v

∂n2
e

}}s
∂w

∂ne

{
ds

+ σ
∑
e∈Eih

1

|e|

∫
e

s
∂w

∂ne

{ s
∂v

∂ne

{
ds, (3.4)

where E ih is the set of the edges interior to Ω.

CH For this boundary condition we use the same bilinear form ah(·, ·) defined in (3.3) and take

Vh =
{
v ∈ Ṽh : (v, 1) = 0

}
. (3.5)

The convergence of the C0 IPG method for these eigenvalue problems is based on the convergence of the C0 IPG
method for the corresponding source problems.

Let W be the space L2(Ω) for the plate vibration problems, the space H1
0 (Ω) for the B-CP and B-SSP problems

and the space {v ∈ H1(Ω) : (v, 1) = 0} for the B-CH problem. We will denote by ‖f‖b the norm induced by the
bilinear form b(·, ·) defined in (2.5), i.e.,

‖f‖2b = b(f, f).

Given f ∈W , the weak formulation for the source problem is to find u ∈ V such that

a(u, v) = b(f, v) ∀ v ∈ V, (3.6)

where the bilinear form a(·, ·) is defined in (2.4). For the V-CH source problem, we also assume that f satisfies the
constraint (f, 1) = 0.

The corresponding C0 IPG method for (3.6) is to find uh ∈ Vh such that

ah(uh, v) = b(f, v) ∀ v ∈ Vh, (3.7)

where Vh and ah(·, ·) are defined by

1. Equations (3.2) and (3.3) respectively for the CP boundary conditions,

2. Equations (3.2) and (3.4) respectively for the SSP boundary conditions, and

3. Equations (3.5) and (3.3) respectively for the CH boundary conditions.

The following lemma summarizes the results for the source problems obtained in [12, 10, 9].

Lemma 3.1. The biharmonic source problem (3.6) and the discrete source problem (3.7) are uniquely solvable for the
boundary conditions of CP, SSP and CH. In addition there exists β > 0 such that

‖u− uh‖h ≤ Chβ‖f‖b, (3.8)

‖u− uh‖b ≤ Ch2β‖f‖b, (3.9)

where u ∈ V (resp. uh ∈ Vh) is the solution of (3.6) (resp. (3.7)), and the mesh-dependent energy norm ‖ · ‖h is
defined by

‖v‖2h =
∑
T∈Th

|v|2H2(T ) +
∑
e∈Eh

|e|−1‖J∂v/∂neK‖2L2(e) (3.10)

for the boundary conditions of CP and CH, and

‖v‖2h =
∑
T∈Th

|v|2H2(T ) +
∑
e∈Eih

|e|−1‖J∂v/∂neK‖2L2(e) (3.11)

for the boundary conditions of SSP.
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Remark 3.2. Let V be the Sobolev space for the biharmonic problem defined in (2.7), (2.8) or (2.9) and Vh be the
corresponding finite element space. Then ‖ · ‖h defined by (3.10) is a norm on the space V + Vh for the boundary
conditions of CP and CH, and ‖ · ‖h defined by (3.11) is a norm on the space V + Vh for the boundary conditions of
SSP. Moreover in all three cases we have a Poincaré-Friedrichs inequality [13]

‖v‖b ≤ C‖v‖h ∀ v ∈ V + Vh. (3.12)

Remark 3.3. The exponent β in (3.8) and (3.9) is given by β = min(α, k − 1), where α is index of elliptic regularity
that appears in the elliptic regularity estimate [6, 19, 20]

‖u‖H2+α(Ω) ≤ CΩ,α‖f‖b
for the solution u of the source problem (3.6). It is determined by the angles at the corners of Ω and the boundary
conditions. For the CP boundary conditions (2.1), α belongs to ( 1

2 , 1] and α = 1 if Ω is convex. For the SSP boundary
conditions (2.2) and the CH boundary conditions (2.3), α belongs to (0, 1] in general, α = 2 for a rectangular domain,
and α is any number strictly less than 1/3 for an L-shaped domain.

For the convergence analysis of the C0 IPG method for the biharmonic eigenvalue problems, we need two
(bounded) solution operators T : W −→ V (⊂ W ) and Th : W −→ Vh (⊂ W ) on the Hilbert space

(
W, b(·, ·)

)
,

which are defined by

a(Tf, v) = b(f, v) ∀ v ∈ V,
ah(Thf, v) = b(f, v) ∀ v ∈ Vh.

Note that (2.6) is equivalent to Tu = (1/λ)u, (3.1) is equivalent to Thuh = (1/λh)uh, and the estimates (3.8)–
(3.9) can be rewritten as

‖(T − Th)f‖h ≤ Chβ‖f‖b ∀ f ∈W, (3.13)

‖(T − Th)f‖b ≤ Ch2β‖f‖b ∀ f ∈W. (3.14)

The operator T is symmetric, positive-definite and compact due to the compact embedding of V intoW . Therefore
the spectrum of T consists of a sequence of positive eigenvalues µ1 ≥ µ2 ≥ . . . decreasing to 0, and the numbers
λj = 1/µj are the biharmonic eigenvalues that increase to∞.

The convergence of the discrete eigenfunctions to the continuous eigenfunctions will be measured by the gaps
between the corresponding eigenspaces. Given two subspaces X and Y of a normed space (Z, ‖ · ‖), the gap δ(X,Y )
between them is defined by (cf. [24])

δ(X,Y ) = max{δ̂(X,Y ), δ̂(Y,X)}, where δ̂(X,Y ) = sup
x∈X,‖x‖=1

inf
y∈Y
‖x− y‖. (3.15)

The convergence of the C0 IPG method for the biharmonic eigenvalue problems follows from (3.13), (3.14) and
the classical spectral approximation theory (cf. [24, 3] and the references therein). The theorem below follows imme-
diately from the results in [24, Section 5.4.3] and [3, Section 2.7].

Theorem 3.4. Let 0 < λ1 ≤ λ2 ≤ . . . be the biharmonic eigenvalues, λ = λj = . . . = λj+m−1 be a biharmonic
eigenvalue with multiplicity m, and Vλ be the corresponding m-dimensional eigenspace. Let 0 < λh,1 ≤ λh,2 ≤ . . .
be the discrete eigenvalues obtained by the C0 IPG method. Then we have, as h→ 0,

|λh,l − λ| ≤ Ch2β , l = j, j + 1, . . . , j +m− 1.

In addition, if Vλ ⊂ V is the space spanned by the eigenfunctions corresponding to the biharmonic eigenvalues
λj , . . . , λj+m−1 and Vh,λ ⊂ Vh is the space spanned by the eigenfunctions corresponding to the discrete eigenvalues
λh,j , . . . , λh,j+m−1, then we have, as h → 0, δ(Vλ, Vh,λ) = O(hβ) in (W, ‖ · ‖h) and δ(Vλ, Vh,λ) = O(h2β) in
(W, ‖ · ‖b).

Remark 3.5. We can apply the classical theory because we use the Hilbert space
(
W, b(·, ·)

)
and Vh is a subspace of

W . This would not be possible if we use the space V in (2.7)–(2.9).

Remark 3.6. The convergence of the method in [35] for eigenvalue problems can also be established analogously by
the classical spectral approximation theory.
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4 Numerical examples of the C0 IPG method
In this section we present numerical results for two domains to illustrate the performance of the C0 IPG method for
the biharmonic eigenvalue problems. For simplicity we implement the C0 IPG for k = 2. The penalty parameter σ is
taken to be 50 in all the computations.

We first consider the unit square. In Table 1 we display the first biharmonic eigenvalues for the V-CP problem,
the V-SSP problem and the V-CH problem, computed by the C0 IPG method on a series of unstructured meshes
generated by uniform refinement. We note that the first V-CP eigenvalue obtained in [36] is 1, 294.93398. The first
V-SSP eigenvalue is 4π4 ≈ 389.6363 and the first V-CH eigenvalue is π4 ≈ 97.4091. Therefore the C0 IPG method
provides good approximations in all three cases.

Table 1: The first V-CP, V-SSP and V-CH eigenvalues of the unit square.
h 1/10 1/20 1/40 1/80
CP(1) 1,377.1366 1,318.5091 1,301.3047 1296.5904
SSP(1) 395.1181 391.1631 390.0452 389.7422
CH(1) 98.2067 97.6410 97.4711 97.4251

The second domain is the L-shaped domain. In Table 2 we present the first biharmonic plate vibration eigenvalues
computed by the C0 IPG method on a series of uniformly refined unstructured meshes. We also include the results
for the third eigenvalues of V-SSP and V-CH, whose exact values are 64π4 ≈ 6234.1818 and 16π4 ≈ 1558.5455
respectively. They are approximated correctly with less than 1% relative error at the finest meshes. Comparing Table 1
and Table 2, we see that the convergence for the L-shaped domain is slower.

Table 2: The first V-CP, V-SSP and V-CH eigenvalues of the L-shaped domain.
h 1/10 1/20 1/40 1/80
CP(1) 7,834.5030 7,104.1915 6,854.7447 6,763.0157
SSP(1) 2,870.9514 2,748.1841 2,693.7255 2,663.3927
SSP(3) 6,327.5449 6,573.0063 6,259.2682 6,240.6958
CH(1) 177.4750 174.1519 172.3741 171.1519
CH(3) 1,603.9472 1,571.3380 1,562.0031 1,559.4471

We define the relative error of the approximate eigenvalue by

Ri =
|λhi − λhi+1

|
λhi+1

,

where λhi is a fixed eigenvalue computed by the C0 IPG method on the mesh with mesh size hi. In Fig. 1 we plot
the convergence history of the C0 IPG method. For the unit square, the convergence rates are O(h2) as predicted by
the theory in the previous section. For the L-shaped domain, there is a decrease in the convergence rate due to the
reentrant corner, which is also consistent with the theoretical result.

In Fig. 2 we present the 2D surface plots of the eigenfunctions corresponding to the first biharmonic eigenvalues
of the unit square and the L-shaped domain for the V-CP problem and the V-SSP problem. The eigenfunctions for
V-CP exhibit the correct rotational symmetry, which is consistent with the fact that the first V-CP eigenvalue is a
simple eigenvalue for both domains (cf. Table ?? and Table ??). This is also true for the V-SSP problem (cf. Table ??
and Table ??). Moreover, the computed V-SSP eigenfunction for the first biharmonic eigenvalue on the unit square
should approximate a multiple of sin(πx1) sin(πx2) and this is observed.

In Fig. 3 we present the 2D surface plots of eigenfunctions for the V-CH problem. As was mentioned at the end
of Section 2, the first eigenvalue of the V-CH problem on the square is π2 (with multiplicity 2) and the eigenspace is
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Figure 1: Relative errors of the first biharmonic plate vibration eigenvalues. Left: the unit square. Right: the L-shaped
domain.
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Figure 2: Eigenfunctions corresponding to the first biharmonic plate vibration eigenvalues. First row: V-CP eigen-
functions. Second row: V-SSP eigenfunctions.

spanned by the two functions cos(πx1) and cos(πx2). In the top row of Fig. 3, the plane wave features of cos(πx1)
and cos(πx2) are clearly observed.

The 2D surface plot of the computed eigenfunction for the first V-CH eigenvalue for the L-shaped domain is
displayed on the second row of Fig. 3. It is observed that the computed eigenfunction is anti-symmetric with respect
to the line connecting the re-entrant corner and the upper left corner, which is consistent with the zero mean constraint
and with the fact that the first V-CH eigenvalue is a simple eigenvalue (cf. Table ??).

The 2D surface plots for some other V-SSP and V-CH eigenfunctions on the L-shaped domain are presented in
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Figure 3: Eigenfunctions corresponding to the first two V-CH eigenvalues for the unit square (first row) and the first
V-CH eigenvalue for the L-shaped domain (second row).

Fig. 4. As was mentioned at the end of Section 2, sin(2πx1) sin(2πx2) is also a V-SSP eigenfunction for the L-shaped
domain with the simple eigenvalue 64π4 ≈ 6234.1818, which turns out to be the 3rd eigenvalue. The 2D surface plot
of the computed eigenfunction for this eigenvalue is displayed in the first row of Fig. 4, where the same symmetry as
the function sin(2πx1) sin(2πx2) is observed.

The functions cos(2πx1) and cos(2πx2) span the eigenspace of the double (3rd and 4th) V-CH eigenvalue 16π4 ≈
1558.5455. In Fig. 4, the plane wave feature of cos(2πx1) and cos(2πx2) is clearly visible.

Next we present some numerical results for the B-CP problem, the B-SSP problem and the B-CH problem. Tables
3 and 4 display the first eigenvalues on a series of uniformly refined meshes for the unit square and the L-shaped
domain. The approximate eigenvalue for the B-CP on the unit square agree with the approximation obtained in [5], and
the approximate eigenvalues for B-SSP (resp. B-CH) problem on the unit square also agrees with 2π2 ≈ 19.73920880
(resp. π2 ≈ 9.869604401).

Table 3: The first B-CP, B-SSP and B-CH eigenvalues for the unit square.
h 1/10 1/20 1/40 1/80
BCP(1) 55.4016 53.2067 52.5757 52.4045
BSSP(1) 20.0244 19.8193 19.7607 19.7448
BCH(1) 9.9541 9.893 9.8758 9.8712

The convergence histories of the first eigenvalue for the plate buckling problem on the unit square and the L-shaped
domain are presented in Fig. 5, which exhibit similar behavior as the plate vibration problem.

The behavior of the eigenfunctions for the buckling problems are similar to the eigenfunctions for vibration prob-
lems and are therefore not presented here.
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Figure 4: Eigenfunctions for the L-shaped domain. Top: the 3rd V-SSP eigenfunction. Bottom: the normalized 3rd
and 4th V-CH eigenfunctions.

Table 4: The first B-CP, B-SSP and B-CH eigenvalues of the L-shaped domain.
h 1/10 1/20 1/40 1/80
BCP(1) 148.0750 135.0775 130.8045 129.3580
BSSP(1) 65.8585 63.3735 62.2093 61.6123
BCH(1) 15.3809 14.8899 14.6087 14.4305
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Figure 5: Relative errors of the first B-CP, B-SSP and B-CH eigenvalues. Left: the unit square. Right: the L-shaped
domain.
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5 Comparison with other methods
In this section we compare the quadratic C0 IPG method with the Argyris C1 finite element method [2], the Ciarlet-
Raviart mixed finite element method [15], and the Morley nonconforming finite element method [27].

The quintic Argyris element is an H2 conforming finite element. The 21 degrees of freedom for the Argyris
element consist of the function values and the first and second order partial derivatives at the three vertices, and the
normal derivatives at the midpoints of the three edges. Let Vh be the Argyris finite element space such that Vh ⊂ V ,
where V is defined in (2.7)–(2.9) for the three types of boundary conditions. The discrete biharmonic eigenvalue
problem for the Argyris finite element method is to find (uh, λh) ∈ Vh × R+ such that uh 6= 0 and

(4uh,4vh) = λhb(uh, vh) ∀ v ∈ Vh.

The Ciarlet-Raviart mixed finite element method for the biharmonic eigenvalue problems is based on the following
weak formulation: Find λ ∈ R+ and nontrivial (p, u) ∈ Q× V such that

∫
Ω

pqdx−
∫

Ω

∇q · ∇u dx = 0 ∀ q ∈ Q, (5.1a)

−
∫

Ω

∇p · ∇v dx = −λb(u, v) ∀ v ∈ V, (5.1b)

where

Q = H1(Ω) and V = H1
0 (Ω) for the CP boundary conditions,

Q = H1
0 (Ω) and V = H1

0 (Ω) for the SSP boundary conditions,

Q = H1(Ω) and V = H1(Ω) for the CH boundary conditions.

The discrete eigenvalue problem is to find λh ∈ R+ and nontrivial (ph, uh) ∈ Qh × Vh such that∫
Ω

phqdx−
∫

Ω

∇q · ∇uhdx = 0 ∀ q ∈ Qh, (5.2a)

−
∫

Ω

∇ph · ∇vdx = −λhb(uh, v) ∀ v ∈ Vh, (5.2b)

where Qh ⊂ Q and Vh ⊂ V are standard P1 Lagrange finite element spaces.
Let u be a biharmonic eigenfunction. If p = −∆u belongs to H1(Ω), then (p, u) will satisfy the weak formulation

(5.1) and hence the discrete eigenvalue problem (5.2) defines a Galerkin method for such an eigenfunction. This is the
case for the CP, SSP and CH biharmonic eigenvalue problems if Ω is convex [6, 19, 20]. However, as far as we know,
only the convergence of the Ciarlet-Raviart finite element method for the CP eigenvalue problem on convex domains
has been established in [25].

The Morley nonconforming finite element method is based on a triangular quadratic element, whose 6 degrees of
freedom consist of the function values at the 3 vertices and the normal derivatives at the midpoints of the 3 edges. The
Morley finite element space Vh is determined by the boundary conditions. For the CP boundary conditions, we set all
the degrees of freedom on ∂Ω to be zero. For the SSP boundary conditions, we set only the degrees of freedom at the
vertices in ∂Ω to be zero. For the CH boundary conditions we set only the degrees of freedom at the midpoints of the
edges along ∂Ω to be zero, and we also impose the zero mean condition on Vh.

The Morley finite element method is to find (uh, λh) ∈ Vh × R+ such that uh 6= 0 and∑
T∈Th

∫
T

D2uh : D2v dx = λhbh(uh, v) ∀ v ∈ Vh,

where

bh(w, v) =


∫

Ω

wv dx for plate vibration problems,∑
T∈Th

∫
T

∇w · ∇v dx for plate buckling problems.
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The convergence analysis of the Morley finite element method for the plate vibration and plate buckling problems was
carried out in [30].

The numerical results of the four methods for the plate vibration problem on the unit square, the L-shaped domain
and with the three types of boundary conditions are presented in Tables 5 and 6. The mesh size used in the computations
is h ≈ 0.0125.

Table 5: The first eigenvalues for the unit square.
V-CP V-SSP V-CH B-CP B-SSP B-CH

C0IPG 1,296.5904 389.7422 97.4251 52.4045 19.7448 9.8712
Argyris 1,295.0271 389.6365 97.4096 52.3469 19.7392 9.8695
Mixed 1,295.4749 389.7557 97.4248 52.3671 19.7422 9.8704

Morley 1,294.4736 389.5991 97.4049 52.3301 19.7383 9.8694

Table 6: The first eigenvalues for the L-shaped domain.
V-CP V-SSP V-CH B-CP B-SSP B-CH

C0IPG 6,763.0157 2,663.3927 171.1519 129.3580 61.6123 14.4305
Argyris 6,744.0019 2,691.9825 175.5528 129.0132 61.9109 14.6288
Mixed 6,694.5532 1,491.0917 34.9277 128.4905 38.6147 5.9099

Morley 6,673.1009 2,481.0174 156.2246 127.7805 59.1396 13.9426

We observe that the numerical results for the quadratic C0 IPG method and the Argyris method are comparable
in all six cases. In view of the smooth nature of the eigenfunctions on the unit square and the high order of the finite
element, the Argyris method provides very accurate approximation of the biharmonic eigenvalues on the unit square.
Therefore the quadratic C0 IPG method is quite efficient for the unit square. This can also be seen by comparing the
eigenvalues in Table 5 with the ones in [36]. The Ciarlet-Raviart mixed finite element method converges on the unit
square for all three types of boundary conditions.

For the L-shaped domain, we observe the Ciarlet-Raviart mixed finite element method also converges for the V-
CP problem. For the boundary conditions of SSP and CH, the results show spurious eigenvalues generated by the
Ciarlet-Raviart mixed finite element method.

Comparing with the C0 IPG method, the performance of the Morley finite element method is slightly better when
the eigenfunction is very smooth and slightly worse when the eigenfunction is less smooth. The approximate eigen-
values generated by the Morley finite element method is consistently less than the approximations generated by the
Argyris finite element method, which agrees with the discussion in [21].

Numerical results for the first eigenvalues of the plate buckling problems are also shown in Tables 5 and 6. For
the unit square, the results from all four methods with respect to all three boundary conditions are consistent. For the
L-shaped domain, the results from the C0IPG method, the Argyris finite element method and the Morley finite element
method are consistent for all three boundary conditions, whereas the Ciarlet-Raviart mixed finite element method is
consistent with the other methods only for the CP boundary conditions and generates spurious eigenvalues for the
other two boundary conditions.

The behavior of the Ciarlet-Raviart mixed finite element method on nonconvex domains with respect to the bound-
ary conditions of CP, SSP and CH can be given a heuristic explanation as follows. Since an eigenfunction u for
the CP eigenvalue problem always belongs to H2+α(Ω) for some α ∈ ( 1

2 , 1], we can replace (5.1) by another weak
formulation: Find λ ∈ R+ and nontrivial (p, u) ∈ Hα(Ω)×H1

0 (Ω) such that∫
Ω

pqdx− (∇q,∇u) = 0 ∀ q ∈ H1(Ω), (5.3a)

−〈∇p,∇v〉 = −λb(u, v) ∀ v ∈ H2−α
0 (Ω), (5.3b)
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where 〈·, ·〉 is the duality pairing between Hα−1(Ω) and H1−α(Ω). Since the P1 finite element spaces satisfy Qh ⊂
H1(Ω) ⊂ Hα(Ω) and Vh ⊂ H2−α

0 (Ω) ⊂ H1
0 (Ω), we can treat (5.2) as a Petrov-Galerkin method for the V-CP and

B-CP eigenvalue problems based on (5.3). This explains why the Ciarlet-Raviart method converges for the V-CP and
B-CP eigenvalue problems on the L-shaped domain. On the other hand, since p = −∆u may only belong to Hα(Ω)
for some α ∈ (0, 1

2 ) if u is an eigenfunction for the biharmonic eigenvalue problems with the SSP or the CH boundary
conditions, a similar Petrov-Galerkin interpretation for (5.2) is not valid because Vh is not a subspace of H2−α(Ω)
when α < 1

2 .

6 Conclusion
We have demonstrated that theC0 IPG method is a provably accurate scheme for approximating biharmonic eigenvalue
problems. It is robust with respect to different boundary conditions, which is a significant advantage over the Ciarlet-
Raviart mixed finite element method, because the latter produces spurious eigenvalues on nonconvex domains for the
boundary conditions of the simply supported plate and the Cahn-Hilliard type. Its performance is also comparable to
the more complicated Argyris C1 finite element method.

The results in this paper can be extended to three dimensions where the advantage over C1 finite element methods
would be even more obvious, and they can also be extended to domains with curved boundaries where the isopara-
metric version of the C0 IPG method [11] can be applied, while the constructions of C1 finite element space for such
domains are much more complicated.

The application of the C0 IPG method to transmission eigenvalue problems and the development of an adaptive
C0 IPG method for biharmonic eigenvalue problems are ongoing projects.

From the numerical results in Section 5, we see that the Ciarlet-Raviart mixed finite element method converges on
nonconvex domains for the boundary conditions of the clamped plate. As far as we know this method has only been
analyzed for convex domains [15, 4, 18] or smooth domains [26] even for the source problem. It would be interesting
to see if one can turn the heuristic argument at the end of Section 5 into a rigorous analysis of the Ciarlet-Raviart
mixed finite element method on nonconvex domains.
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