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Motivation

Dynamically tuning or reconfiguring operating system and
architectural resources at runtime can improve perfor-
mance by adapting system resources to the current work-
load. However, constructing effective policies for dynamic
configuration is difficult due to limited feedback. We are
limited to capturing workload and performance character-
istics for only the current system configuration.

Goal: Use sequential decision processes with limited feed-
back for system performance modeling and dynamic sys-
tem configuration.

We consider three problems using sequential decision pro-
cesses as our model:
I system event selection,
I dynamic paging mode selection, and
I dynamic hardware prefetcher configuration,
and use random sampling to construct effective effi-
cient decision making policies.
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System Event Selection

Selecting a descriptive set of events which are relevant to
describing workload behavior and system performance.

Challenges:
I The Performance Monitoring Unit (PMU) exposes

hundreds of events; but only a small number of event
counters (typically four or eight).

I Events can be ill-fitting to an application, and are
sometimes inconsistently or incorrectly implemented.

Method — Attribute Efficient Regression (AER) [3]:
AER selects a number of events to sample randomly,
with probability proportional to the estimated influence
of the event and produces a linear regression model.
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Benchmark

Figure 1: Importance ranking for selected event classes: TLB,
DTLB miss counts; FP, scalar floating point operation counts; MISP,
branch misprediction counts. Higher ranked events are depicted
darker.

Experimental Design:
I Individual AER models are constructed for each SPEC

CPU2006 benchmark.

Conclusions:
Rankings substantiated by domain knowledge:
I Memory-intensive benchmarks rank DTLB miss events

prominently, e.g., mcf cactusADM.
I Scalar floating point events readily identify floating-

point benchmarks.
I Graph, tree search benchmarks have highly ranked of

branch mispredictions, e.g., astar, gobmk, and sjeng.

Dynamic System Configuration

Dynamic Paging Mode Selection

Dynamically select paging mode, i.e., Shadow Paging (SP)
and Hardware-Assisted Paging (HAP), at runtime to im-
prove system performance.

Challenges:
I Performance is only measured for the currently selected

system configuration (limited feedback).
I System configuration control is typically low-level,

which limits online methods or complex models.

Method — Contextual Bandit [1]:
A model for sequential decision process with limited
feedback. At each iteration,
1. Observe contextual information representing the cur-

rent state of the world.
2. Select an action using contextual information and ex-

isting knowledge about the problem.
3. Receive reward dependent on both the contextual in-

formation and selected action.
Action selection policies can be constructed from logged
data collected using random action selection [2].

Our DSP-OFFSET [4] is constructed for the contextual
bandit using random profiling data.

Dynamic Hardware Prefetching

Dynamically enabling or disabling hardware prefetchers
according to workload memory and cache behavior to im-
prove performance.

Challenges:
I Configuration space is large, with 24 possible prefetcher

assignments per core on Intel architectures.
I Prefetchers can cause destructive shared-cache inter-

ference (cache pollution) and increased memory band-
width usage with little improvement to performance.

I Decisions should be made cooperatively across multiple
cores to consider co-tenancy resource contention and
cache interference.

Proposed Methods:
I Naively consider each hardware prefetcher in isolation

using the same framework as paging mode selection.
I Developing policies which incorporate the combinato-

rial structure of multiple hardware prefetchers.
I Comparing independent, per-core configuration poli-

cies versus a single, global configuration policy.

Experimental Design:
I Policy constructed using a single, random profiling ex-

ecution of each integer benchmark from the SPEC
CPU2006 benchmark suite.

I Evaluated on full SPEC CPU2006 benchmark suite.

Conclusions:
I Per-benchmark performance matches or beats perfor-

mance of the best static policy.
I DSP-OFFSET paging mode selection matches known

program behavior.
I DSP-OFFSET has equivalent performance to the

state-of-the-art ASP-SVM [5].
I DSP-OFFSET needs substantially less profiling

than ASP-SVM: 2.5 hours vs. 24 hours.
I Policy generalizes well to workload behavior not seen

during training (SPEC FP2006 benchmarks)

0.8

1.0

1.2

1.4

cactusADM gcc mcf tonto CPU 2006

Benchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Shadow Paging   
Hardware−Assisted Paging   

DSP−OFFSET   
ASP−SVM   

Paging Mode Selection Policy
Execution Time

Figure 2: Benchmark execution times normalized to HAP for select
benchmarks and the overall geometric mean.


