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Using DSPT SigLab with the Frequency
Domain System Identification Toolbox

SigLab makes it easy for users of the Frequency Domain System Identification Toolbox1 to get
high quality measurements for analysis. The most direct measurement that can be utilized by
the toolbox is the transfer function. SigLab's FFT-based and Swept Sine Network analyzers
make it easy to get accurate transfer function estimates. This note describes how transfer
function estimates can be analyzed by the FDID toolbox.

Overview

Two primary classes of identification
techniques.
There is no one identification technique that
is optimal for all problems, hence the large
number of approaches available in the
MATLAB

 environment. The MATLAB
System Identification Toolbox2 and MMLE3
Identification Toolbox are based on time
domain analysis techniques. DSPT SigLab
is optimized to provide alias protected, time-
domain measurements for these
identification schemes. SigLab also supplies
its own GUI-based time domain
identification technique.

The Frequency Domain System
Identification Toolbox (FDID) has
advantages for analyzing certain classes of
systems. The FDID techniques are most
naturally used with transfer function
(frequency domain) data. SigLab can make
excellent transfer function measurements by
using either a swept-sine technique or a
broadband FFT- based technique. These
measurements are controlled by easy-to-use
GUI-based user interfaces. The results can
be supplied directly to the FDID toolbox.

Identification: why a frequency domain
technique?
A frequency domain technique has
advantages over the time domain techniques
under the following conditions.

1. A model is desired over a strictly
prescribed frequency range.

2. The device (plant) being modeled is part
of an operating control system.

3. The swept-sine measurement technique
must be used due to noise and non-
linearity.

4. The use of non-uniformly spaced
frequency measurements is needed.

Consider the first condition. Often physical
devices with distributed energy storage
elements have extremely complex dynamic
behavior. To completely model the device
over a large bandwidth becomes difficult
due to the large number of in-band
resonances. A simple, but effective, strategy
is to decompose the modeling task by
making measurements and models in
adjacent sub-bands. The resulting models
can be then be combined, if desired, to
create an overall model. This strategy is
most easily accomplished in the frequency
domain.

The second condition poses many interesting
measurement challenges. Good
measurements are more difficult to obtain
because measurements often must be made
while the control system is actually
operating. The measurement of the  open-
loop dynamics of the control system are
important and this measurement can be
obtained by a simple frequency-domain
mapping.

The swept sine (stepped-sine) measurement
approach is often employed for transfer
function estimation since it can better cope
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with system noise and non-linearity
(condition 3). Such measurement problems
are common in control systems. A side
benefit of using swept sine is that the
measurement frequency resolution does not
have to be uniform (condition 4). Mechanical
systems at low frequencies often have a

frequency response which goes as 
1

2f
 or 

1

f
followed by bands containing closely spaced
resonances. The swept sine measurement
allows for an increase the number of user-
defined frequency measurement points in the
areas where there are interesting resonances.
Often, the lower frequency areas need fewer
measurements saving both measurement and
analysis time.

This note focuses on using SigLab's transfer
function estimates with the FDID toolbox.
Techniques for making the transfer function
estimates are covered in the Estimating
Transfer Functions with SigLab application
note3 and these details will not be repeated
here.

Using SigLab to Make the
Transfer Function
Measurement.

Using the transfer function
Rudimentary data acquisition systems
provide time-domain measurement data
which often lacks alias protection. Although
the FDID toolbox can be used with time-
domain data, there is little advantage to
using this method since M-functions in the
toolbox are used to estimate frequency
domain information from the time histories.
SigLab, however, can provide excellent
transfer function (frequency domain)
measurements directly to the FDID
algorithm. SigLab uses extensive on board
digital signal processing capabilities for fast,
accurate, transfer function estimates.

The steps to using the FDID toolbox with
SigLab are as follows:

1. make a transfer function measurement
using the swept sine or network analyzer
virtual instruments

2. save the results to a file
3. use a simple m-file script to read in the

measurement file and invoke the FDID
elis function

Measurement setup
As explained in Estimating Transfer
Functions with SigLab, the optimal
measurement configuration is shown in
Figure 1. The swept sine or network analyzer
virtual instruments can then be used to make
transfer function estimates of the system
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Figure 1  -  The optimal measurement
configuration.

Making unbiased transfer function estimates
is crucial to successful identification. If the
guidelines in Estimating Transfer Functions
with SigLab are followed, estimation bias
can be reduced to negligible levels.

Supplying Transfer Function
Data to the FDID elis
Function

The parameters required

Using the transfer function estimate from
SigLab considerably simplifies using the
FDID tools since much of the complexity
comes from the toolbox's ability to deal with
time domain data. The core routine in the
FDID toolbox is the elis.m function.
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The FDID documentation describes nine
major input parameters to the elis function
with five output parameters. These
parameters are, in general, vectors which
supply the measurement data to the function
as well as a plethora of analysis options (e.g.
whether to use the Levenburg-Marquardt
iteration algorithm or the Newton-Gauss).
Fortunately, the casual user need not trouble
over most of the parameters.

The important input parameters, in the
following cases, are:

1. frequency vector
2. the measured transfer function data
3. the magnitude squared coherence data

(used for weighting the fit)
4. the model domain(s or z)
5. numerator & denominator orders

This information can be passed to the elis
function in the first three input arguments
(note:  arrays are often combined to form a
single input argument).

An example of calling elis
A simple example serves to illustrate the
usage of the elis function. Listing 1 does the
following:

1. loads a SigLab data file.

2. passes measurements and minimal
estimation information to the elis
function.

3. reformats results using the imppar
function.

A few words of explanation are in order.

First, argument 1 of the elis function requires
three column vectors. The transfer function
measurement is passed as the third column
vector while the second is set to all ones.
This is tantamount to saying that the
excitation to the network was flat with no
phase characteristics (ones) and the response
was the measured transfer function.

Secondly, argument 2 usually contains the
measurement variances. Since it is assumed
the input is known, its variance is zero. The
output measurement is then assumed to have
errors which are related to the inverse of the
coherence function:  low coherence, high
variance.

When the elis.m function is executed, a
window is created with three graphs as
shown in Figure 2.

% demonstration of supplying elis.m with SigLab transfer function measurement
load measdata.vna -mat % load SigLab measurement file which defines:
                       % Fvec    = vector of frequency points
                       % XferDat = vector with transfer function estimate
                       % CohDat  = vector of coherence data used as a weighting
                       %           to discount the importance of potentially poor
                       %           measurement data in the transfer function
numord = 10 ;           % order of numerator
denord = 10;           % order of denominator
domain = 's';          % s or z plane model

nf = length(Fvec);     % number of frequency points in xfer measurement

results = elis([Fvec,ones(nf,1),XferDat(:,1)],    % frequency vector and xfer est
               [zeros(nf,1),1./CohDat(:,1)],...  % coherence^-1 for variance
               [domain,numord,denord]);           % desired model type and order

[domain,num,den,delay,fs]=imppar(results);  % reformat results into a more meaningful
                                            % representation (FDID toolbox function)

Listing 1  -  Loading SigLab data and calling elis.m in MATLAB.
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Figure 2  -  The FDID toolbox window.

The upper left plot shows the model
frequency response as a continuous line,
with the measured data plotted as "+"s. The
lower left plot shows the phase difference
between the model and the measurement.
This is a good indicator of modeling error.
The right plot shows the model’s poles and
zeros in the s-plane

When the iterations are complete, the elis
function returns the model (along with
numerous other quantities) in the output
arguments. For this example, only one output
argument is used (results). To convert the
results vector into a more meaningful format,
the imppar function is used. This FDID
Toolbox function produces a numerator/
denominator polynomial model format (refer
to FDID documentation).

Some Real-World Examples

Example 1: closed to open loop
mapping with non-uniform
measurement frequency resolution

The flexibility of the SigLab/FDID
combination is demonstrated with an
analysis of a closed loop control system.
The SigLab swept-sine virtual instrument
was used for measurement, as described in
Estimating Transfer Functions with SigLab,
pp. 14. This measurement provided an
unbiased estimate of the system’s closed
loop transfer function. The setup for the
swept sine analysis is shown in Figure 3.

Figure 3  -  Swept sine analysis of a control
system (closed loop).

The measurement was broken into three
frequency bands:  200-800, 800-2000,2000-
9000 Hz. The swept sine application allows
the acquisition and excitation parameters to
be specified independently for each band. A
logarithmic frequency resolution was used in
each band and each band had a different
number of measurement points. The same
excitation amplitude was used for each band
as shown on the upper graph (level) of
Figure 3.

Figure 4  -  Open loop response from closed
loop measurement.

The measurement results can be transformed
into an open loop representation (plotted in
Figure 4) by this simple mapping:

 Xol j
Xcl j

Xcl j
( )

( )

( )
ω ω

ω
= −

+1

Xol  and Xcl represent the open and closed
loop transfer functions respectively. This
mapping is described in more detail in
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Estimating Transfer Functions with SigLab
Equation 6.
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Figure 5  -  Identification of open loop control
system transfer function from mapped data.

This closed loop measurement data was
saved to a file and then used in a MATLAB
script similar to Listing 1. The only
difference was the addition of the closed to
open loop mapping by inserting a line in
MATLAB script:

XferDat=-XferDat./(1+XferDat);

before the call to the elis function.
Additional parameters were passed to the
elis function to select a logarithmic x axis for
the magnitude and phase plots (Figure 5).

A tenth order numerator and twelfth order
denominator provided an excellent fit to the
open loop response as shown in Figure 5.
The magnitude agreement is virtually
perfect, while the phase shows only a small
discrepancy up at 9 kHz. The model is
stable and clearly shows the pole due to
integration in the controller at s=0.

Example 2: narrow band modeling.

Often a highly accurate model over a limited
frequency region needs to be created.
Frequency domain techniques naturally lend
themselves to this task. Although given
proper hardware support (real-time zoom
processing) and proper algorithm design (the
ability to handle complex input / output time
histories) time domain techniques4 can also
address this task, the more natural solution is
the frequency domain approach.

The SigLab network analyzer virtual
instrument was used to make the
measurement Figure 6. It shows the transfer
function of a complex dynamic system
analyzed over the dc-10 kHz frequency
range. It is desired to gain a better
understanding of the physics associated with
the resonance at approximately 6775 Hz.

The SigLab hardware has the ability to do
real-time zoom which focuses the excitation
and analysis capability of the hardware over
a user specified analysis band.

Figure 6  -  DC-10 kHz analysis of a complex
dynamic system.

The result of this analysis is shown in Figure
7. There is a marked improvement in
frequency resolution (2 Hz vs. 25 Hz)
around the resonance.
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Figure 7  -  Narrowband (6576-6976 Hz)
analysis of a selected resonance.

This measurement was saved to a file and
read in by a script M-file for analysis by the
elis function. A fourth order numerator and
sixth order denominator were found to
provide an excellent fit to the data. The
results of the identification are shown in
Figure 8.
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Figure 8  -  Frequency Domain ID provides a
better understanding of the resonance.

The FDID analysis showed a more
complicated resonance than initially
expected. It is easy to see how a zero-pole
pair could cause the anti-resonance at
approximately 6640 Hz and the resonance at
6770. It was a surprise to find two zero-pole
pairs involved with the resonance. The slight
but noticeable inflection (note the arrow in
figure 8) is due to the lower Q pole-zero pair
encircled by the ellipse.

Time Domain Data
Occasionally, it might be advantageous to
send pure time domain data to the ID
toolbox in lieu of the transfer function.
SigLab can provide (alias free) time domain
data records for the FDID toolbox. In this
mode, specialized output sequences may
also be constructed in MATLAB and
generated by SigLab's output subsystem.
The time domain data can be transformed to
the frequency domain by an M-file function
provided with the FDID toolbox and then
analyzed by the core FDID algorithm elis.

When using the pure time-domain approach,
the FDID toolbox also handles the case of
correlated noise being present in both the
excitation and response data. It should be
noted that if the measurement guidelines
given in Estimating Transfer Functions with
SigLab are used, there will be little, if any,
advantage in using the time domain option.
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Conclusion
A variety of system identification tools are
available in the MATLAB environment.
Finding the optimal tools for the existing
problem is a challenge. The FDID toolbox
provides a frequency domain technique that
works well in many situations. SigLab is
optimized to make transfer function
estimates on dynamic systems. and being
MATLAB based, these estimates are
immediately available for the FDID toolbox.

For more information contact:
DSP Technology Inc.
Signal Analysis Group
48500 Kato Road, Fremont, CA 94538
Phone: (510) 657-7555
Fax: (510) 657-7576
http://www.dspt.com
                                                
1 Kollár, István, Frequency Domain System
Identification Toolbox User's Guide, The
MathWorks Inc., January 1994
2 Ljung, Lennart, System Identification Toolbox
Users Guide, The MathWorks Inc., May 1993.
3, Estimating Transfer Functions with SigLab,
AN5,DSP Technology Inc., July 1995
4 System Identification: A Practical Tool from a
Fiddler's Paradise, AN4, DSP Technology Inc.,
June 1995

S


